COMPLEMENT TO "WHAT DIFFERENTIATES STATIONARY STOCHASTIC PROCESSES FROM ERGODIC ONES : A SURVEY (Mathematical Economics : Analytical Foundations of Economic Theory)"

Author(s) Valadier, Michel

Citation 数理解析研究所講究録 (2002), 1264: 42-44

Issue Date 2002-05

URL http://hdl.handle.net/2433/42048

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University
COMPLEMENT TO "WHAT DIFFERENTIATES STATIONARY
STOCHASTIC PROCESSES FROM ERGODIC ONES: A SURVEY"

MICHEL VALADIER

Rohlin [Ro] and Mackey [Mck1] are among the most important references I forgot. Note that the papers on the subject are tremendously numerous. I selected some ones excluding those treating differential geometry (flows) and C^*-algebras. Now follow some comments.

1. I wrote my paper before reading of [Mck1-2]. About prediction of stationary processes and the identification of the law of an ergodic process, [Mck1] exposes another way to reconstruct the process law from the complete past of one trajectory; see specially the bottom of page 204 till the end of Section 5 and the top of page 223. Many comments in [Mck1] go in the same direction as my paper.

2. Among recent books, see Kifer [Ki], Kallenberg [Ka] and McCutcheon [McC] for their short proofs. Moreover Kallenberg [Ka, Theorem 9.12] proves an ergodic decomposition theorem for a finite number of measurable transformations T_1, \ldots, T_d which commute; he uses a mean spatial ergodic theorem he proved before [Ka, Theorem 9.9].

3. If I had now to rewrite my paper, I would emphasise the method of Kryloff and Bogoliouboff [KB] and then the possibility to going to some abstract measurable spaces.

In [KB], [Ox], [DGS], the space K in which the process takes its values is compact metrizable and this is the easiest case to handle. But most processes are unbounded \mathbb{R}-valued ones, so the proofs of these papers do not directly apply. One can consider \mathbb{R} as a subspace of the compact $\overline{\mathbb{R}}$: this "respects" the topology and introduces a compact over-space, but the big drawback is that \mathbb{R} is not closed in $\overline{\mathbb{R}}$.

This leads to say some words about isomorphisms. Note that in Ergodic Theory maybe three notions of isomorphisms can be used:\ 1: one-to-one map between sets, one-to-one map between subsets of full measure and isomorphism of the quotient σ-algebras such as \mathcal{F}/P (the set A and B in \mathcal{F} are equivalent if $P(A \setminus B) = 0$). See Petersen [Pe, pp.15-17] and (only for the two first notions) [DGS, pp.3-5].

A general hypothesis encountered in most papers is: the space (K, K) in which the process takes its values is a Borel standard (or Lusin) measurable space, that is

\footnote{Isomorphism with $[0, 1]$ is an essential tool in [Ro]. See also [Mah, Th.6 p.157].}
a measurable space isomorphic to a Borel subset of a Polish topological space. Any Borel standard space \((K, \mathcal{K})\) is either countable, either has the cardinality of \(\mathbb{R}\). In the first case it is isomorphic to \(\{1, \ldots, n\}\) or to \(\mathbb{N} \cup \{\infty\}\) (the tribe being that of all subsets). In the second case it is isomorphic to \(([0, 1], \mathcal{B}([0, 1]))\). As a reference see [DeM, Appendice au chapitre III, Th.80 p.249] (from many authors all properties of Borel standard spaces are proved in Kuratowski's book [Ku]). Hence if \((K, \mathcal{K})\) is Borel standard there exists a compact metrizable topology on \(K\) whose Borel tribe coincide with \(\mathcal{K}\).

For example \(\mathbb{R}\) is Borel standard. A direct way to check that \(\mathbb{R}\) is isomorphic as a measurable space to \(\mathbb{R}\) is the following: let \(\varphi: \mathbb{R} \to \overline{\mathbb{R}}\) defined by \(\varphi(x) = x\) on \(\mathbb{R} \setminus \mathbb{N}\) and any bijection from \(\mathbb{N}\) onto \(\mathbb{N} \cup \{-\infty, +\infty\}\).

Among all works treating Borel standard spaces I single out Charsi [Che] and Dynkin [Dy]. Maybe only Charsi succeeded proving narrow convergence of the sequence \((Q^\alpha_n)\); surely this is thanks to the notion he used of Daniell integral. Dynkin, whose method is summarized in my paper, develops his idea of sufficient statistic, and covers with a unified approach several other notions: Gibbs states, symmetric laws (de Finetti-Hewitt-Savage — on this question see Aldous [Ald]), superharmonic functions...

The work of Lauritzen [Lau] could have some connections with [Dy] (this author, in a preliminary work, his thesis, does not quote Dynkin's paper. I did not see the book [Lau]).

4. For applications to homogenization the acting group is \(\mathbb{R}^d\) where \(d\) is the dimension of the domain under consideration. In 1962 Farrell [Fa] and Varadarajan [Var1–2] worked simultaneously and independently in the case when \(G\) is a locally compact group (\(G\) is not necessarily commutative but it should admit a countable dense subgroup); see also [Dy, Remark p.717]. Both use limit theorems about powers of compositions of conditional expectations. Note that the case of flows (that is \(G = \mathbb{R}\)) was already treated by von Neumann and Kryloff-Bogoliouboff and that Fomin gave in 1950 some results in this line ([Fo] is in Russian).

Some former references for the reader convenience

A star points out a reference I could not see myself.

