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COMPLEMENT TO “WHAT DIFFERENTIATES STATIONARY
STOCHASTIC PROCESSES FROM ERGODIC ONES: A SURVEY”

MicHEL VALADIER

These pages complete my paper entitled “What differentiates stationary stochas-
tic processes from ergodic ones: a survey” published in Publication series of the Re-
search Institute of Mathematical Sciences (Kyoto University, ed. Toru Maruyama)
(2001), 33-52.

Rohlin [Ro] and Mackey [Mck1] are among the most important references I for-
got. Note that the papers on the subject are tremendously numerous. I selected
some ones excluding those treating differential geometry (flows) and C*-algebras.
Now follow some comments.

1. I wrote my paper before reading of [Mck1-2]. About prediction of stationary
processes and the identification of the law of an ergodic process, [Mck1] exposes
another way to reconstruct the process law from the complete past of one trajectory;
see specially the bottom of page 204 till the end of Section 5 and the top of page 223.
Many comments in [Mck1] go in the same direction as my paper.

2. Among recent books, see Kifer [Ki], Kallenberg [Ka] and McCutcheon [McC]
for their short proofs. Moreover Kallenberg [Ka, Theorem 9.12] proves an ergodic
decomposition theorem for a finite number of measurable transformations 77, . . ., Tq

which commute; he uses a mean spatial ergodic theorem he proved before [Ka,
Theorem 9.9).

3. If I had now to rewrite my paper, I would emphazise the method of Kryloff and
Bogoliouboff [KB] and then the possibility to going to some abstract measurable
spaces. : '

In [KB], [Ox], [DGS], the space K in which the process takes its values is compact
metrizable and this is the easiest case to handle. But most processes are unbounded
R-valued ones, so the proofs of these papers do not directly apply. One can consider
R as a subspace of the compact R: this “respects” the topology and introduces a
compact over-space, but the big drawback is that R is not closed in R.

This leads to say some words about isomorphisms. Note that in Ergodic Theory
maybe three notions of isomorphisms can be used!: one-to-one map between sets,
one-to-one map between subsets of full measure and isomorphism of the quotient
o-algebras such as /P (the set A and B in F are equivalent if P(A A B) = 0).
See Petersen [Pe, pp.15-17] and (only for the two first notions) [DGS, pp.3-5]. -

A general hypothesis encountered in most papers is: the space (K, KX) in which
the process takes its values is a Borel standard (or Lusin) measurable space, that is

! Isomorphism with [0, 1] is an essential tool in [Ro]. See also [Mah, Th.6 p.157].
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a measurable space isomorphic to a Borel subset of a Polish topological space. Any
Borel standard space (K, K) is either countable, either has the cardinality of R. In
the first case it is isomorphic to {1,...,n} or to NU{co} (the tribe being that of all
subsets). In the second case it is isomorphic to ([0,1], B([0,1])). As a reference see
[DeM, Appendice au chapitre III, Th.80 p.249] (from many authors all properties
of Borel standard spaces are proved in Kuratowski’s book [Ku]). Hence if (K, K) is
Borel standard there exists a compact metrizable topology on K whose Borel tribe
coincide with K.

For example R is Borel standard. A direct way to check that R is isomorphic
as a measurable space to R is the following: let ¢: R — R defined by ¢(z) = z on
R\N and any bijection from N onto NU {—o0, +00}.

Among all works treating Borel standard spaces I single out Chersi [Che] and
Dynkin [Dy]. Maybe only Chersi succeeded proving narrow convergence of the
sequence (Q¥),; surely this is thanks to the notion he used of Daniell integral.
Dynkin, whose method is summarized in my paper, develops his idea of sufficient
statistic, and covers with a unified approach several other notions: Gibbs states,
symmetric laws (de Finetti-Hewitt-Savage — on this question see Aldous [Ald]),
superharmonic functions...

The work of Lauritzen [Lau] could have some connections with [Dy] (this author,
in a preliminary work, his thesis, does not quote Dynkin’s paper. I did not see the
book [Lau]).

4. For applications to homogenization the acting group is R? where d is the di-
mension of the domain under consideration. In 1962 Farrell [Fa] and Varadarajan
[Var1-2] worked simultaneously and independently in the case when G is a locally
compact group (G is not necessarily commutative but it should admit a countable
dense subgroup); see also [Dy, Remark p.717]. Both use limit theorems about pow-
ers of compositions of conditional expectations. Note that the case of flows (that
is G = R) was already treated by von Neumann and Kryloff-Bogoliouboff and that
Fomin gave in 1950 some results in this line ([Fo] is in Russian).
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