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Harmonic equations in the Grothendieck-Teichmiiller group
(Grothendieck-Teichmiiller FHN TOFAFIGTERN)

FEKHET - AEE (Hiroshi Tsunogai)
ERSLKH - PAHER (Hiroaki Nakamura)

§0. Introduction in Japanese (B A&FEF).

AFRO BRNT. W3 [NT] UDW»&@%”/T"C‘%Z) V.G.Drinfel’d [Dr] Iz
£ > THEA STz Grothendieck-Teichmiiller BGT i, 2 & z,y ER
TLT B 2 ORIEIREBE Fy, OB CREE Auth @ﬁﬂﬁﬂifﬁg .
2-,3- 5-cycle relation & FRIZN ABRXTHEBMITONIHETHD, Fr &
P1 ~{0,1,00} DEIBREAR L F—HT 2R, FEEE Q Dt Galois

Ea‘é Go 13 Fr \WBEIEAL. ToEASN H Go — Autf, OBIXGT 28
EN5ZEBRMLNTNS, ZOBEKT GT THEEERRFRRERH OO
Go 2 BLREEKEVETH D, EANRKBRIE [GT = Gg TH B
7J (ZBL T, AR TR O T SR~D Galois TR IZEBL., G ?
B TEH GT NTHLTNEFLABOBRRER~, P! »HHRFR
£4 {0,41,00} (resp. EFHFRES {0,1,p,p71, 00} (p = e2mV=1/6))
RV #RIZ, 2 o PN {0,1,00} ~DHFH— AEHE 2 K (resp. 3
R) DEBE — 2HT D, GoliZ NoOFIZE L TRERNICERT LD
T, TOZ LD &b GT OEYERREEE (), f) BT HBRAL
LCEik L, ZOBRKBREIC TH LW 5 (ED GT & Go L 5—&
LBRWZ L&ERTH) IMERLE LTSROBETH D,

§1. Introduction.

The purpose of this short note is to summarize the results of our pa-

per [NT]. For details, see [NT]. The Grothendieck-Teichmiiller group GT
introduced by V.G.Drinfeld [Dr] is defined as a subgroup of the auto-

morphism group AutF, of the free profinite group F, of rank 2 with free
generators z,y satisfying the so called the 2-,3-,5-cycle relations.
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It is well known that the absolute Galois group G faithfully acts on
the F} identified with the profinite fundamental group P1 ~{0,1, 00} and

that the image of Go — AutF} is contained in GT. In this sense, GT
is an interesting subject which has combinatorial presentation together
with arithmetic content Gg.

It is still unknown whether “GT = Gq” or not. In this note, we

obtain several newtype equations satisfied by Gg in GT by focusing on
Galois actions on the following geometric objects. Namely, the open line
obtained by removing the harmonic points {0, +1,00} (resp. equianhar-
monic points {0,1,p,p~1,00} (p = €2"V=1/6)) from P! has two sorts of
morphisms to P! \ {0,1,00} — open inclusion and double (resp. triple)
covering. We will describe the condition that Gg-actions must respect
homomorphisms of 7; induced from these morphlsms, and get several

equations satisfied by the image of Gg — GT in terms of the standard
coordinates (A, f) of GT. 1t is still a difficult open problem to determine
whether these equations give proper subgroup of GT.

To be more precise, we shall rev1ew the deﬁmtlon of the (proﬁmte)
Grothendieck-Teichmiiller group GT. Let (A f) : GT — 7 x F, be the
standard parametrization of GT into the (set-)product of free profinite
groups of rank 1 and 2. Here ) is a homomorphlsm into Z* extending

the cyclotomic character on Gg = Gal(Q/Q)(C GT), and f is a certain
1-cocycle into (the commutator subgroup of) the free profinite group

F, of rank 2 often identified with the profinite fundamental group of
Pl—{0,1 oo} The latter group has certain standard free generators z, v,
on which GT acts via = > z* sy f (:c y)~1y* f(z,y) (see V.G.Drinfeld
[Dr], Y.Ihara [I1]). Recall then that GT was introduced in [Dr] by the

three equations:

(I) f(z,y)f(y,z) =1,
(ID) f@9)z T f(2,2)2°T f(y,2)y"T =1,
(I1I) f(z12, T23724) f (1323, T34)

= f(x23, T34) f(T12Z13, T24234) f (712, T23),

where z = (zy)~', and the z;; in (III) are certain standard elements of
the (profinite) braid group B4 with 4 strings.



199

Theorem 1. Let Bs be the profinite braid group generated by the symbols
T1, T2 with the defining relation T TeT1 = T2T1T2. For an integer a > 1,
let po : Gg — Z be the Kummer 1-cocycle defined by (Ya)°~ 1 = Cn“(”)
(0 € Gg, n > 1, (n = exp(2mi/n)). Then, the image of Go = GT
satisfies the following equations: -
(I') (Harmonic equation)  f(r2,73) = 5 *** f(r3,m) ™ £ (1, m) 7.
(II') (Equianharmonic equation)
—3pa— 271 _ A=1 3pa— 271

fr2,m2) =75 %27 f(r3,mm) "M nm) T (i, mm)n T T

(TVis) f(m,nim2) = (7'1T2)_p2f(7'i?,7'17'2)712p2,

(V) f(rim) = nPom20 f(rf m)yrp P T

In [LS2], P.Lochak and L.Schneps introduced remarkable new 1-cocycles
g,h: GT — F, which decompose the principal parameter f of GT with
respect to certain automorphisms of F5. They considered automorphisms
8, w of F of finite order such that () =y, 0(y) = =; w(z) =y, w(y) = 2,
w(z) = z (after setting z = (xy)~'), and determined the nonabelian
cohomology sets H!((8), Fy), H'((w), F2). In the process of getting this
result, they showed that each (A, f) € GT has unique prowords g, h € Fy
satisfying

_?_"2'_1 -1 =
(1.1) f=0(9 lg= { y_ﬂw(h)_ h’_ A=1 medf,
y~ 7 wh)"ly"th, A=-1 mod6.
(There seems some inconsistency in the presentation of [LS2]. For ex-
ample, they use the same symbol w to denote different automorphisms
on §1 (p.571) and §2 (p.578). See also C.Scheiderer [Sc], J.-P.Serre [Se]).
Moreover, the restrictions of these new 1-cocycles g and h on the image of

Gq < GT were interpreted as “Galois transformation factors” of certain
explicit chains on P! — {0,1, 00}, as similar to the original case of f (cf.
[11] and §3 below). In what follows, we keep the notations of Theorem 1.

Theorem 2. The image of Gg — GT satisfies the following equations:
Q
GFO g T217-2 = 7’2p2—p3f T1,7M T—2p2+3p3,
1572 1
(GF1) g(r2,73) = f(rL M),
- —0p,_AEL
(HFo)  h(r2,md) = (€)7o flm )™ T,

, AF1-6p3 3p3—2FL
(HFy) h(r2,13) = (6£) T 7 f(r &) T,
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where, in the first two equations 1 denotes 17271, and in the last two
equations, £, £_ denote T\ T2, ToT1 respectively, and the sign F is taken
according as A = 1 mod 6 respectively.

Note that, since {72,72} generates a free profinite subgroup of rank 2
in Bs, the above equations in Theorem A determine g, h completely as
prowords. Equating the left hand sides of (HF,), (HF;) and of (GF)y),
(GF1) respectively, we obtain the equations (IV},)) and (V) respec-
tively. We can also prove (I')& (GF;) and (II') & (HF;) (see [NT]
Prop. (4.3),(5.3) respectively). The following corollary also follows from
the above result (see [NT] Prop. (6.1)).

Corollary. On the image of Gg — GT,

(GFn—l) g(Tl ’T2 ) = f(Tl ,77) 2npa (n > 2)
(GG) g(72,72) = n2P2=P3g(1y, Tp) T P2 H3Ps,
(FF) f(Tl’T2) = Tgpz 3paf(7'1,’l'2)7'1 4‘02"'3”3.

The group GT acts universally on the tower of Artin braid groups {Bn}
and the tower of mapping class groups of genus zero. In the process of
examining the case of higher genus mappi/ng class groups, we encountered
refinements of the defining equations of GT ([N],[LNS],[NS]):

(IV) f(r1,78) = 15°2 £ (12, 137172 (1172) P2
(IV') f(r1,73) = 137 f (2, 73)riP* (11 73) %P

= 3 2§ (1, 73)r] P (ram]) P,
(II") f(1173,73) = g(z45, T51) f (12, T23) f (T34, Ta5)-

The above (IV},,) follows from (IV’). Putting the equations (GF,), (HF)
of Theorem 2 back to the original coboundary-like definitions (1.1) of
g, h, we get Theorem 1. The equations (I), (II) are easily implied by the
above (I'), (II') respectively, while (III) is implied by the equation (IIT').
Thus, as the consequence of the present paper, we turn out to have five
equations (I'),(II'),(IIT"),(IV’) and (V) as a set of (seemingly independent)
equations restricting the image of Go — GT. But recently, our last
named author [T] found that, besides (III'), a number of more equations
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can hold in By from his close study of the geometry of the moduli space
of the 5-point marked projective lines. Moreover, Y.lhara [I2], with his
independent method, investigated series of infinitely many “arithmetic
relations” satisfied by the image of Gg. (Especially, he extended the

Kummer 1-cocycles p, (a > 0) to the whole GT in a uniform way. See §5.)
On the other hand, F.Pop [P] recently indicated a remarkable evidence
asserting that certain restricted families of “geometric” homomorphisms
between fundamental groups of algebraic varieties over Q are enough to
characterize Gg. These new results around the injection Gg GT have
increased the variety of scales for measuring the possible gap between Gg

and GT in our hands, although currently they still leave us with the basic

Open problem: Do these newtype relations on Gg never hold on the
whole GT?

§2. Legendre-Jacobi covering and its subcoverings.

We shall consider the quotient line of P} — {0,1,00} by the Ss-
symmetry. One can can introduce the coordinate s for such a quotient
line by '

27 #2(t-1)%
4 (2 —-t+1)%

(3.1) s=(t) =

where the ramification points are normalized so that ¢~1(0) = {0, 1, oo},
¢~1(1) = {3,-1,2} and ¢71(c0) = {p,p7'} hold. Let X, = P! -
{0,1,00}. We call ¢ : P} — P! the Legendre-Jacobi covering.

We also introduce the following two subcoverings. One is the harmonic
line Pl between P! and P given by

27u?
u=4t(1—-t) and s = —_(4—u)3' |
The covering map 9 : P} — P is ramified only at ¢ = 0, % (over u = 0,1
respectively). Letting X, = PL — {0,1, 00}, we may consider m (P; —
{0,1,00},B) as a subgroupoid of m1(Xy,e1|2) which classifies the etale
covers of X, with ramification indices over u = 1 dividing 2.
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Another intermediate line to be considered is the equianharmonic line
P, between P} and Pl. Let us introduce its coordinate v by

o=e0= () o cE

Notice here that the covering morphism ¢ : P} — P! is defined only
over Q(p) (p = exp(27i/6)). In fact, if we change the variable v by
2

%(UJT”I-)Z, then ¢ can be deﬁnedoverQastHv’=t+Ii_t+t_:l.

Still in this paper we make use of v instead of v'.

v =

§3. Geometric interpretation of the cocycles g, h.

For each 0 € Ggq, we denote by A,, fs, g, ho the images of o by
A, f, 9, h respectively. Letting P} denote the projective line with a fixed
coordinate ¢, we shall consider the etale fundamental groupoid of X; =
P; — {0,1, 00} with specific set of base points

% = {01, 10, 103, 50,1, 500, Goo} U {~1, %,2} U{p,p~1}
(p = exp(2mi/6)).
Here ab (a,b € {0,1,00}) denote the tangential base points introduced

by Deligne [De|, Anderson-Thara [AI]. Introduce some basic paths g, r, ¢
in m1(X¢,B) as in Figure 1:

o=

Figure 1
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The symmetric group S3 on {0,1,00} acts naturally on the paths in
m1(Xs, B). We write °a, “a, ®a to denote the images of a path a by
the permutations (01), (0loo), (0ocol) of S3 respectivel¥. Under these

notations, for example, the standard path p connecting 01 and ﬁ can be

written as p = r(°r)™!, and the standard generators z, y of m (X, ﬁ)
are introduced as:

z=e(e), y=ple)(“e)pt.

The geometric interpretation of f,, g» and h, for o € Gg are then given
by:

O'(p) = fa(m’ y)_lp,
(2.1) o(r) = go(z,y)~'r,

ho(z,y
o ={ 4

)~ lrq (As =1 mod 6),
)" r(®q) (Ao =-1 mod 6).

Note that ), is the cyclotomic character, hence A, =1 mod 6 if and only
if o fixes p = exp(27i/6). These f,,9s,hs have values in the geometric
fundamental group (X, EH) (= m(X: ® Q, 6—1)) regarded as the free
profinite group F, with two free generators (corresponding to) z,y.

We summarize basic knowledge on the abelianization of these 1-
cocycles here: Let [ﬁ'z,ﬁ'z] denote the commutator subgroup of B, =

71 (X, ﬁ) Then, for each 0 € Gg, the following congruences hold mod-
ulo [F 2, F: 2].

(2.2) fo(z,y) =1,

(2.3) 90 (z,y) = (zy)*?,

Ag—=1 Ag-—1
z="% y“ %, (A, =1 mod 6),
(2.4) he(z,y) =
(#:9) 2z~ % y*%" (A = —1 mod 6).

§4. Sketch of proof of (GFy).

In this note, we only illustrate the proof of (GFo). We observe what
happens when we transform the geometric interpretation formula in §3
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by the covering map ¢ of §2 which is defined over Q. For other equations
of Theorem 1 and of Theorem 2, see [NT] where other subcoverings of §2
and paths of §3 are examined to prove them.

Now, the Taylor expansion of ¢ in t and ¢ — % show their principal
terms as

s~ 22 (1o ~12(t— %)2.

This means that, in view of the effects of Galois actions, we should regard
601 = =L, #(3)) = =T0..
27 % 2 127°°

Write 8y, for the canonical paths from %(Tfs to ﬁs and from %ﬁs
to ﬁ s along the real axis respectively. Then, we have

o(re) = g(ze, ys) s, o(8,) = 6,22P2(@)=3p3(e)
-1 and o s _
U(ps) = f($87 ys) Ds, 0'(62) = 62( ms) P2(0') p3(a)‘

for 0 € Gq. Putting these together into the commutative diagram

%0l, 2 0,

é(re )l lps

%ﬁs —— 10,,
o2

we obtain the equation

51—190(¢(xt), ¢(yt))61 — y;2P2(0)-Ps(0)fa(ms, ys)xs—2pz(0)+3pa(0)

in the fundamental group m;(X,,e1(2, ex|3, f)_fs) Note here that this
fundamental group is generated by z,,ys,z, with the defining relations
TsYs2s = Y3 = z3 = 1, and that the map ¢ can be described by ¢(z;) =
z2, #(y:) = y; 'z2y,. Now there is an exact sequence of profinite groups

1 — (n%) — Bs — 71(Xs, €112, €003, 015) — 1,
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where the latter surjection is defined by 71 — zs, 72 — ysZsy; 1,17 =

T1T2T1 — Ys. From this, we see that there exists some constant ¢ € Z
such that

9o (7-12, 7-22) — ,,72077—2/02(U)'-P:s(ff)f(7 (71, n)7.1—2P2(0)+3P3(0)'

To determine ¢, one may apply the surjection of Bs onto Z sending 71, T2
to 1. Noticing that f, = 0, go(z,y) = (zy)??*(?) modulo [F3, F3] (cf.
Prop.(2.2)), we obtain ¢ = 2ps(c). This proves (GFyp).

§56. Kummer 1-cocyles, H.Furusho’s work.

Thara [I2-3] invented a beautiful theory of the (hyper-)adelic beta and
gamma, functions defined on the whole Grothendieck-Teichmiiller group

GT. He considered n-cyclic Kummer coverings of P {O 1 oo} (n €N),

and defined a system of 1-cocycles including the — vQ® . GT - Z(1)
(n € N) which extend the Kummer 1-cocycles p, on GQ respectlvely (on
is defined by o({/n) = {‘/ﬁ(,':"(a) for k > 1, 0 € Gg). Using these func-
tions, IThara introduced certain subgroups GT A, GT K of GT containing
G and discussed their relationships. More recently, H.Furusho examined
relations between Ihara’s work [I2-3] and our work [N, NS, NT] and core-
lated each other by showing “l’"NGTK C GT A2»”. See [F1,2] for details.
Furusho’s result may be interpreted as indicating future possibilities that
the “arithmetic relations” of GT'A may be captured by somewhat com-
plicated combinations of various types of “geometric relations” including
what appeared in GT K or in our works [N, NS, NT].

Let us review how Thara extended the Kummer 1-cocycle p, on Gg to
GT: For a positive integer n, let H,, be the kernel of the homomorphism
) Z/nZ defined by = — 1,y — 0, which is a free profinite group of
rank n + 1 generated by the z'yz~* (i =0,...,n —1) and z". Since, for
any 0 = (A, f) € 67’, f = f, belongs to [Fg,ﬁ’z] C H,, one can consider
the image (denoted oY (¢)) of f, by the homomorphism H,, — Z defined
by z",z'yz"* — 0 ( = 1,... ,n — 1) and y — 1. Then, Thara proved
that -0 : GT — Z(1) is a 1-cocycle extending the Kummer 1-cocycle

n ([I3] Theorem 1).

On the other hand, for n = 2, we have another 1-cocycle on GT

extending the Kummer 1-cocycle p; on Gg. As we mentioned in §1, the
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1-cocycle g : GT — Fj introduced by P. Lochak and L. Schneps [LS2] is
defined not only on Gg but also on whole GT. If we define j p2:GT — Z(1)

by g(z,y) = (zy)?*(°) mod [F3, Fy], ps extends the Kummer 1-cocycle P2
on GQ.

Proposition 5.1. Ifo = (), f) € GT satisfies the equation

(GFy) g(2,73) = f(rE, )P,
or equivalently
() f(r2,73) = 75 72O f (12, )" £ (12, m) TP,

in Bg, then it holds that —\Ifg )(a) = p2(0). In other words, under (GF;)
(or (I')), two cocycles —\Ilgo) and pa coincide with each other.

Proof. Define a homomorphism from a subgroup (7£,73,7) of Bg onto
By /(y?) (Fy = (=, y)), where ((y2)) denotes the normal closure in Fj, by
2 — 2,72 = yzy~ 1,9 — y. Then, by applying this homomorphism to
both sides of the equation (GF;), we have

9(z,yzy~!) = f(z,y)z?2)

in F5/{(y?). On the other hand, the proword f (z,y) € Fj lies in the
commutator subgroup [F3, F3], hence in partlcular, in the normal (free

profinite) subgroup F3 = (z',y', 2’ ) of Fy with 2/ = z,y’ = yzy L, 2 =

y2. This means that there exists a unique proword f @ («',y',2') € F3

such that
f(z,y) = fD(z,yzy~1,4?)

holds in F} (cf. [M] 3.3). The above equation can be written in the present
notations as

g(ml,yl) = f(2)(ml’y/,z/)(ml)2ﬁz(a) ‘mod «z/»

By using g(z,y) = (zy)?2(?) mod [F}, Fy], and the fact that f = f(2
belongs to [Fg, F2], we can determine the abelianization of f(?) as follows:

Oy, ) = ()P (y')P2(@  mod [F3, Fy).

The assertion follows by comparing this and the definition of \Ilgo) . 0O
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