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Abstract : This paper proposes afast scalar multiplication algorithm, which improves both on

an addition chain and an addition formula, based on [MOn87]. Our addition chain is applicable for

for any types of elliptic curves over finite fields Fg, requires no table look-up (or afew $\mathrm{p}\mathrm{r}\triangleright \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{d}$

points) and can be implemented in parallel. The computing time for $n$-bit scalar multiplication is

one $\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}+(n-1)$ ECADDs in the parallel case and $(n-1)\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}\mathrm{s}+(n-1)$ ECADDs in the

single case. We also propose faster addition formulas which only use the $x$-coordinates of the points.

We also show acriteria which makes our algorithm resistant against the side channel attacks (SCA).

We establish afaster scalar multiplication resistant against the SCA in both single and parallel cases.
The improvement is about 37% for two processors and 5.6% for asingle processor.

Keywords: elliptic curve cryptosystem, scalar multiplication, parallelization, side

channel attack

1Introduction

Let $E(\mathrm{F}_{p})$ be an elliptic curve over afinite field $\mathrm{F}_{p}$ ($p$ aprime). The dominant computation in

the elliptic curve based cryptography (ECC) is the scalar multiplication $d*P$, where $d$ is an integer

and $P\in E(\mathrm{F}_{p})$ . It is usually computed by combining adding $P+Q$ (ECADD) and doubling $\mathrm{Z}$ $*P$

(ECDBL), where $P$, $Q\in E(\mathrm{F}_{p})$ . Several algorithms have been proposed to enhance the running time

of the scalar multiplication [CMO98]. The choice of the coordinate system and the addition chain is

the most important factor. Astandard way in [IEEE] is to use the Jacobian coordinate system and the

addition-subtraction chain.

This paper improves both the addition chain and the addition formula. Our addition chain requires no
table look-up (or avery small table) and it can be implemented in parallel for any types of elliptic curves
over finite fields $\mathrm{F}_{q}$ . Recently, Smart proposed afast implementation over aSIMD type processor, which

allows to compute several operations in the definition field in parallel [SmaOl]. Our paper is motivated
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by his technique and the computation time for ascalar multiplication is one $\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}+(n-1)$ ECADDs.
We also propose addition formulas which only use the $x$-coordinates of the points for Weierstrass form
elliptic curve over $\mathrm{F}_{p}$ , whichi is motivated by [Mon87]. The computations of the ECADD and the ECDBL
require $9M+3S$ and $6M+3S$, where $M$, $S$ are the times for a multiplication and a squaring in $\mathrm{F}_{p}$ .

The key length of $\mathrm{E}\mathrm{C}\mathrm{C}$ is currently chosen smaller than those of the $\mathrm{R}\mathrm{S}\mathrm{A}$ and the ElGamal-type
cryptosystems. The small key size of $\mathrm{E}\mathrm{C}\mathrm{C}$ is suitable for implementing on low-power mobile devices like
smart cards. However, the side channel attacks (SCA) allow an adversary to reveal the secret key in the
device by observing the side channel information such aae the computing time and the power consumption
[Koc96]. The simple power analysis (SPA) only uses a single observed information, while the differential
power analysis (DPA) usaae a lot of observed information together with statistic tools. To resist the SPA,
one uses the indistinguishable addition and doubling in the scalar multiplication [CJOI]. In the case of
prime fifields, Hesse and Jacobi form euiptic curves achieve the indistinguishability by using the same
formula for both an addition and a doubling [$\mathrm{L}\mathrm{S}01,$ JQOI]. Because of the specialty of these curves,
they are not compatible to the standardized curves in [IEEE, $\mathrm{S}\mathrm{E}\mathrm{C}$]. The other uses the add-and-double
always method to mask the scalar dependency. The Coron’$\mathrm{s}$ algorithm [Cor99] and the Montgomery
form [OKSOO] are in this category. To resist the $\mathrm{D}\mathrm{P}\mathrm{A}$, some randomizations are needed [COr99] and an
SPA-resistant scheme can be converted to a DPA-resistant scheme [COr99, JTOI].

In this paper, we discuss a criteria, which makes our algorithms to be resistant against both the SPA
and the $\mathrm{D}\mathrm{P}\mathrm{A}$ by comparing the Coron’s algorithm. We establish a faster sffiar multiplication resistant
against the $\mathrm{S}\mathrm{C}\mathrm{A}$ in both single and parallel computations. The improvement of our scalar multiplication
over the previously fastaaet method is about 37% for two processors and 5.6% for a single processor.

2 Elliptic Curve
In this paper we assume that K $=\mathrm{F}_{p}$ (p $>3)$ be a $\mathrm{f}\mathrm{f}\mathrm{i}\dot{\mathrm{u}}\mathrm{t}\mathrm{e}$ fifield with p elements. Elliptic curves over $K$

can be represented by the equation

$E(K):=\{(x,y)\in K$ xK $|y^{2}=x^{3}+ax +b\}\cup O$ , (1)

where $a$ , $b\in K$, $4a^{3}+27b^{2}\neq 0$ and $O$ is the point of infifinity. Every elliptic curve is isomorphic to a
curve of this form, and we call it the Weierstrass form. An elliptic curve $E(K)$ has an additive group
structure. Let $P_{1}=(x_{1},y_{1})$ , $P_{2}=(x_{2},y_{2})$ be two elements of $E(K)$ that are different from $O$ and satisfy
$P_{2}\neq\pm P_{1}$ . Then the sum $P_{1}+P_{2}=(x_{3},y_{3})$ is defifined as follows:

$x_{3}=\lambda^{2}-x_{1}-x_{2}$ , $y_{3}=\lambda(x_{1}-x_{3})-y_{1}$ , (2)

where $\lambda=(y_{2}-y_{1})/(x_{2}-x_{1})$ for $P_{1}\neq P_{2}$ , and A $=(3x_{1}^{2}+a)/(2y_{1})$ for $P_{1}=P_{2}$ . We call $P_{1}+P_{2}(P_{1}\neq P_{2})$

the elliptic curve addition (ECADD) and $P_{1}+P_{2}(P_{1}=P_{2})$ , that is $2*P_{1}$ , the elliptic curve doubling
(ECDBL). Let $d$ be an integer and $P$ be a point on the elliptic curve $E(K)$ . The scalar multiplication is to
compute the point $d*P$. There are three types of enhancements of the scalar multiplication. The first one
is to represent the elliptic curve $E(K)$ with a different coordinate system, whose scalar multiplication is
more effiffifficient. For examples, a projective coordinate and a class of Jacobian coordinate haae been studie
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[CMO98]. The second one is to use an effiffifficient addition chain. The addition-subtraction chain is an

example. The third one is to use aspecial tyPe of curve such as the Montgomery form elliptic curve

[OSOO].

$\blacksquare \mathrm{C}\mathrm{o}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{e}$ System: Apoint on an elliptic curve can be represented in several ways. The costs

of computing an ECADD and an ECDBL depend on the representation. The detailed description of

the coordinate systems is given in [CMO98]. The major coordinate systems are as follows: the affine

coordinate (A), the projective coordinate (V), the Jacobian coordinate (J), the Chudonovsky coordinate
$(J^{C})$ , and the modified Jacobian coordinate $(J^{m})$ . We summarize the costs in Table 1, where $M$, $s$, $I$

denotes the computation time of a multiplication, a squaring, and an inversion in the defifinition fifield $K$ ,

respectively. The speed of ECADD can be enhanced when the third coordinate is $Z=1$ .

ECADD ECDBL
$Z\neq 1$ $Z=1$

$A$ $2M+1S+1I$ – $2M+2S+1I$
$P$ $12M+2S$ $9M+2S$ $7M+5S$

$J$ $12M+4S$ $8M+3S$ $4M+6S$
$J^{c}$ $11M+3S$ $8M+3S$ $5M+6S$

$J^{m}$ $13M+6S$ $9M+5S$ $4M+4S$

81: Computing times of $\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}/\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}$

$\blacksquare \mathrm{A}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ Chain: Let $d$ be an $n$-bit integer and $P$ be a point of the elliptic curve $E(K)$ . A standard

way for computing the scalar multiplication $d*P$ is to use the binary expression $d=d_{n-1}2^{n-1}+$

$d_{n-2}2^{n-2}+\cdots+d_{1}2+d_{\mathit{0}}$ , where $d_{n-1}=1$ and $d_{\dot{\iota}}=0,1$ $(n=0,1, \ldots, n-2)$ . Then Algorithm 1 and

Algorithm 2compute $d*P$ efficiently. We call these methods the binary method. On average they

require $(n-1)\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}\mathrm{s}+(n-1)/2$ ECADDs. Because computing the $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}-P$ of $P$ is essentially

free, we can relax the binary coeffiffifficient to a signed binary $d_{i}=-1,0,1(i=0,1, \ldots, n-1)$ , which is

called the addition-subtraction chain. The NAF offers away to construct the addition-subtraction chain,

which requires $(n-1)\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}\mathrm{s}+(n-1)/3$ ECADDs on average [IEEE].

INpUT $\mathrm{d}$ , $\mathrm{P}$ , (n)

OUTPUT $\mathrm{d}*\mathrm{P}$

1: $\mathrm{Q}[0]$ $=\mathrm{P}$

2: for $\mathrm{i}=\mathrm{n}-2\mathrm{d}\mathrm{o}\mathrm{m}$ to 0

3: $\mathrm{Q}[0]$
$=\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}\mathrm{Q}\mathrm{C}\mathrm{O}]$

$)$

4: if $\mathrm{d}$ $[\mathrm{i}]$ $==1$

5: $\mathrm{Q}[01$ $=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}(\mathrm{Q}[0] ,\mathrm{P})$

6: return $\mathrm{Q}[0]$

Algorithm 1: Binary method from the most significant bit
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INPUT $\mathrm{d}$ , $\mathrm{P}$ , (n)

OUTPUT $\mathrm{d}*\mathrm{P}$

1: $\mathrm{Q}[0]$ $=\mathrm{P}$ . $\mathrm{Q}[1]$ $=0$

2: for $\mathrm{i}=0$ to $\mathrm{n}-1$

3: if $\mathrm{d}[\mathrm{i}]==1$

4: $\mathrm{Q}[1]$
$=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}(\mathrm{Q}[1]\mathrm{Q}[0] )$

5: $\mathrm{Q}[0]$ $=\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}(\mathrm{Q}[0] )$

6: return $\mathrm{Q}[1]$

Algorithm 2: Binary method ffom the least significant bit

The other enhancement technique is to utilize pre-computed tables. The Brickell’smethod and the
sliding windows methods are two of the standard algorithms [BSS99]. These algorithms have been
developed for the efficient modular multiplications over finite fields. $\mathrm{h}$ this paper we are interested in
effiffifficient algorithms without table look-up. Our gffi is to propose an efficient algorithm that is suitable
for smart cards, and the pre-computed table sometimes hinders to achieve the high effiffifficiency because
the memory spaces are expensive and an $\mathrm{I}/\mathrm{O}$ interface to read the table is relatively slow.

$\blacksquare \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{l}$ Elliptic Curves: With a special class of elliptic curves, we can enhance the speed of a scalar
multiplication. Okeya-Sakurai proposed to use the Montgomery form [OSOI] because of the speed of its
scalar multiplication. However, in $\mathrm{a}\mathbb{I}$ standards, the curves are defifined by the Weierstrass form over $\mathrm{F}_{p}$

or $\mathrm{F}_{2^{m}}$ . Every Montgomery $\mathrm{f}\mathrm{o}\mathrm{m}$ curve cannot be generally converted to the Weierstrass form, because
the order of the Montgomery form curves is always divisible by 4.

3 Side Channel Attacks
The side channel attacks (SCA) are serious attacks against mobile devices like smart cards. An adver-

sary can obtain asecret key from acryptographic device without breaking its physical protection. We
can achieve the attack by analyzing side channel infomation, $\mathrm{i}.\mathrm{e}.$ , computing time, or power consump
tion of the devices. The timing attack (TA) and the power analysis attack are examples of the SCA
[Koc96]. The simple power analysis (SPA) only uses a single observed information, and the differential
power analysis (DPA) uses alot of observed information together with statistic tools. As the TA can be
regarded as a claaes of the SPA, we are only concemed with the SPA and the DPA in this paper.

$\blacksquare \mathrm{C}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{s}$ against SPA: The binary methods of Algorithm 1 and 2 compute ECADDs
when the bit of the secret key $d$ is 1. Therefore an attacker can easily detect the bit infomation of $d$ by
the SPA.

Coron proposed a simple countermeasure against the SPA by modifying the binary methods (Algorithm
1 ’, 2’) [Cor99]. These algorithms are referred aae the add-and-double-always methods. In both algorithms,
Step 3and 4 compute both an ECDBL and an ECADD in every bits. Thus an attacker cannot guess
the bit information of $d$ by the SPA. A drawback of this method is their effiffifficiency. Algorithm 1’ requires
$(n-1)\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}\mathrm{s}+(n-1)$ ECDBLs and Algorithm 2’ requires $n\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}\mathrm{s}+n$ ECDBLs
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INPUT $\mathrm{d}$ , $\mathrm{P}$ , (n)

OUTPUT $\mathrm{d}*\mathrm{P}$

1: $\mathrm{Q}[0]$ $=\mathrm{P}$

2: for $\mathrm{i}=\mathrm{n}-2$ down to 0

3: $\mathrm{Q}[0]$ $=\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}(\mathrm{Q}[0] )$

4: $\mathrm{Q}[1]$ $=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}$ $(\mathrm{Q}[0] ,\mathrm{P})$

5: $\mathrm{Q}[0]$ $=\mathrm{Q}[\mathrm{d}$ [il 1
6: return $\mathrm{Q}[0]$

Algorithm 1’: Add-and-double-always method from the most significant bit (SPA-resistant)

INPUT $\mathrm{d}$ , $\mathrm{P}$ , (n)

OUTPUT $\mathrm{d}*\mathrm{P}$

1: $\mathrm{Q}[0]$ $=\mathrm{P}$ , $\mathrm{Q}[1]$ $=0$

2: for $\mathrm{i}=0$ to $\mathrm{n}-1$

3: $\mathrm{Q}[2]$ $=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}$ $(\mathrm{Q}[0] ,\mathrm{Q}[1] )$

4: $\mathrm{Q}[0]$ $=\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}(\mathrm{Q}[0] )$

5: $\mathrm{Q}[1]$ $=\mathrm{Q}[1+\mathrm{d}$ [il 1
6: return $\mathrm{Q}[1]$

Algorithm 2’: Add-and-double-always method from the least significant bit (SPA-resistant)

MOller proposed an SPA-resistant algorithm which is acombination of Algorithm 1’ and the window

method [MoeOl]. However, his method requires extra table look-up (at least three points).

Another countermeasure is to establish the indistinguishability between an ECADD and an ECDBL.

Joye Quisquater and Liardet-Smart proposed to use the Jacobi and Hesse form elliptic curves, which use

the same mathematical formulas for both an ECADD and an ECDBL [$\mathrm{J}\mathrm{Q}01$ , LSOI]. A drawback of this

approach is that the Jacobi and Hesse form are special types of elliptic curves and they cannot be used

for the standard Weierstrass form.

$\blacksquare \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ SPA-resistance to DPA-resistance: Even if ascheme is SPA-resistant, it is not

always DPA-resistant, because the DPA uses not only asimple power $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ but also a statistic analysis,

which has been captured by several executions of the SPA. Coron pointed out that some parameters of

ECC must be randomized in order to be DPA-resistant [Cor99]. By the randomization we are able to

enhance an SPA-resistant scheme to be DPA-resistant.

The key idea of Coron’s 3rd countermeasure $*1$ is as follows. Let $P=$ $(X : \mathrm{Y} : Z)$ be a base point

in the projective coordinate. Then $P$ and $(rX : rY : rZ)(r\in K)$ are same mathematically, but not in

the computation. If we randomize a base point with $r$ before starting the scalar multiplication, the side

information for the scalar multiplication will be randomized. An extra cost for the countermeasure is

small.
The other enhancement against the $\mathrm{D}\mathrm{P}\mathrm{A}$ was proposed by Joye-Tymen $[\mathrm{J}\mathrm{T}01]$ . This countermeasure

uses an isomorphism of an elliptic curve. The base point $P=$ $(X : \mathrm{Y} : Z)$ and the defifinition parameters

$*1$ As Coron proPosed three countermeasures, Okeya-Sakurai showed the bias in his 1st and $2\mathrm{n}\mathrm{d}$ countermeasures

[OSOO].
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a, b of an elliptic curve can be randomized in its isomorphic classes like $(r^{2}X\ovalbox{\tt\small REJECT}$r’Y $\ovalbox{\tt\small REJECT}$Z) and r4a, r6b,
respectively. In this countermeasure, Z can be 1 during the scalar multiplication and it improves the
efficiency of the scalar multiplication in some cases. An extra cost for the countermeasure is small, too.

4 Proposed Algorithm
We describe our proposed algorithm in the following. The algorithm improved on the addition chain

and the addition formula. Both improvements are based on the scalar multiplication by Montgomery
[Mon87]. However, we fifirstly point out that the addition chain is applicable for not only Montgomery
form curves but any type of curves. We enhance it to be suitable for implementation and study the
security against the SCA. We also establish the addition fomulas, which only use the $x$-coordinate of
the points, for the Weierstrass form curves.

4.1 Addition Chain

The improved addition chain is as follows:

INPUT $\mathrm{d}$ , $\mathrm{P}$ , (n)

$0\mathrm{U}\mathrm{T}\mathrm{P}\mathrm{U}\mathrm{T}\mathrm{d}*\mathrm{P}$

1: $\mathrm{Q}[0]$ $=\mathrm{P}$ , $\mathrm{Q}[1]$ $=2*\mathrm{P}$

2: for $\mathrm{i}=\mathrm{n}-2$ down to 0
3: $\mathrm{Q}[2]$ $=\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}(\mathrm{Q}\mathrm{d}[\mathrm{i}]] )$

4: $\mathrm{Q}[1]$ $=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}(\mathrm{Q}[0] ,\mathrm{Q}[1] )$

5: $\mathrm{Q}[0]$ $=\mathrm{Q}$ $[2-\mathrm{d}[\mathrm{i}]]$

6: $\mathrm{Q}[1]$ $=\mathrm{Q}$ $[1+\mathrm{d}[\mathrm{i}]]$

7: return $\mathrm{Q}[0]$

Algorithm 3: Proposed addition chain (SPA resistant)

For each bit $d[i]$ , we compute $Q[2]=\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}$ $(Q[d[i]])$ in Step 3and $Q[1]=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}$ $(Q[0], Q[1])$ in
Step 4. Then the values are assigned $Q[0]=Q[2]$ , $\mathrm{Q}[1$ ) $=\mathrm{Q}[1]$ if $d[i]=0$ and $Q[0]=Q[1]$ , $Q[1]=Q[2]$ if
$d[i]=1$ . The correctness of our algorithm is given in Theorem 4.1 $[\mathrm{I}\mathrm{T}02]$ .

Theorem 4.1. Algorithm 3, on input a point $P$ and an integer $d>2$ , outputs the correct value of the
scalar multiplication $d*P$.

Algorithm 3 requires one ECDBL in the initial Step 1, and $(n-1)$ ECDBLs and $(n-1)$ ECADDs in
the loop. The computation time of the $1\infty \mathrm{p}$ is $\mathrm{s}\mathrm{m}\mathrm{e}$ as that of Algorithm 1’.
Remark: Algorithm 3 does not depend on the representation of elliptic curves, and it is applicable to
execute amodular exponentiation in any abelian group. Therefore the RSA cryptosystem, the DSA, the
ElGamal cryptosystem can use our proposed algorithm.

$\blacksquare \mathrm{P}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}$ Computation: We discuss the parallelizion of ECADD and ECDBL in the addition chains.
Algorithm 1’ cannot be parallelized, because ECADD requires the output of ECDBL. Algorithm 2’ and
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Algorithm 3can be parallelized in this sense.

In the right side of Figure 1 we show an architecture of the parallel computation of the loop of

Algorithm 3. It has two registers: Register 1 and Register 2, which are initially assigned $Q[0]=P$ and

$Q[1]=2*P$, respectively. In Step 3, we choose the value $Q[d[i]]$ based on the bit information $d[i]$ , then

compute ECDBL(Q[d[i]]) from $Q[d[i]]$ . In Step 4, we compute ECADD(Q[0], $Q[1]$ ) from the value $Q[0]$

in Register 1 and $Q[1]$ in Register 2. In both Step 3 and Step 4, they do not need the output from Step

3 nor Step 4, and they are excused independently. After fifinishing to compute both ECDBL(Q[d[i]]) and

ECADD(Q[0], $Q[1]$), we assign the values in Register 1 and Register 2 based on the bit $d[i]$ . If $d[i]=0$,

we assign the ECDBL(Q[d[i]]) in Register 1 and the ECADD(Q[0], $Q[1]$ ) in Register 2. If $d[i]=1$ , we

swap the two variables, then we assign the ECADD$(Q[0], Q[1])$ in Register 1 and the ECDBL(Q[d[i]]) in

Register 1.
In general the computation of an ECADD is slower than that of an ECDBL, so that the latency of the

loop in Algorithm 3 depends on the running time of ECADDs. Thus the total running time of Algorithm

3 is one ECDBL and $(n-1)$ ECADDs, where $n$ is the bit-length of $d$ .

$\blacksquare \mathrm{S}\mathrm{e}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{y}$ Consideration: We discuss the security of Algorithm 3 against the $\mathrm{S}\mathrm{C}\mathrm{A}$ . Algorithm 1’ is

commonly believed secure against the SPA [OSOO]. The relation between Algorithm 1’ and Algorithm 3

is as follows $[\mathrm{I}\mathrm{T}02]$ .

Theorem 4.2. Algorithm 3 is as secure as Algorithm 1’ against the SPA, if we use a computing archi-

tecture whose swapping power of two variables is negligible.

Corollary 4.3. Algorithm 3 with Coron’s 3rd or Joye-Tymen’s countermeasure is as secure as Algorithm

1’ against the $\mathrm{D}\mathrm{P}\mathrm{A}$.

It is possible to implement the swapping of two variables in hardware using a few logic gates. Its

power is usually negligible. In software we can implement it just to swap two pointer assignments.

The swapping of the pointer assignments in software can be executed in several clocks, whose time or

power $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ is negligible. Therefore, our proposed method is secure against the $\mathrm{D}\mathrm{P}\mathrm{A}$ in many computing

environments.

$\blacksquare \mathrm{F}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$ Parallelization: If atable of pre-computed points is allowed to be used, we can construct

ascalar multiplication, which can be computed in parallel with more than two processors. For example,

the algorithm for 4 processors in $[\mathrm{I}\mathrm{T}02]$ computes at most $(n/2+3)$ ECADDs. Moreover, the security

against the SCA can be discussed in the same way.

4.2 Addition formula

Let $E$ be an elliptic curve defifined by the standard Weierstrass form (1) and $P_{1}=(x_{1}, y_{1})$ , $P_{2}=(x_{2}, y_{2})$ ,

$P_{3}=P_{1}+P_{2}=(x_{3}, y_{3})$ be points on $E(K)$ . Moreover, let $P_{3}’=P_{1}-P_{2}=(x_{3}’, y_{3}’)$ . Then we obtain the
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following relations:

$x_{3} \cdot x_{3}’=\frac{(x_{1}x_{2}-a)^{2}-4b(x_{1}+x_{2})}{(x_{1}-x_{2})^{2}}$, (3)

$x_{3}+x_{3}’= \frac{2(x_{1}+x_{2})(x_{1}x_{2}+a)+4b}{(x_{1}-x_{2})^{2}}$ . (4)

On the other hand, letting $P_{4}=2*P_{1}=(x_{4},y_{4})$ leads to the relation

$x_{4}= \frac{(x_{1}^{2}-a)^{2}-8bx_{1}}{4(x_{1}^{3}+ax_{1}+b)}$ . (5)

With these relations, the x-coordinate of $P_{3}$ and $P_{4}$ can be computed just form the $x$-coordinate of
the points $P_{1},P_{2},P_{3}’$ . The scalar multiplication can be computed with these relations, and we call the
method combined with (3), (5) $((4),(5))$ the multiplicative (additive) rr-coordinate-0nly method. The x-
coordinate-only methods were originally introduced by Montgomery [Mon87]. However, his main interest
was to fifind a special $\mathrm{f}\mathrm{o}\mathrm{m}$ of elliptic curves on which the computing times are optimal. The additive
method was not discussed in his paper.

When we use the x-coordinate-only methods, we need the difffference $\mathrm{P}3=P_{1}-P_{2}$ . This may be a
problem in general, but not in Algorithm 3. In each loop of Algorithm 3, the two points $(Q[0], Q[1])$ are
simultaneously computed and they satig the equation $Q[1]-Q[0]=P$, where $P$ is a base point of the
scalar multiplication. Therefore, the difffference $P_{3}’$ for $\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}(P_{1},P_{2})$ in Algorithm 3 are always known.
On the contrary, in Algorithm 2’ , we need extra computation to know $P_{3}’$ .

When we apply the x-coordinate-only methods to Algorithm 3, the output is only the x-coordinate
of $d*P$. This is enough for some cryptographic applications, but other applications also require the
$y$-coordinate of $d*P[\mathrm{S}\mathrm{E}\mathrm{C}]$. However, the $y$-coordinate of $d*P$ is easily obtained in the following way:
The fifinal values of $Q[0]$ , $Q[1]$ in Algorithm 3 are related by $Q[1]=Q[0]+P$. Let $P=(x_{1},y_{1}),\mathrm{Q}[0]=$

$(x_{2},y_{2}),Q[1]=(x_{3},y_{3})$ . Here known values are $x_{1},y_{1},x_{2},x_{3}$ and the target is $y_{2}$ . Using a standard
addition fomula (2), we obtain the equation $y_{2}=(2y_{1})^{-1}(y_{1}^{2}+x_{2}^{3}+ax_{2}+b-(x_{1}-x_{2})^{2}(x_{1}+x_{2}+x_{3}))$.
This $y$-recovering technique was originally introduced by Agnew et al. for curves over $\mathrm{F}_{2^{m}}$ [AMV93].
The computing time for $y$-recovering is $16M+3S+1I$.

The projective coordinate system offffers a faster computation for the $x$-coordinate-only methods. The
computing times for (3), (4) , (5) in the projective coordinate are $\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}_{m}^{(x)}=9M+2S$, $\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}_{a}^{(x)}=10M+$

$2S$ , $\mathrm{E}\mathrm{C}\mathrm{D}\mathrm{B}\mathrm{L}^{(x)}=6M+3S$ . If $Z_{3}’=1$ , the computing times deduce to $\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}_{m(Z_{\acute{S}}=1)}^{(x)}=\mathrm{E}\mathrm{C}\mathrm{A}\mathrm{D}\mathrm{D}_{a(Z_{S}=1)}^{(x)},=$

$8M+2S$. The concrete algorithms are in [IT02].

5 Comparison

In this section, we compare the computing times of a scalar multiplication resistant against the SCA.
We show that our proposed algorithm establishes a faster scalar multiplication. The improvement of
our method over the previously faaetest method is about 37% for two processors and 5.6% for a single
processor.

$\blacksquare \mathrm{E}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$: We compare the computing times of a scalar multiplication with Algorithm 1’ 2’ and 3
using difffferent coordinate systems. All algorithms are $\mathrm{D}\mathrm{P}\mathrm{A}$-resistant using Coron’s 3rd or Joye-Tymen’
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countermeasure. We estimate the total times to output a scalar multiplication $d*P=(x_{d}, y_{d})$ on input

$d$ , $P=(x, y)$ and elliptic curve $(a, b,p)$ . The times are given in terms of the numbers of the arithmetic

in the definition fifield, $\mathrm{i}.\mathrm{e}.$ , the multiplication $M$ , the squaring $S$ , and the inverse $I$ . In the estimation,

we include the times for randomization by Coron’s 3rd or Joye-Tymen’scountermeasure, and the times

for recovering the $y$-coordinate in the x-coordinate-0nly method are also included. In the estimation,

we also give the estimated running time for a $160$-bit scalar. The last numbers in the brackets are the

estimation for $1S=0.8M$, $1I=30M[\mathrm{O}\mathrm{S}01]$ .
Single Case: The estimated running times using a single processor are in Table 2 ’2. Algorithm

$3/\mathrm{J}\mathrm{o}\mathrm{y}\mathrm{e}$-Tymen with the ar-coordinate-0nly methods are the fastest $(2928.0M)$ . The previously fastest

algorithm was Algorithm $1’/\mathrm{J}\mathrm{o}\mathrm{y}\mathrm{e}$-Tymen with the Jacobian coordinate $J(3093.2M)$ . The improvement

is about 5.6%.

Parallel Case: The estimated running times using two parallel processors are in Table 3. Algorithm

1’ cannot be parallelized and Algorithm 2’ has no computational advantage to use the $x$-coordinate-

only methods. Therefore, the previously fastest algorithm was Algorithm $2’/\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{o}\mathrm{n}’ \mathrm{s}3\mathrm{r}\mathrm{d}$ with the

Chudonovsky coordinate $J^{C}(2180.6M)$ . Algorithm $3/\mathrm{J}\mathrm{o}\mathrm{y}\mathrm{e}$-Tymen with x-coordinate-only methods

provides the fastest multiplication $(1592.4M)$ . The improvement is about 37%.
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