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Abstract

Graph rewriting in topology (denoted as GRiT) refers to a kind of rewriting systems on
hypergraphs which is expected to be helpful to the study of the parallel computing based
on rewriting theory. Under certain topological conditions (here refers to homology and
homotopy), we discuss the relation between the formalized GRIiT and derived algebraic
features from the rewriting operators.

1. Preliminaries

The description of the computation model GRiT is based on the terms of (hyper)graph
rewriting[1], bigraphical reactive systems[2] and category theory.

In this section, the main notations [1,2,3,4] used for our discussion are given as follwos:
Let A be an alphabet set, T(a) be the rank associated to a symbol (a€ A), Vy be a vertex
set, Eq be a hyperedge set, H= {H}, H be a hypergraph, i.c.,

H=<VH9EH>,

where Vg N Ey= @.
For more symbols concerned here, let laby(e) be the label assigned to a hyperedge e in A.

T(labu(e)) be the length of the sequence of vertices with laby(e).
Now we introduce a predicate "pah" for the description of pathways to be used later:

pah (X, y1, ..., yL1,21, ---» Z12)

where L;, L, €N,
X € Ey,
Y1, -5 YL1 € VH,
labu(x) = a,
n = 7(a),
Zy, ......, Z12 are the controls in the set of Ky, which is called signature,

" This research was conducted as part of "Research on Human Communication” with
funding from the Telecommunications Advancement Organization of J apan.
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i.e., KH= {Z], ceeeeny ZLz}.

The hyperedge x is the key to the interactions and other coupling relations derived from it,
with aspect to the nodes, i.e., the vertexes yj, ..., yL1.

Here the controls z, ..., z1, refer to the types of the related bigraphs which includes the
vertexes yi, ..., yL1 and are assigned with their arity, e.g., arity (y1) = 3, which is just for
example that does not mean any specific values are necessary in our discussion.

So we can have the relation

Ry(A) = {pahs |2 €A},

where pah, is (1(a)+2)-ary. This relation is defined for the object set of pathways.
Considering the different types of the bigraphs owing to the controls are atomic or active
(non-atomic), so, let PATsy be the equivalent class of pathways corresponding to the
signature Ky. Of course, we notice that the equivalent classes will be different for the
pathways represented by bigraphs and other bigraphs concerned. But we limit our objects
within the domain of the former without explanation in this abstract.

Then we define the structure for pathways corresponding to the relation Ry(A):

[H|s: = < VaUEgUKuy, (Pahan)aca > € STR (Ry(A)).

The index 3 in |H|; shows its difference from the [H|; and [H|in [1].

Let =g be the equivalent relationship of PATsy, the conditions for constructing operators
for generating the pathways concerned become one of the most important targets. We
select the topological constraints exerted on the vertexes during the rewriting processes as
the starting point of observing their features in the framework of rewriting in a three
dimensional space.

From another side of the observation, we also try to study the semantics of the formal
systems derived from the objects mentioned above. This is the basis of the formalization
and further studies on the parallel features of the proposed model GRiT[3,4] such as
congruency and operability (i.e., controllability).

Let Togy be the category of topographs, Mogy be the category of monographs, Bigy be the
category of bigraphs. We reiterate here that Ky is the control set corresponding to the Gy.
Let Cagy be the category defined based on the set of Ky, BRSy be the category of
bigraphical reactive systems. Then, we can define the representation for hypergraphs by
bigraph forms as

Gu = G (Uy, ctrly, G'y, GMp): 1m -> 1,

where Ug € V4UEy,
ctrly € Ky,
GTH in Togy,
GMH in Mogy,
Gy in Bigy,
m,n €N.
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After the hypergraph has been limited as the subsets of pathways which is the special
kinds of hypergraphs, we can select the transduction as the form of rewriting process
instead of the rules of rewriting. So, we give the predicate set for the transductions as:

{TRANS(G™p), TRANS(GMp)}

Here, TRANS(GTH) refers to the predicate set for the transductions exerted on the
topographs:

GTH = (V’ CtrlH’ prt): Im =2 1p,
where prt is the parent of the vertexes in rewriting.

TRANS(GMp) refers to the predicate set for the transductions exerted on the monographs:

GMy = (V, ctrly, =g).

2. Formalization

Besides the engineering practices, parallel computing is also a good place in which we can
apply the theoretical computer science. Algebraic theory has offered us a functional way
to guide the designing works of parallel algorithms in rigorous theory'. Teruo Imaoka
points out in the preface of the RIMS Kokyuroku 1222 [5] that "the researches on the
structures of algebraic systems in the view of algorithms and computer science are
becoming active and a new field called computational algebra is emerging" (his original
sentences are written in Japanese). The successful research results achieved by Yuji
Kobayashi and Masashi Katsura in [6], Inamu Inata and Yuji Kobayashi in [7] are
significant. In this abstract, we focus on the questions how to explore the algebraic
operators in the interactions-like processes of parallel computing in the form of
(hyper)graph rewriting.

Comparing to the transduction at the abstract level of the abstract machines which
functional equals to the rewriting rules based on HR and VR([1] and others[3], we focus on
the generating processes of GRiT, i.e., we aim at the interactions of the pathways from the
processes with initial simple structures into more complex ones. Let reacty be the
operators of the interactions of bigraphs based on the transduction of pathways within
cagy for the mapping:

Imn->1, inthe Gy,
the input and output of pathways pah(.) in Rp(A). The core of the generating processed lies

in the "regulation” mechanism that makes the directions of the "dynamical" operations on
the various neighborhoods randomly selected simultaneously. The term "regulation”

¥ Masami Ito suggests and encourages our work on hypergraph rewriting by algebraic theory that includes
semi-group and codes.
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means the mechanism within the programs that can control the modules of the underlying
software systems (Cf. Fig.1).

............................. regulator
~—>! B ke
other
I <
modules

Programs
Fig.1 The structure of modules

This mechanism we proposed is enlightened from the kinase-guided bio-chemical reaction
processes. In the cells, the kinase can control/regulate the bio-chemical reactions guided
by it, which factors include the kinase itself where the self-assembly (self-organizing) play
an important role. In the view of biologically inspired information processing systems, the
coupling relationship is explored in our scheme for parallel computing without any
prerequisite for de-coupling operations.

From the works on the designing the proper operators, we can achieve more useful
schemes of efficiently manipulating the interactions leading to developing faster
algorithms probably by unconventional paradigms such as molecular computing.

We define

cGRIiT([H|3, Bigu (Kg, reacty))

as the rewriting system on the hypergraphs with certain constraints (e.g. topological
conditions) which is different from the constraints in[8], constructed by transduction on

Bigy (Ky, reacty),
where reacty is used in BRSy. Notice that the formal system we discuss here is

functionally equivalent to the "construct" representation in [3] under certain conditions.
Based on category cagy, we can get the operation by predicates on the

GRT(JH|5, Bigu (Ky, reacty),3n)
as:

INTERACTION (pah (X, y1, «.-s YL1,Z15 «-+» Z12),
pah (X', Y1, ---5 YL3,Z15 -+ +» Z14),
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GRT(Hl3, Bign (K, reactys), Su)),
s.t. certain topological constraints.

which refers to the fact that x and x' share certain common parts of the hyperedges, yj, ...,

YL in path way one, and vy, ..., yp3 in another pathway. Here L; and L, € N. These two
sets also share certain common parts of vertexes, and the neighborhood for the operation

exerted is Oy for the Vg and Ey in

GRT(H]s, Bigu (K, reacty), Sn).

Within the equivalent class PATy of pathways, the transductions are exerted on the
topographs:

GTH = (Va Cu’l]-], prt ): m->n,

where prt is the parent of the vertexes in rewriting, m, n €N.
Provided that ctrl'y € Ky ctri’y € Ky, where ctrl'y =ctrl? , Jjudging the "capacity of
transduction” is important, so we have that

Proposition 1:
There exists that monoy, the set of monoid operators that is inferred from the interactions

on (pahay)ac A Of
GRiT([H]s, Bigy (Ky, reacty)),
which satisfies the condition of McNaughton languages for
Gu = G (Ug, ctrly, G'y, GMp): I* > J*,

Proposition 2:
The operations of monoy can keep the congruence of the (hyper)graph rewriting on

Gu = G (U, ctrly, G™y, GMp): I* -> J*,

if they satisfy the condition of McNaughton languages for I* -> J* and the interactions of
monoy can be inferred by

TRANDN (pah (x, yi, ..., Ym, Z1, -.., Zp...2qy ...y Zyy))
A VALPATH (pah (X, y1, ..., ¥m, Z1, ..., Zp...2q, ..., Zk)),

where I*, J*, p,q,m,n,k €N for GRiT(|H3, Bigy (Ky, reacty)).
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3. The Algorithm

In GRiT systems, we can use rewriting rule in 3], which is directly operated on the vertex
and hyperedges in the VR and HR way. This kind of objects is concrete but the contents of
the rewriting rules are abstract with respect to the understandable level of the meanings of
programs in details. The transduction form itself is also abstract, but the logic expression
is explicit for description of the behavior of the operation and designing schemes for the
algorithms derived consequently. It is an effort on parallel algorithms designed by logic
guidance if corresponding programming issues are feasible.

Through the proposed algorithm, we are trying to efficiently program and demonstrate the
quantitative relationship between feasibility of "self-regulation” and the "complexity" of
the underlying mechanism of the computing processes. Notice the term "complexity” is
not defined as the complexity in computation theory and mainly refers to the cost-related
measurement of the computing process we are discussed.

Let the input of the model be {X;}. The pathways are interacted and sustained in
recursively computing process. The output of the model is the set of pathways that
satisfies the criteria we gave in advance.

The computing process consists of four major steps as follows:
Step 0: Initializing the pathways as atomic forms.
Stepl: Interacting the pathways.

New pathways are generated by interactions of the existing pathways. Here, the
neighboring pathways are selected as the objects for interactions. The measurement for

neighborhood g is determined according to the topological constraints. The minimum
Hamming distance of the variables of "candidates" is one of the simplest among them.

Let 3y be the neighborhood of pathway Wy and ¥,. The interaction of Wy and ¥, in Oy is
made by connecting their pathways to couple the common reactants for "reactions”. This

means that W and ¥, are selected in Oy, for k=0,1, ... and [=0, 1, ... v
Then we apply transduction on the pathway {¥y} (k=0,1, ...) in the neighborhood dg (B

C dg) and activate the related pathways .
For the quantitative representation, the four main predicates that we define for GRiT are:

(1) VALPATH(pah (X, Y1, --5 Ym, Z1, --» Zn))-
It is defined as the predicate for validness of pathway, i.e.,
VALPATH(pah (X, Y1, «.+> Ym, Z15 +-+» Zn))
= true if pah in hGRiT(|H|3, Bigu (Kg, reacty)),
= false if pah NOT in hGRiT([H}s, Bigy (Ky, reacty)).
(2) ELELSN(pah (X, Y1, ---» ¥Ym, Z1s «-+5 Zn))-

It is defined as the predicate to show the situation of eliminating elision in pathways in
hGRIiT([H|5, Bigu (Ku, reacty)), i.e.,
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ELELSN(pah (x, yi, ..., Ym, Z1, --., Zp))
= true if pah is active in hGRiT(|H}5, Bigy (Ky, reacty)),
= false  if pah is atomic in hGRiT([H|3, Bigy (Kp, reacty)).

The activating process is the generating mechanism of "complexity" increasing with
certain probability determined by our parameter setting.

(3) INTERACTION (pah (x, yy, ..., YL1,Z1, ..., ZL2),
pah (X', yi, ..., Y13,Z1, ..., Z14),

GRT([H]s, Bign (K, reacty), Jn)),
s.t. the topological constraints.

It is the same as we defined in the previous section.

(4) TRANDN(pah (X, y1, -+, Ym, Z1, ..., Zn):

It is defined as the predicate for transduction, i.e.,
TRANDN(pah (X, y1, .-, Ym, Z1, +--, Zn))

= true if the sequence {z,, ..., z,} can deduce the redexed RPO,
false else.

For the I* -> J* in GRiT([H}3, Bigy (Kg, reacty),Sn), the truth value of the formula

TRANDN (pah (x, yi, ..., Ym, Z1, ---» Zn))
A ELELSN (pah (%, yi, ..., Ym, Z1, ..., Zn))
A VALPATH (pah (x, y1, ..., Ym, Z1, --., Zn))

is used to judge the pathways obtained from interactions. Then, the pathway generation is
verified by the logic forms.

Let input-node(¥y) be the input "reactant” of pathway Wy, let output-node(¥;) be the
output "reactant” of pathway Wy, and let internal-node(¥,) be the internal "reactants" of
pathway Wy, where Wy is in the set of all pathways, which implies that pathway Wy covers
the reactant molecules that correspond to the sets of sub-pathways. The same parts are
kept only once, and these are sustained by pathway W;. The same is also true for another
pathway Wi. When Wy and Wy interact by the operations of transduction, different
components are deleted due to the fact that they cannot be sustained. Then we get the
final result. The advantage of this scheme is that the number of candidates has no relation
to the molecules we set in advance. The recursive generation of pathways is executed to
sift out the less suitable candidates. In the meantime, The truth values according to our
criterion, the common reactants in pathway ¥, (k=0, 1, ...) ensure that the related
pathways are sustained. This continues to loop until rewriting stops at the final stage, i.e.,
the "reactions” concerned do not produce any more new "reactants”. The term "reaction”
refers to the interaction of pathways under the context of reactive system theory. The term
"reactant" refers to the factors used to implement the reaction processes.
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At this point, we need to check whether the solution has been obtained according to the
following rule:

If the "reactions" concerned do produce any more new "reactants”, the
computing process goes to the next step.

If the "reactions" concerned do not produce any more new "reactants”, we
must update the population and let the computing process go to Step 1.

Step 2: Judging by the terminal criterion.
The criterion Zy to judge the halting of the entire process is:

whether the final variable form of the candidates is confirmed as the solution
when no more new pathways emerge.

At this point, the existing pathways are identical in sets of pathways. Finally, after the
result is confirmed, the final solution will be decided as the output.

4. Conclusion

In this abstract, we have briefly reported our result of studying (hyper)graph rewriting
embedded by algebriac operators. The next step of our work will be systematical analysis
of the quantitative relationship between the neighborhood selection and the complexity
derived from the corresponding operators.
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