<table>
<thead>
<tr>
<th>Title</th>
<th>LEXICOGRAPHIC GROBNER BASES OF TORIC IDEALS ARISING FROM ROOT SYSTEMS (Algorithms in Algebraic Systems and Computation Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ohsugi, Hidefumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2002), 1268: 73-76</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42137</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
LEXICOGRAPHIC GRÖBNER BASES OF TORIC IDEALS
ARISING FROM ROOT SYSTEMS

大杉英史
HIDEFUMI OHSUGI

立教大学理学部数学科
Department of Mathematics, Rikkyo University

Abstract. The present paper is a brief draft based on a joint work with Takayuki Hibi. Gröbner bases of toric ideals arising from root systems are studied.

Introduction
Let $\mathcal{A} \subset \mathbb{Z}^n$ be a finite set and let $K[t, t^{-1}, s] = K[t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}, s]$ denote the Laurent polynomial ring over a field K. We associate each $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$ with the monomial $t^\alpha s = t_1^{\alpha_1} \cdots t_n^{\alpha_n} s \in K[t, t^{-1}, s]$ and write $\mathcal{R}_K[\mathcal{A}]$ for the subalgebra of $K[t, t^{-1}, s]$ generated by all monomials $t^\alpha s$ with $\alpha \in \mathcal{A}$. Let $K[x] = K[\{ x_\alpha ; \alpha \in \mathcal{A} \}]$ denote the polynomial ring in $\#(\mathcal{A})$ variables over K and $I_\mathcal{A} \subset K[x]$ the kernel of the surjective homomorphism $\pi : K[x] \to \mathcal{R}_K[\mathcal{A}]$ defined by setting $\pi(x_\alpha) = t^\alpha s$ for all $\alpha \in \mathcal{A}$. The ideal $I_\mathcal{A}$ is called the toric ideal of the configuration \mathcal{A}. It is known [9] that if $I_\mathcal{A}$ possesses a squarefree initial ideal, then the convex hull of \mathcal{A} possesses a unimodular triangulation.

Fix $n \geq 2$. Let e_i denote the i-th unit coordinate vector of \mathbb{R}^n. We write \mathbb{A}_{n-1}^+, \mathbb{B}_n^+, \mathbb{C}_n^+, \mathbb{D}_n^+ and \mathbb{BC}_n^+ for the set of positive roots of root systems \mathbb{A}_{n-1}, \mathbb{B}_n, \mathbb{C}_n, \mathbb{D}_n and \mathbb{BC}_n, respectively ([3, pp. 64 - 65]):

\[
\begin{align*}
\mathbb{A}_{n-1}^+ &= \{ e_i - e_j ; 1 \leq i < j \leq n \}; \\
\mathbb{B}_n^+ &= \{ e_i ; 1 \leq i \leq n \} \cup \{ e_i + e_j ; 1 \leq i < j \leq n \} \cup \{ e_i - e_j ; 1 \leq i < j \leq n \}; \\
\mathbb{C}_n^+ &= \{ 2e_i ; 1 \leq i \leq n \} \cup \{ e_i + e_j ; 1 \leq i < j \leq n \} \cup \{ e_i - e_j ; 1 \leq i < j \leq n \}; \\
\mathbb{D}_n^+ &= \{ e_i + e_j ; 1 \leq i < j \leq n \} \cup \{ e_i - e_j ; 1 \leq i < j \leq n \}; \\
\mathbb{BC}_n^+ &= \mathbb{B}_n^+ \cup \mathbb{C}_n^+.
\end{align*}
\]

Let, in addition, $\bar{\Phi}^+ = \Phi^+ \cup \{(0, 0, \ldots, 0)\}$, where $\Phi = \mathbb{A}_{n-1}, \mathbb{B}_n, \mathbb{C}_n, \mathbb{D}_n$ or \mathbb{BC}_n and where $(0, 0, \ldots, 0)$ is the origin of \mathbb{R}^n.

In their combinatorial study of hypergeometric functions associated with root systems, Gelfand, Graev and Postnikov [2, Theorem 6.3] discovered a squarefree quadratic initial ideal of the toric ideal $I_{\mathbb{A}_{n-1}^+}$ of \mathbb{A}_{n-1}^+. Moreover, for any subconfiguration \mathcal{A} of \mathbb{A}_{n-1}^+, the configuration $\tilde{\mathcal{A}} = \mathcal{A} \cup (0, 0, \ldots, 0)$ possesses a regular unimodular triangulation ([7, Example 2.4 (a)]). Stanley [8, Exercise 6.31 (b), p. 234] computed the Ehrhart polynomial of the convex polytope $\mathrm{conv}(\mathbb{A}_{n-1}^+)$. Fong [1] constructed certain triangulations of the configurations $\tilde{\mathcal{B}}_n^+$ ($= \mathrm{conv}(\mathbb{D}_n^+) \cap \mathbb{Z}^n$).
and \(\text{conv}(\tilde{C}_n^+) \cap \mathbb{Z}^n = \hat{B}_n^+ \), and computes the Ehrhart polynomials of \(\text{conv}(\hat{B}_n^+) \) and \(\text{conv}(\tilde{C}_n^+) \). The triangulations studied in [1] are, however, non-unimodular. Motivated by their results, Ohsugi–Hibi [6] showed that

Proposition 0.1. Let \(\Phi \subset \mathbb{Z}^n \) be one of the root systems \(A_{n-1}, B_n, C_n, D_n \) and \(B \subset A_{n-1} \). Then, there exists a reverse lexicographic order such that the initial ideal of \(I_{\Phi^+} \) is generated by squarefree monomials.

Moreover, Ohsugi–Hibi [5] discussed subconfigurations \(\hat{A} = A \cup \{(0, 0, \ldots, 0)\} \) of \(\hat{B}_n^+ \cup \tilde{C}_n^+ \) which possesses a (regular) unimodular triangulation (i.e., \(I_{\hat{A}} \) which possesses a squarefree initial ideal).

Hence, it is natural to study the same problem as above for \(I_{\Phi^+} \) where \(\Phi \subset \mathbb{Z}^n \) is one of the root systems \(A_{n-1}, B_n, C_n, D_n \) and \(B \subset A_{n-1} \). (Then, \(I_{\Phi^+} \) is not generated by quadratic binomials if \(n \geq 6 \).)

1. **Squarefree lexicographic initial ideals**

Let \(\Phi^+ \subset \mathbb{Z}^n \) denote one of the configurations \(A_{n-1}^+, B_n^+, C_n^+, D_n^+ \) and \(B \subset A_{n-1}^+ \). Let \(K[A_{n-1}^+] \), \(K[B_n^+] \), \(K[C_n^+] \), \(K[D_n^+] \) and \(K[B \subset A_{n-1}^+] \) denote the polynomial rings

\[
K[A^+_{n-1}] = K[[a_{ij}^{1 \leq i < j \leq n}], \\
K[B_n^+] = K[[y_i^{1 \leq i \leq n} \cup \{e_{ij}^{1 \leq i < j \leq n} \cup \{f_{ij}^{1 \leq i < j \leq n}], \\
K[C_n^+] = K[[a_i^{1 \leq i \leq n} \cup \{e_{ij}^{1 \leq i < j \leq n} \cup \{f_{ij}^{1 \leq i < j \leq n}], \\
K[D_n^+] = K[[e_{ij}^{1 \leq i < j \leq n} \cup \{f_{ij}^{1 \leq i < j \leq n}], \\
K[B \subset A_{n-1}^+] = K[[a_i^{1 \leq i \leq n} \cup \{y_i^{1 \leq i \leq n} \cup \{e_{ij}^{1 \leq i < j \leq n} \cup \{f_{ij}^{1 \leq i < j \leq n}]
\]

over \(K \). Write \(\pi : K[\Phi^+] \rightarrow K[t, t^{-1}, s] \) for the homomorphism defined by setting

\[
\pi(a_i) = t_i^2s, \quad \pi(y_i) = t_i s, \quad \pi(e_{ij}) = t_i t_j s, \quad \pi(f_{ij}) = t_i t_j^{-1}s.
\]

Thus the kernel of \(\pi \) is the toric ideal \(I_{\Phi^+} \).

First, an explicit initial ideals of \(I_{A_{n-1}^+} \) generated by squarefree monomials of degree \(\leq 3 \) will be constructed. Let \(\leq \) be the lexicographic order induced by the ordering of variables

\[
f_{n-1,n} > f_{n-2,n-1} > f_{n-2,n} > \cdots > f_{1,2} > f_{1,3} > \cdots > f_{1,n},
\]

and let \(<_{\text{rev}} \) be the reverse lexicographic order induced by the ordering of variables

\[
f_{n-1,n} > f_{n-2,n} > f_{n-2,n-1} > \cdots > f_{2,3} > f_{1,n} > \cdots > f_{1,3} > f_{1,2}.
\]

Then, the reduced Gröbner basis with respect to \(\leq \) (and \(<_{\text{rev}} \)) is as follows.

Theorem 1.1 ([4]). The set of the binomials

\[
f_{i,j}f_{j,k} - f_{i,k}f_{j,t}, \quad i < j < k < \ell, \\
f_{i,j}f_{j,k} - f_{i,j+1}f_{i+1,k}, \quad i + 1 < j < k, \\
f_{i,j}f_{k+1,t} - f_{i,j+1}f_{k+1,t}, \quad i + 1 < j < k < \ell - 1,
\]

is the reduced Gröbner basis of the toric ideal \(I_{A_{n-1}^+} \) with respect to both \(\leq \) and \(<_{\text{rev}} \), where the initial monomial of each binomial is the first monomial.
Then, we can associate the initial ideal of $I_{\mathrm{A}_{n-1}^{+}}$ with respect to \prec_{lex} with the regular unimodular triangulation $\Delta_{\prec_{\text{lex}}}$. A graph-theoretical characterization of the maximal faces of the triangulation $\Delta_{\prec_{\text{lex}}}$ is given in [4].

Second, we discuss the existence of squarefree initial ideals of the toric ideal $I_{\Phi^{+}}$ where $\Phi \subset \mathbb{Z}^{n}$ is one of the root systems \mathbf{B}_{n}, \mathbf{C}_{n}, \mathbf{D}_{n} and \mathbf{BC}_{n}. The similar argument as in [5] plays an important role in the proof of Theorems 1.2 and 1.4.

Let \prec_{lex} be the lexicographic order induced by the ordering of variables

$$a_{1} > a_{2} > \cdots > a_{n}$$
$$> f_{n-1,n} > f_{n-2,n-1} > f_{n-2,n} > \cdots > f_{1,2} > f_{1,3} > \cdots > f_{1,n}$$
$$> e_{n-1,n} > e_{n-2,n-1} > e_{n-2,n} > \cdots > e_{1,2} > e_{1,3} > \cdots > e_{1,n}.$$

Theorem 1.2. The initial ideal of the toric ideal $I_{\mathbf{C}_{n}^{+}}$ with respect to \prec_{lex} is generated by squarefree monomials.

Let \prec_{lex}^{c} denote the lexicographic order obtained by restricting \prec_{lex} to $K[\mathbf{D}_{n}^{+}]$. By the elimination property of the lexicographic order \prec_{lex}, we have the following corollary from Theorem 1.2.

Corollary 1.3. The initial ideal of the toric ideal $I_{\mathbf{D}_{n}^{+}}$ with respect to \prec_{lex}^{c} is generated by squarefree monomials.

We now consider the root systems \mathbf{B}_{n} and \mathbf{BC}_{n}. Let \prec_{lex}^{bc} be the lexicographic order induced by the ordering of variables

$$a_{1} > a_{2} > \cdots > a_{n}$$
$$> e_{n-1,n} > e_{n-2,n-1} > e_{n-2,n} > \cdots > e_{1,2} > e_{1,3} > \cdots > e_{1,n}$$
$$> y_{1} > y_{2} > \cdots > y_{n}$$
$$> f_{n-1,n} > f_{n-2,n-1} > f_{n-2,n} > \cdots > f_{1,2} > f_{1,3} > \cdots > f_{1,n}.$$

Theorem 1.4. The initial ideal of the toric ideal $I_{\mathbf{BC}_{n}^{+}}$ with respect to \prec_{lex}^{bc} is generated by squarefree monomials.

Let \prec_{lex}^{b} denote the lexicographic order obtained by restricting \prec_{lex}^{bc} to $K[\mathbf{B}_{n}^{+}]$. By the elimination property of the lexicographic order \prec_{lex}^{bc}, we have the following corollary from Theorem 1.4.

Corollary 1.5. The initial ideal of the toric ideal $I_{\mathbf{B}_{n}^{+}}$ with respect to \prec_{lex}^{b} is generated by squarefree monomials.

Remark 1.6. Let $n \geq 6$ and let Φ^{+} denote one of the configurations \mathbf{A}_{n-1}^{+}, \mathbf{B}_{n}^{+}, \mathbf{C}_{n}^{+}, \mathbf{D}_{n}^{+} and \mathbf{BC}_{n}^{+}. Then $I_{\Phi^{+}}$ is not generated by quadratic binomials. Hence, in particular, $I_{\Phi^{+}}$ does not possess a quadratic Gröbner basis.
REFERENCES

Department of Mathematics,
Rikkyo University,
Nishi-Ikebukuro, Tokyo 171–8501, Japan
E-mail: ohsugi@rkmath.rikkyo.ac.jp