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Introduction

The lower bound theorem (see, Theorem 1.1) gives not only the lower
bound for the number of faces among the simplicial polytopes, but also the
numerical criterion of the stacked polytopes, if the dimension of the polytope
is more than three. But in the case of dimension 3, all simplicial polytopes
with n vertices have the same f-vectors, more precisely, fi = 3n — 6, and
fa = 2n—4, where f; is the number of i-faces. Hence, we cannot characterize
the stacked polytopes by their f-vectors in this case. For this purpose,
we need a subtler quantity. We introduce the following graph-theoretical
invariant.

DEFINITION. Let G = (V, E) be a finite graph with §(V) = n. For
W C V we denote by Gw the induced subgraph of G by W. Let ¢(Gw) be

the number of connected components of ¢(Gw). We definefor 1 <2< n

1
@@ =7y D <Gw),
. (.) wcV, §(W)=i
which stands for the average number of connected components of the in-
duced subgraphs by all i-element subsets W of V.

If G is j-connected, then ¢;(G) =1 for n — j + 1 < 2 < n. Hence, the
sequence (¢;(G), ¢2(G), ..., ¢c.(G)) can be considered as a refined concept of
connectedness.

For a simplicial complex A, we define ¢;(A) = ¢;(A™M), where AY) is
the 1-skeleton of A. For a simplicial polytope P, we denote by A(P) the
boundary complex of P. We define ¢;(P) = ¢;(A(P)).
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Using this, we give a nemerical criterion of the stacked polytopes.

THEOREM 0.1. Let P be a simplicial polytope with dimension d (> 3)
and with n (> d + 3) vertices. Then

(1) We have
G- )("-")

(2) The following conditions are eq-uivaleﬁt:

(a)P is a stacked polytope.
(b)ei(P) = “7"%—1+1foralu with 2<i<n—d.

c(P) < +1,:i=1,2,.

(c)ei(P) = ('ﬁl)irl+lforsomczunth2<z<n—d1fd>4 and for
somet with3 <i:<n-difd=3.

To prove the theorem we cohsider a minimal free resolution of the
Stanley-Reisner ring k[A] of a simplicial complex A. By Hochster’s for-
mula (see Theorem 1.2), we have

(':) (c:(8) = 1) = Bimra(K[A]), i 21,

where f;_; i(k[A]) is the (i—1, {)-Betti number of the minimal free resolution
of k[A]. Since k[A(P)] is a Gorenstein graded ring which has an Artinian
reduction with the weak Lefschez property (cf.[St]), we can apply Migliore-
Nagel theorem [Mi-Na] for (1) and (c)=>(a) in (2) if d > 4. (a)=>(b) is
essentially proved in [Te-Hi;]. In the case d = 3, to show (c)=>(a), we
need some combinatorial argument using the induction theorem of Briicker-
Eberhard. See §3 for the detailed proof.

In §4, we consider a class of simplicial complexes which are pure and
strongly connected. For this class the following theorem holds:

THEOREM 0.2. Let A be a (d — 1)-dimensional pure and strongly con-

nected simplicial complez with n vertices. Then:
(1) We have

G-1)(*)
(2) The folloﬁing conditions are equivalent:
(a)A is a (d — 1)-tree.

c(A) <

+1,i=1,2,...,n
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(i-1)(n—9+? .. .
(b)ci(P) = —%;)—'—2+1forallz with2<i<n-d+1.

(i-1) n=at1 . .
(¢)ai(P) = —%;H-}-lforsomez-wichSz <n-d+1

'§1. Preliminaries

We first give the definition according to [Br-He], [Hi], [Ho], and/or [St].
See those references for detailed information. 4

We first fix notation. Let N(resp.Z) denote the set of nonnegative inte-
gers (resp. integers).

A simplicial complez A on the vertez set V = {21,%3, ... ,Tn} is a col-
lection of subsets of V such that (i) {z;} € A for every 1 < i < n and
(i) F € A, G C F = G € A. The vertex set of A is denoted by v(A).
Each element F of A is called a face of A. We call F € A an i-face if
#(F) = i + 1 and we call a maximal face a facet. Let F be a face but not
a facet. We call F free if there is a unique facet G such that F C G. We
define A = Up. 4 freo face ofa 27 and call it the boundary complez of A. We
define the dimension of F € A to be dim F = §(F) — 1 and the dimension
of A to be dimA = max{dim F | F € A}. We say that A is pure if every
facet has the same dimension. In a (d — 1)-dimensional pure complex A,
we call (d — 2)-face a subfacet. We say that a pure complex A is strongly
connected if for any two facets F' and G, there exists a sequence of facets

F=F0,F1,...,Fm=G

such that F,_, N F; is a subfacet for i = 1,2,...,m. We put A(m) = 2™,
Let A; be a (d — 1)-dimensional pure simplicial complex for ¢ = 1,2. If
Ay N A,; = 2F for some F with dim F' = d — 2, we denote A; Ur A, for
A, UA,;. We sometimes denote A; U, A; for A; Ur A; if we do not need to
express F explicitely.
We define a (d — 1)-tree inductively as follows.
(1)A(d) is a (d — 1)-tree.
(2)If T is a (d — 1)-tree, then so is T U, A(d). |
' Y, Ts,..., T, are (d—1)-trees, we abbreviate AU, T,U, ToU,-- U T
as AU((d — 1)-branches).
Let f; = fi(A), 0 < i < d—1, denote the number of i-faces in A. We
define f_; = 1. We call f(A) = (fo, f1,---» fa-1) the f-vector of A. Define
the h-vector h(A) = (ho, h1,. .., ha) of A by

d .
Z f,'_l(t —_ 1)d—i = i h,'td_i.

=0 =0
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For a simplicial polytope P, we define f(P) = F(A(P)) and h(P) =
h(A(P)).

A stacked polytope is a simplicial polytope which is obtained from a
simplex by successive addition of pyramids over facets. For a d-dimensional
stacked polytope P, there exists a d-tree A such that A(P) = A.

THEOREM 1.1 (LOWER BOUND THEOREM) (see [Br, Corollary 19.6]
for the f-vector version). Let P be a d-dimensional simplicial polytope with
n vertices. Put h(P) = (ho,hy,...,hq). Then:

(1)We have h; >n~d for1 <i<d—1.

(2)Moreover, we assume d > 4. Then the following three conditions are
equivalent:

(a)P is a stacked polytope.

(b)hi =n—d foralli with1<i<d—1.

(c)hi =n —d for somei with2 <i<d-—2.

Let A = k[z,,z,,...,2,] be the polynomial ring in n-variables over a
field k. Define I5 to be the ideal of A which is generated by square-free
monomials z;, T, ---2;,,1 < ¢ < i3 < --- < i, < n, with {1582, . 0, )} &

A. We say that the quotient algebra k[A] := A/I, is the Stanley-Reisner
ring of A over k.

Next we summarize basic facts on the Hilbert series. Let k be a field
and R a homogeneous k-algebra. We means a homogeneous k-algebra R by
a noetherian graded ring R = @;5, R; generated by R, with R, = k. In
this case R can be written as a quotient algebra k[z1,z,,...,2,)/1, where
deg z; = 1. In this article we always use the representatation A/I with
A = k[z1,23,...,,] a polynomial ring and with I, = (0). '

Let M be a graded R-module with dim; M; < oo for all 5 € Z, where
dimy M; denotes the dimension of M; as a k-vector space.

The Hilbert series of M is defined by

F(M’ t) = E(dlmk M;')t"°
i€Z
It is well known that the Hilbert series F(R,t) of R can be written in

the f
¢ form ho + hyt+ -+ + h,t°

T (1—¢t)ylmR 2
where ho(= 1), hy,...,h, are integers with e(R):=ho+hy+---+h,>1.
The vector h(R) = (ho, h1,...,h,) is called the h-vector of R.

F(R,t) =
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We consider k[A] as the graded algebra k[A] = @50 k[A]; with degz; =
1for 1 < j < n. The Hilbert series F(k[A], ) of a Stanley-Reisner ring k[A]
can be written as follows:

fl—lt'
1+
iy

ho + hat + - - + hat?
1-e ’

where dimA = d_l’ f(A) = (fOsfla R afd—l)v and h(A) = (hOa hh' .. ahd)'

F(k[A],1)

Let A be the polynomial ring k[z,, z2, .. ,Z,) over a field k. Let M be
a finitely generated graded A-module and let

0 —> @A(_j)ﬂh.j(M) e — @A(_j)ﬂo,j(M).__) M — 0
j€z iz

be a graded minimal free resolution of M over A. We call §; ;(M) the (3, j)-
Betti number of M over A. We define a Castelnuovo-Mumford regularity
reg M of M by

reg M = max {j —i | B;;(M) # 0}.
If a homogeneous k-algebra R is Cohen-Macaulay, we have
reg R = max {s| h; # 0}

The Betti numbers of the Stanley-Reisner ring can be expressed in terms
of the reduced homology of some subcomplexes:

THEOREM 1.2 (Hochster’s formula [Ho, Theorem 5.1]).

ﬂ,-,_,-(k[A]) = Z ' dimkﬁj_.‘-l(AF; k),
FcV, i(F)=3

where

Ap={G€EA|GCF}

§2. Betti numbers of 2-linear part of free resolutions
of homogeneous algebras
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In this section, we consider upper bounds for Betti numbers of 2-linear
part of minimal free resolutions of homogeneous k-algebras. First we con-
sider the Cohen-Macaulay case. More or less, it seems to be known, but we
include it for convenience of readers. (see e.g., [Ei-Go)).

PROPOSITION 2.1. Let k be a field, and let R be a Cohen-Macaulay
homogeneous k-algebra with codimension ¢ (> 1). Then:
(1) We have

Biin1(R) < z(f::_-ll), i=1,2,...,c

(2) The following four conditions are equivalent:
(a) The h-vector of R is (1,c).

(b)R has a 2-linear resolution.

()Biitr(R) =i(5h}) for all i with1 <i < c.
(d)Bi;i41(R) = z(fi:) for some i with1 <i<e.

Proof. (1)We may assume that k is an infinite field, and R is artinian
with codimension ¢. Put R = A/I with ; = 0. We have Bic1,i41(I) <
Pi-1,:+1(ginl), where ginl is a generic initial ideal of I with respect to a
reverse lexicograghic order. Put J := ginl = (z™,...,z™*), where z™ =
z, 237 .- z¢7° and {z™,...,z™} is minimal generators of J. Since J is
Borel fixed, we have

. < i—1
irsinald) = dimTor £,(0, e = 3 ;1)
=1 -1

Awhere
dy := Wi | m; |= 2, maxm; =1},
with | m; |:= mj; + mjz + -+ - + m;, and maxm; := max{i;m;; # 0}(see
[Gr ,Cor 1.32]).
Since dg S t,

Bisna(R) < Birina(d) < Et(: 3 :) -t :)
(2)(a)=> (b). Since h-vector of R is (1,c), we have reg R = 1. Hence R
has a 2-linear resolution.
(b) = (a) also holds.
((a) and (b)) = (c) follows from a simple calculation.
(c)=> (d) is clear.
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(d) = (a). We prove that if A, > 0, then §;;41(R) < z(‘:ﬂ) for all  with
1 < i < ¢, where (ho, k1, ha,...,hs) is the h-vector of R. Under the same
notation of the proof of (1), we have d. < ¢, since h; > 0 and J is Borel
fixed. Hence,

Biix1(R) < Bi1in1(J) < Zt(: _ i) = z(ji ;)

t=1

Q.ED.

Next we consider the Gorenstein case. The next proposion is just a
corollary of the Migliore-Nagel theorem [Mi-Na, Theorem 8.13].

PROPOSITION 2.2. Let k be a field of characteristic 0. Let R be
a Gorenstein homogeneous k-algebra over k with codimension c¢(> 2) and
reg R > 3. Suppose its Artinian reduction has the weak Lefschetz property.

Then we have
c

Biit1(R) < i(i +1

Furthermore, we assume that reg R > 4. Then the following three condi-
tions are equivalent:

(a) The h-vector of R is (1,¢,¢,...,c,1).

(b)Bisra(R) = i(;5,), for all i with 1 i< e—1.

(c)Biiv1(R) = i(i-ﬁl)’ for some it with1 <:<c—1.

), 1=1,2,...,c—1.

Proof. Case (i). Suppose the h-vector of R is h(R) = (1,¢,¢,...,¢,1).
By [Mi-Na, Theorem 8.13] and Proposition 2.1 (2), we have

Biiv1(R) < Biipr(A/L) =i (i _i 1),

if reg R > 3, where L is the the lex-segment ideal with h(A/L) = (1,c¢—1).
Now we assume reg R > 4. By [Mi-Na, Corollary 8.14], we have

A ¢
Biiv1(R) = z(i + 1).
Case (ii). Suppose the h-vector of R is h(R) = (1,h1,hs,...,h,) and
that h; < hy,. Then we have

Biis1(R) < Biis1(A/L) < i(i _: 1) .
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by [Mi-Na, Theorem 8.13] and Proposition 2.1(2), where L is the the lex-
segment ideal with A(A/L) = (1,c—1,hy—h,4,... hig) — higy-1) # (1,¢—1).
Q.E.D.

§3. Proof of Theorem 0.1

In this section we fix a field k¥ of characteristic 0. Let P be a d-
dimensional simplicial polytope with n vertices. Since k[A(P)] is a Goren-
stein homogeneous k-algebra which has an Artinian reduction with the weak
Lefschetz property, we apply Proposition 2.2. Then we obtain (1). Ifd > 4,
(c)=>(a) is obtained by Proposition 2.2 and the Lower Bound Theorem.
(a)=>(b) in (2) is essentially proved in [Te-Hi)]. To show (c)=(a) in the
case of d = 3, since the boundary complex of a 3-dimensional simplicial
polytope is nothing but a triangulation of a sphere, we have only to prove
the following:

THEOREM 3.1. Let A be a triangulation of S? with n (= 6) vertices.
Suppose A is not isomorphic to the boundary complex of a stacked polytope.
Then we have

Biin1(K[A]) < 1(’:_:13 ),

for 2<i<n-—4.
To prove the theorem, we use:

THEOREM 3.2 ( THE INDUCTION THEOREM OF BRUCKER-EBERHARD)
(cf. [Oda, p190]). Suppose a finite triangulation A of S? is given. We get
a triangulation A’ of S* with one more vertez, if a verter of A is “ split
into two ” by one of the three steps (A), (B),(C) shown in the figures be-
low. We can obtain any given finite triangulation of S? from the tetrahedral
triangulation by splitting vertices finitely many times.

AU
U N
A X <&



LEMMA 3.3. Let A be a triangulation of S* on a vertex set V with
n vertices. And let A' be a triangulation obtained from A by (B) in the
Induction Theorem, which is indicated as below.

- U-K

Put V' :=VU{p} and W := W'\ {p} for W C V".
(1) We have | dimy Ho(AYy; k) — dimy Ho(Aw; k) |[< 1 for W C V',
(2)dimg Ho(Aly; k) = dimy Ho(Aw; k) + 1 holds if and only if W' is one of
following cases; _

(a) pe W', w,z,y,z ¢ W', and §(W') = 2.

(b) 2,2 € W', p,w,y ¢ W', and z and z are disconnected in Ay,
(3)Let n(a); (resp. n(b);) be the number of j-element subsets W' of V'

which satisfy the condition (a) (resp. (b)). Then we have n(a); = (;‘::)
and n(b); < (';:;) forj > 2. \

(4) Furthermore, we assume that A is isomorphic to the boundary complez
of a stacked polytope, and that A’ obtained by (B) is not isomorphic to the

boundary complex of a stacked polytope. Then we have n(b); < (;’:24) for
723

Proof. (1) and (2) can be proved by one by one checking.

(3) As j-element subset W’ satisfying (a) we can freely choose (j —1)
elements from V — {w,z,y, z}, which has just (n — 4) elements. We use
similar argument for (b). ’ |

(4)Since A is isomorphic to the boundary complex of a stacked polytope,
there exists a 3-tree ' on the vertex set V(A) with oT' = A.

First we prove {w,y} ¢ I'. Assume that {w,y} € . Since I is a
3-tree, we have for all W C V(A), Hi(Tw;k) = 0 for i > 1. Hence
{w,z,y},{w,y,2} € T and {w,z,y,z} € I'. Therefore I' can be expressed
as

I'= z{w,x,y,z} Ulw,z,y} I U{w,y,2} [y,

where Ty and T, are 3-trees or {8}.
Put

I i= 2799 Ugy 24y Tr] Uy 2797 Ugugny T,

89



90

which is also a 3-tree. Then we have 8I' = A’, and A’ is also isomorphic
to the boundary complex of a stacked polytope, which is contadiction to
the assumption. Hence {w,y} ¢ I. There exists ¢ € V(A) such that
{¢,w,z,2} € T. Hence {q,z},{g,2} € T'® = AW, For 3 <j<n-2
choose j-elment subset W’ C V(A’) such that ¢,z,z € W’ and p, w, y ¢ w.
Then z and z are connected in A}, and W’ does not satisfy the condition
(b). Hence n(d); < (;':;) for j > 3. Q.ED

LEMMA 3.4. Let A be a triangulation of S* on a vertez set V with
n vertices. And let A’ be a triangulation obtained from A by (C) in the
Induction Theorem, which is indicated as below.

Py

Put V' :=V U {p} and W := W'\ {p} for W' C V". ,
(1) We have | dimi Ho(Aly; k) — dimg Ho(Aw; k) |< 1 for W' C V!
(2) dimy Ho(Aly; k) = dimyHo(Aw; k) + 1 holds if and only if W' is one of
following cases;
(a1)pe W', u,w,z,y,z ¢ W', and J(W') > 2.
(az)w,z € W', p,u,z,y,¢ W', and w and z are disconnected in Aly,.
(as)z,z € W', p,u,w,y ¢ W’ and = and z are disconnected in Ay,
(a4)u,z,2 € W', p,w,y ¢ W and u and z are disconnected in Ayn.
(as)w,z,2 € W', p,u,y ¢ W’ and w and z are disconnected in ALy, .
(ag)w,y,2 € W', p,u,z ¢ W’ and w and y are disconnected in Ayn.
(3)IfW € V satisfies one of the following (b;) or (b3), then dimy Ho(Aly:; k) =
dimg Ho(Aw; k) — 1 holds; _
(b1)p,u,z € W', w,y,z ¢ W' and u and z are disconnected in Aly,.
(b2) py,w,y € W', u,z,2 ¢ W' and w and y are disconnected in Ay
(4)Let n(a;)j, 1 < i < 8 (resp. n(b;);, 1 < i < 2) be the number of j-
element subsets W’ of V' which satisfy the condition (a;) (resp. (b;)). Then
we have n(a); = (777), n(a); < (33), n(as); < (333), n(as); < (323),
n(aq); < n(b); and n(as); < n(d,); forj >3. '
(5) Furthermore, we assume that A is isomorphic to the boundary complez

of a stacked polytope. Then we have n(a;); < (;‘::) or n(az); < (;'::)



Proof. (1),(2), and (3) follow from one by one checking.

(4)For n(a;);, n(az);, n(as);, and n(as); we can see the assertion as in
Lemma 3.3 (3).

Let A;;, 1 <1< 6 (resp. B;j, 1 <1< 2), be the set of all j-element
subsets W' of V' which satisfy the condition (a;) (resp. (b;)). We define
the map As; — By; (W' — W'U {p} \ {z}), which is easily seen to be
well-defined and injective. Then we have n(a4); < n(b); for j > 3. We can
prove n(ag); < n(by); for j > 3 in the same way.

(5)There exists a 3-tree T’ on the vertex set V(A) with 9I' = A. We
have {u,w,z,2} ¢ T or {w,z,y,2} ¢ . As in the proof of Lemma 2.2(4),
we have {u,z} ¢ T or {w,y} ¢ . We assume {u,z} ¢ I'. Then there exists
q € V(A) such that {g,u,w,z} € I'. Hence {q,w},{q,2} € I = A, For
3 < j < n —2, choose j-element subset W’ C V(A') such that ¢,w,z € w'
and p,u,w,y ¢ W’'. Then w and z are connected in Ay, and W' does not
satisfy the condition (a;). Hence n(az); < (’J‘:g) for j > 3. Similarly, if

{w,y} ¢ T, then we have n(as); < (;‘::) for j > 3. QE.D
LEMMA 3.5. Let A be a triangulation of S? with n vertices. And let
A’ be a triangulation obtained from A by (A),(B), or (C) in the Induction
Theorem above. Then:
(1) We have fori > 1,

Biina(KA]) < Brisa(kIA]) + Birs(KA]) + (" B 3).

(2) Furthermore, we assume that A is isomorphic to the boundary com-
plez of a stacked polytope, and that A' obtained by (B)or (C) is not iso-
morphic to the boundary complex of a stacked polytope. Then we have for
i>1,

Biii(KIAT) < Bissa(KIAD) + Bicsa(K[A]) + (" . 3).

Proof. (1)In the case of (A), the assertion is proved in [Te-Hi;, Lemma
2.3.1] with equality. By Hochster’s formula we have

Bk[A)ii+1 = > dimg Ho(Aly; k)

WICV!, i(W')=i+1 ;
= > dimy Ho(Aly; k)
vEWICV!, H(W')=i+1
+ 3 dimy, Ho(Aly; k).
vEW'CV!, (W)=i+1 :
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Hence, for the case (B) by Lemma 3.3(3) we have

Bisn(k[A]) < Y.  dimg Ho(Aw;k)
WcCV, §(W)=i+1 )

+ Y dimg Hy(Awik) + (n : 4) + ('.' _4)

wcv, §(W)=i t—1

= Bisn(FIA] + Brs(FIA]) + (" X 3)

as desired.
For the case (C), similarly, by Lemma 3.4(4) we have
Biiw1(K[AT]) < > dim; Ho(Aw; k)

WV, ((W)=i+1

+ Z dimkﬁo(Aw;k)-[- (nTs) +2("'_5) + (73-—5)
wev, ((W)=i i i—1 i_9

= Biin(K[A]) + Biri(K[A]) + (n : 3)'

(2)Apply Lemmas 3.3(4) and 3.4(5) instead of Lemmas 3.3(3) and 3.4(4) in
the above proof. Q. E.D.

Proof of Theorem 8.1. We give a proof by induction n. Thanks to
Lemma 3.5, we have

Biin(K[A]) < z(’:;f) +(i- 1)(n :4) + (n:4)
-5+ 07
(i)

as required. Q. E.D.

§4. Proof of Theorem 0.2

In this section we consider upper bounds for the Betti numbers of min-
imal free resolutions of the Stanley-Reisner rings of pure and strongly con-
nected simplicial complexes.



In the case of the Stanley-Reisner rings, we can take a class of pure and
strongly connected complexes, which is a wider class than one of Cohen-
Macaulay complexes, to obtain the same upper bounds. Compare the fol-
lowing Thorem 4.1 with Propositon 2.1.

We know that every (d — 1)-dimensional pure and strongly connected
simplicial complex can be constructed from the (d —1)-dimensional elemen-
tary simplex A(d) by a succession

A=A Ao B

of one of the following two operations :

(DA = A;Up 2F, where z € V(4,), F' is a subfacet of A; and F =
F'u {z}.

(2)Aip1 = (A;Up 2F)(z — y), where = € V(A;), F’ is a subfacet of A; and
y € V(A;) such that z and y are separated and F = F' U {z}(cf.[Te]).

Now we prove the main result in this section.

THEOREM 4.1. Let A be a (d — 1)-dimensional pure and strongly con-

nected simplicial complez with n vertices. Suppose A is not a simplez. Then:

(1) We have
fn—d+1
sir(K[A]) < : .
pantia) <i(" 7Y
(2) The following four conditions are equivalent:
(a)A is a (d — 1)-tree. ,
(b)Ia has a 2-linear resolution.

() Biiv1(K[A]) = i(":ﬂ'l) foralli with1 <i<n-—d.

(d) Bii+a1(K[A]) = i(";.':fl) for somei with1 <i<n—d.

Proof. (1) Let V be the vertex set of A. We prove the theorem by
induction on the number f;_; of facets in A.

First if fs_, = 2, then k[A] is a hypersurface of degree 2. In this case
the theorem is clear. '

Suppose fi—1 > 3. Then there exists a facet F' € A such that

A':={H € A | H C G for some facet G(# F) € A}

is pure and strongly connected. Denote by V'’ the vertex set of A’ and by
fi_, the number of facets in A’. There are two cases (cf.[Te]).
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Case(i) V # V'. Put V\ V' = {z}. Then A can be expressed as
A = A’Up 2F, where F' is a subfacet of A and F = F'U {z}. Let W be a
subset of V with §(W) > 2. Put W' =W\ {z}. Kz € W and WN F' = §,

then

dimy, Ho(Aw; k) = dimy, Ho(Aly; k) + 1.

Otherwise,

dimy Ho(Aw; k) = dimy Ho(Aly; k).

By Hochster’s formula, we have

Biir1(k[A))

Case(ii)) V =V".

dim,, f{o(Aw; k)
zgWCV, I(W)=i+1

+ 3 dim;, Ho(Aw; k)
z€EWCV, W(W)=i+1

) dimy Hy(Aly; k)
WICV!, (W')=i+1

. B —-d
+ > dimy Ho(Ay; k) + (n ; )

WICV!, (W*)=i

Biis1(KIA]) + Bior o(KAT]) + (n : d)
(i394 (59
a7+ (7

.(n-d-l-l)
= 1 . .
T |

In this case A can be expressed as

A= (A"Up 2F)(z — y),

where z ¢ V’, and F' is a subfacet of A’ and y € V' such that z and y are
separated, and that F' = F'U {z}. Since A’ C A we have A}, C A for all
W C V. Then we have dim Ho(Aw; k) < dim Ho(Aly; k). Then we have

Bii+1(k[A]) < Biinr(K[AT]) < i(

n—d+1
i+1 )°

(2)(a) = (b)is proved in [FY].



(b)=> (c). Since A is pure and strongly connected and (d—1)-dimensional,
it is (d — 1)-éonnected. Hence Bn-ds1n-d+2(k[A]) = 0. Since I has a 2-
linear resolution, k[A] is Cohen-Macaulay. When k[A] is Cohen-Macaulay
and that k[A] has a 2-linear resolution, we know f;41(k[A]) < i(";:;"l) for
all 7 with 1 <4 < n — d by Proposition 2.1.

(c) = (d) is obvious.

(d)=> (a). We prove that if A is not a (d — 1)-tree, then Biis1(k[A]) <
i(*74") forall i with 1 S i <n—d.

We may assume that A’ is a (d — 1)-tree by argument in the proof of
(1), where A’ is defined in the proof of (1). Since A is not a (d—1)-tree, A
can be expressed as

A= (A’ Up 2F)(.'D — y),

as in the proof of (1) case(ii). There exists a sequence of facets of
A'Up 2F,
A yEFlaF%-'-aFm:F
such that F, # F,forl <p<g<mandy ¢ F; and F;N Fj4, are subfacets
forl1<j<m-—land F' = Fu_yNF,. PutG = FiNF,. Since z and y are
separated, then m > 3, hence, G # F'. Fixz € F'\G. For2 < j <n—d+1,
choose W C V such that y,z € W, WN G = 0, and §(W) = ;. Hence y

and z are disconnected in Ay, but connected in Aw . Therefore, we have
dim Ho(Aw; k) < dim Ho(Aly; k). By Hochster’s formula we have

B8] < ek =i(" 71T

Q.E.D.
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