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The word problem for the braid inverse monoid
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1 Monoid presentations

Let A be an alphabet and A* the free monoid generated by A. The empty word is denoted by 1. A
(monoid) presentation is an ordered pair (A, R) where R C A* % A*. A monoid M is defined by (A, R)
if M = A*/ =g where =pg is the congruence on A* generated by R. In this situation, we say that M
is generated by A, A is a generating set of M, and R is a set of defining relations of M. If a monoid
M is generated by an alphabet A, then there is a natural surjection f : A* - M. For any w € A*,
the image of w under f is denoted by [w].

If a monoid M has a presentation (A, R) such that both A and R are finite, then we say that M
is finitely presented.

Let M be a monoid with a finite presentation (A, R). The word problem for M is to decide, given
u,v € A*, whether u =g v. ‘

2 Automatic monoids

In this section, we give definitions and results for automatic monoids and groups. For more informa-
tion, we refer to (2, 3]. '

Let M be a monoid with a finite generating set A and let 7 : A* — M be the natural surjection. If
there is a regular subset L of A* such that the restriction 7|y : L — M is surjective, then the ordered
pair (A, L) is called a rational structure for M.

Let M be a monoid with a rational structure (A,L) and $ a new symbol such that § & A. Set
A(2,8) = (AU {8$}) x (AU {8}) — (8,8$). Define a mapping v : A" X A* > A(2,8) by ¥(1,1) =1 and
for u = @102 - - - Gm and v = byby - - - by, :

(ah bl)(a2,b2) te (am, bm)($, bm+1) ce ($,bn) ifm<n
v(u,v) = { (a1,b1)(az,b2) - - (@m,bm) ifm=n
(a1,b1)(az, b2) - - (Gn, bn)(@n41,8) - (am, $). fm>n

Set L = {v(u,v) | u,v € L such that [u] = [v] in M} and, for a € A, Ly = {v(u,v) | u,v €
L such that [ua] = [v] in M}.

A monoid M is called automatic if there is a rational structure (A, L) such that L— and L, for
all @ € A are regular subsets of A(2,8). In this situation, the rational structure (A, L) is called an
automatic structure for M.

Result 2.1 (see [2, 3]) Let M be an automatic monoid. Then the word problem for M is solvable in
quadratic time. Moreover if M is a group, then M is finitely presented.
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Let M be a monoid with a rational structure (A4, L). For any w € A* and non-negative integer ¢,
define a word w(t) € A* by

w(t) = the prefix of w of length ¢t if ¢ < |w|,
w otherwise.

For any u,v € A%, let d(u,v) = min{|w| | w € A* such that [uw] = [v] in M}. We say that (A, L)
satisfies the fellow traveler property if there is a constant k such that d(u(t),v(t)) < k for all £ > 0
whenever u,v € L and [ua] = [v] in M for some a € AU {1}.

Result 2.2 (see [3]) For a group G with a rational structure (A, L), (A, L) is an automatic structure
for G if and only if (A, L) satisfies the fellow traveler property.

Let M be a monoid with a rational structure (A,L). (A,L) satisfies the strong fellow traveler
property if there is a constant k such that, for any u = ajas---am, v = biby---b, € L satisfying
[ua] = [v] for some @ € AU {1}, there are wy, wa,...,w; € A* such that |w;| < k for all 4, and
[@1w1] = [b1], [a2ws] = [wibg), ..., [aswe] = [we—1be] Where £ = max{m,n}.

Theorem 2.3 For a monoid M with a rational structure (A, L), if (A, L) satisfies the strong fellow
traveler property, then M is automatic and finitely presented.

3 Finite complete presentations

In this section, we one result about monoids with finite complete presentations. For more information
on such monoids, we refer to [1].

Let (A, R) be a presentation of a monoid M. We write u — v if (u,v) € R. The relation - g on
A* is defined as follows: for z,y € A*, z =g y if T = zuz; and y = 7 vz, for some Z1,T2 € A* and
u = v € R. The reflexive transitive closure of — g is denote by —%. R is noetherian if there is no
infinite sequence z; g 3 <R -+ =R Tn = r ---. R is confluent if, for any z,y,z € A* such that
z =g = and z 5% y, there is w € A* such that £ -} w and y —»% w. Moreover R is complete if
R is both noetherian and confluent. We set Left(R) = {u € A* |« > v € R for some v € A*} and
Irr(R) = A* — A* - Left(R) - A*.

Result 3.1 (see [1]) Let M be a monoid with a finite complete presentation (A, R). Then, the word
problem for M is solvable and (A,Irr(R)) is a rational structure for M.

4 Braid groups and its word problem

In this section, we consider braid groups. For more information on braid groups and its word problem,
we refer to [3, 4, 5.

A braid on n strings is defined as a system of n strings in R? x [0,1] C R3. It consists of disjoint
intertwining n strings which join n fixed points in the upper plane R? x {0} and n fixed points in the
lower plane R? x {1}, and intersecting each intermediate plane R? x {t} in exactly n points. A string
attached to the upper plane at the i-th position is called the i-th string.

By B,, we denote the set of isotopy classes of braids on n strings. We identify a braid with its
isotopy class, and we call an element in B, simply a braid. B, has a group structure as follows. The
product of two braids 8, and (2, denoted by juxtaposition (8,8, is defined as follows. First attach
B2 under B, identifying the upper plane of 3; and the lower plane of 8;, and then remove the center
plane. The trivial braid is the braid in which all strings go straight from the upper plane to the lower
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plane. And the inverse of a braid is defined as the mirror image of it with respect to the vertical
direction.

Result 4.1 (see [3, 5]) B, has a finite complete presentation and is automatic. Hence, the word
problem for B, is solvable.

5 Braid inverse monoids

A partial braid on n strings is defined as a subsystem of a braid on n strings, that is, it consists of
disjoint intertwining m strings (0 < m < n) which join m points of the n fixed points in the upper
plane R? x {0} and m points of the n fixed points in the lower plane R? x {1}, and intersecting each
intermediate plane R? x {t} in exactly m points. Accordingly, a partial braid on n strings can be
obtained from a braid on n strings by removing some (possibly all or no) strings. For example, in
Fig.1, the right-hand side is a partial braid that is obtained from the braid at the left-hand side by
removing the fourth string. By BI,,, we denote the set of isotopy classes of partial braids.

2 ‘

X X

Z -
Fig.1 (a braid and a partial braid on 4 strings)

We define the product of two partial braids B; and (2, denoted by juxtaposition 5182, as follows.
First attach B, under B; identifying the upper plane of 32 and the lower plane of B1. Then remove
every string in B; (resp. (B2) that has no corresponding string in Bz (resp. B1). Lastly remove the
center plane. For example, in Fig.2, we remove the second string in 3;, because it has no corresponding
string in B2. We also remove the fourth string in 3; for the same reason.

X

B, 8, 8.8,

Fig.2 ({;he product of two partial braids 3; and B2 on 4 strings)
Then BI, is a monoid with this operation and contains B, as a subgroup.

Result 5.1 (see [6]) BI, is finitely presented.

6 The word problem for B

In this section, we give a finite complete presentation and an automatic structure for BI; using a
finite complete presentation and an automatic structure for Bj.
Let «, y, [zy], [yz], 6 and 6! be braids as in Fig.3. Let
A = {z,y [z, [yz], 6, 67 '} and
R = {ay— [zy), zlyz] = 6, yz — [ya], yley] = 6, [zylz = 6, [zyl(zy] - 25, [yzly = 4,
lyz]lyz] = vé, 6z — yb, Sy — =4, d[zy] — [y=]é, dlyz] — [zy)f, 8z — ysl,
61y > 2671, 6 zy] - [yzx]o~?, 67 [yz] - [xy]6~1, 6671 — 1, 6716 > 1}
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Fig.3

Result 6.1 (see (3, 5]) (4, R) is a finite complete presentation of By and (A’,Irt(R’)) is an automatic
structure for Bj.

Let a, b, ¢, d, a™!, b7, ¢~1, d~! and 0 be partial braids as in Fig.4. Let
A=A'"U{a, b, c, d, a7, b7}, ¢}, d7Y, 2, 271, 0}

and

R=RU{zz—> 2, 227! 5227, za 2 a la,zb >+ b, zc > d, zd - ¢, za~! — aa~ !, zb~! 5 ab7 !,
ze! = ze, 2d™t o 2d7Y Yz ez, yzl s ez, ya 5 b, yb o ye = 227, yd — dz,
ya~l = a7l bt 5 b7yt o ec), yd o ed, [zy)z o de, [zy)z™! = dz7, [zyla — b,
[zy]b — a~q, [zy]c - 2, [zyld — cz, [zyla=! = aa~, [zy]b~! > ab~!, [zy)c~! - dc, [zyld—! =
dd™', [yz]z = c2?, [yzlz! — ¢, [yz]a - a'a, [yz]b — a, [yzlc o dz, [yz]d - 2271, lyzla=! — ba?,
[yz]b=! — b1, [yz)e™! = czc7l, [yzld ' = czd~, 6z — d22, 6z~! - d, ba — a, 6b — a"la,
6c = cz, 0d = 2z, da™! - ba~1, 8b1 —» bb7Y, Sc! — dzc!, 8d~1 = dzd~Y, 512 o d, 61271 o
dz"2, 67'a - a, 670 = a7la, 67 lc = cz71, §71d o 271, §lg-1 S ba"1, 6-1"1 - bb!,
671lc™! = dz7let, 07T o dzld7Y, 2z o 22, 2y o zc7), zlzy] - 2%c7, z[yz] - 2d7?,
26 = 22d71, 267! 5 d7), za = a7 la, 2b = 0, 2¢ > @, 2d — a~la, 28~ = aa”!, 2b~! o ab™l,
27l = 227, 27y o 27 27 oy o el 2 ) o 27 MY, 21 o dY, 216 272471,
272 5 zz7, z7%a 5 a7le, 27 5 0, z7l¢ > @, z7'd - a”lg, z7la"! & aa™ 1, 2711
ab~!, az - aa~!, ay - a, alzy] — ab™!, a[yz] = aa~l, ad - ab™l, 46! - ab™!, az - aa”l,
az"l—)aa“l,a2—>O,ab—)0,ac—)a,ad—-)0,ac_l-—)a,ad'l—)aa‘l,bz—>ba‘1,by—)b,
blzy] — bb~1, blyz] — ba~!, b6 — bb~!, B~ = bb~1, bz — ba~!, bz~! = ba~l, ba — 0, &2 — 0,
be = b, bd = 0, bc™! — b, bd~! - ba7!, ez — ¢z, ey - cc7}, clzy] = czcl, clyz] = ed7l,
ed = czd™, 67! - cz7'd, ca > b, b2 0,2 -5 ala,cd + b, ca”! - a !, bl o b1,
dz — dz, dy — dc7, dlzy] - dze™!, dlyz] - dd~!, d§ — dzd!, d6~! > dz~'d~!, da — b,
db—0,dc > a,d? b da~! +aa!,db! = ab~!, a1z - a~lg, a~ly - b1, a~lzy] - a7 la,
a yz] 2 b7, a7 s e, a5 a Y a2z v a1a, a7 27! 5 ala, ab o 0,a ¢ =0,
a™'d 5 ala, a2 5 0,a7 ! 5 0,a ¢! 5 b1, a7l 5 b bl o boL boly o a™l,
b~ [zy] = a7, b7 yz] > a'a, b6 - ala, b6 5 aa, b1z o 0, b 127! 0,b'a = 0,
b7'b 5 a7 la, b lc s a7 b7 ld s al, b7la 50,572 5 0, b7 1c"! - 0, b-1d~! 5 0, c~lz —
d™l, ¢y = 227, e7Yay] o 2d7Y, " Yyz] o 2, ¢ o 2¢7Y, 16 = z7le) ¢l o a7,
clz7l 5 a7l cla =0, ¢ 5 a, cle o 227, ¢ ld 5 aal, clamt 5 a7, 10 o B,
c?sala,cld ' va Y, d o el d 7y o 2d7Y, d Y zy] o 227, d yz] > 2¢71, d"16 > 2z,
d7 16 ' 27l d 2507 te,d 27 5 a"la,d a3 a"te,d b a, d"lc - aa~!, d~1d - 2271,
d'a™! 5 0,d7 %! 5 0,d ¢! 5 b71,d?2 5 b1, aa"la - a, a"laa"! - a~!, ba~la > b,
a7 lab™t 5 b7 czz7 s ¢ 227l s e, dze o d, 227l 5 dY, 2227 o 2, 2272 z71}u
{0 = 0,00 > 0 | @ € A}.
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Theorem 6.2 (A, R) is a finite complete presentation of BI3.

By the previous theorem and Result 3.1, (4, Irr(R)) is a rational structure for BI3. Moreover we
have ‘

Theorem 6.3 (A,Irr(R)) satisfies the strong fellow traveler property. Thus by Theorem 2.3, it is an
automatic structure for Bls.

Hence, we have

Corollary 6.4 The word problem for B3 is solvable.
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