gobooboooboo 12680 20020 118-125

118

A-Calculus with Lazy Lists
— Extended Abstract —

Ken-etsu Fujita (FEM &)

Shimane University (BiRAH)
Department of Mathematics and Computer Science
Matsue 690-8504, Japan
fujiken@cis.shimane-u.ac. jp

Abstract
Into A-calculus we introduce lazy lists @ whose naive meaning is an infinite list
consisting of variables, (ag,a1,as,...). It is shown that there exist maps which form
a Galois connection from Parigot’s Au-calculus to the A-calculus with lazy list. The
translations form not only an equational correspondence but also a reduction corre-
spondence between the two calculi.

1 Introduction

We introduce lazy lists into A-calculus. The introduction of infinite lists is motived by a
study on denotational semantics of type-free Au-calculus [Pari92, Pari97, BHF99, BHF01].

Given domains U x U & U 2 [U — U] such as in Lambek-Scott [LS86], we have
established a continuation denotational semantics of type-free Au-calculus [Fuji02], which
formally coincides with the CPS-translation [HS97, SR98, Fuji01] followed by the direct
denotational semantics of the A-calculus [Scot72, Stoy77]. See also the literature [HS97,
SR98, Seli01] for continuation semantics of A\u-calculus.

"This article shows that there exists a one-to-one correspondence between the Au-calculus
and the A-calculus with lazy lists.

2 X-calculus

We have two kinds of variables, the traditional variables in the \-calclus denoted by =z and
variables for lazy lists denoted by @. Our intended meaning is that &@ denotes an infinite list
of variables, @ ~ (ag, a1, as, .. .). The denotational meaning of @ would be given by elements
of domain E“ which is a solution of the domain equation D 2 D x D. From this intension,
the expression Md says that M is a function which can accept infinite inputs, and \@.M
is a function characterized by DP & DP*D o DDP® that is, Ad@.--- Md@--- can behaves
like AzA@.---Mzd@---. Under this informal meaning, potentially infinite applications of
B-reduction should be performed as follows:

119

(AG. -+ (My@) -)M

jand ()\aoa]_...."'(Mlaoal...)"')M

=p /\alaz....---(MlMalag...)---

~). (MyMa@)---
Following this intended meaning, we define the A-calculus with infinite lists as follows. A
term in the form of @ is called a lazy list.

Definition 1 ()-calculus)
A>M:u=z|d| .M | a.M| MM

(B) (\z.My)M, = M|z := My)
(n) Ae.Mz = M if z ¢ FV(M)

= | M@= My if My is in the form of a lazy list
(B) (Aa.-M)M; = { A@.My[d@ := M) otherwise ‘

(7) \&.Md=M ifd ¢ FV(M)

The term Mj[z := M) denotes the usual capture-free substitution of M, for z in M;. The
term M;[d@ := M,) indicates the capture-free substitution defined in the following:

() zla:=M] ==z

if 5= @ and M is a lazy list
(ii) b[@:=M]=<{ Mb ifb=ad and M is not a lazy list
b otherwise

N

(iii) (\z.My)[@ = M] = \z.M,[d = M|
(iv) (AB.My)[@ := M] = \b.My[d@ = M]

= . _ ((My[a :== M])M) M, if M, = @ and M is not laz‘l' t
(v) (MiMo)la = M) = { (M@ := M])(M;,[@ := M]) otherwise : g ‘ BE 1§‘-

The axiom (ﬁ) says that a function which can accept an infinite list has taken an infinite
list in the case where M is in the form of a lazy list. In the case where M, is not in the
form of a lazy list, () means that a function which can accept an infinite list has taken only
a finite input, so that we still have Ad@ even after this. (77) says that \a@.Md is an infinite
n-expansion of M.

We write A - M; = M, or (8,7, G,) - My = M, if My = Mj is derived from the axioms
8, (m, (B), or (7). As an abbreviation, we may write M, =3z M, for this. We adopt a
rewriting theory of K by rewriting the left-hand side of each axiom to the corresponding
right-hand side. The binary relation —, —*, or —* denotes the one-step rewriting, the
transitive closure of —, or the reflexive and transitive closure of —, respectively.

Proposition 1 (1) A+ Az.z =)\d.d

120

(2) AF Az 2@M[d = 1] = Na.M

Proof. (1) A@.@ can be regarded as an infinite 7-expansions of \z.z:
AG.G =y Az.(A@.8)T =5 A7.(Ad.24) =4 A\T.T

(2) The abstraction by Az can be absorbed in the infinite A-abstraction by \a:
Let = ¢ FV(M).
AGM =, Az.(A\d. M)z =5 Az \d. MG := 1] a

3 Relationship between \u-calculus and X-calculus

We show that the A-calculus is a conservative extension over Parigot’s Au-calculus [Pari92,
Pari97].

Definition 2 (\y-calculus)
Apsd M=z |z M| MM | pa.M | [o)M

(B) (Az.My)My = Mz := My)
() Az.Mz = M if z ¢ FV(M)
() (po-My)Mz = po Myo <= M,
(ug) la)(up.M) = M|B := o]

(kn) po.[d]M = M if a ¢ FV(M)

The Au-term M,[a <= M,] denotes a term obtained by replacing each subterm of the form
[0]M in M, with [a](M M,). This operation is inductively defined as follows:

l. zla<=M] =z

2. (A\z.My)[a < M] = Az.Mj[a < M]

3. (MiMy)[a < M) = (Mi|a < M])(Ma[a < M)
4. (uB.N)[a < M] = pB.N[a < M|

Bl(M|a <= M))M), fora=p
5. (BIMy)[a < M] = { [](([ﬂ]([M:[Z ¢=])M]g, oth:rwise

Definition 3 Translation []: Ap — A
1. [z] =2

2. [Az.M] = \z.[M]

3. [M\M,] = [M][M;]

121

4. [pa.M] = ra.[M]
5. [[a]M] = [M]&

Lemma 1 Let M,N € Ap.
[M[a <= N]| = [M][é := [N]]

Proof. By induction on the structure of M. Noted that [N] cannot be a lazy list. O
Proposition 2 If M; =, M,, then [My] —; [M,].

Proof. By induction on the derivation of M; —,, M,. We show some of the base cases.
Case of (p):

(1o M)N] = (A&.[M])[N]

—5 A@.[M][@:= [N1]] since [N] is not a lazy list

= M@.[M[a < N]| = [pa.M[a < N]|

Case of (3):
[(Az.M)N] = (A\z.[M])[N]
— [M][z := [N]] = [M[z := N]| O

Definition 4 Translation | | : A = Ap
(i) [z] =2

(ii) |a] = [a](Az.x)

(iii) | Mz M| = Az.|M|

(iv) [N&.M]| = pa.|M]

) Ot = { 8L = s

Lemma 2 (i) Let M € A.

-,

[M][a :=b] = | M[a = b]]

(ii) Let M,N € A where N is not a lazy list.
|M]la <= |N]] =3 [M[a:=N]|

Proof. By induction on the structure of M. We show some cases for (ii).
Case of M = a:
ld][a < [N]] = ([a)(Az.2))[a <= | N]] = [a]((Az.z)| N])

— [a]|N] = |N@] = |d[a@ := NJ]J since N is not a lazy list.

Case of M = M, M,:
We show the subcase M, of @ here.
|MiMz|[a <= |N]] = [Mid][a < |N]]

122

= ([d][Mi])]a < |N]]

= [a](|M][a < |N]])|N]

— [a](|M;[@ := N]|)|N| by the induction hypothesis

= [a](LM[@:= N|N|)

= [(Mi[a:= NIN)a] = |(Ma)[a = V]] 0

Proposition 3 Let M;, M, € A.
If M1 —3 M2 then I.Ml_l —)Xu I_MgJ

Proof. By induction on the derivation of M; — 1 M.

-

Case of () where N is not a lazy list:
L(A&.M)N| = (ua.|M])|N]

S pa.| M]fa < |N]]

—5 pa.|M[a@ := N]| by Lemma 2

= |A@.M[@ = N]|

Case of (_',B‘) where N is a lazy list:
[(A&.M)B) = [bl(ua.|M])
vy [M]fa =] = [Ma:= B

Case of (0):
|(Az.M)N| = (A\z.|M])|N|
—3 |[M|[z := [N|] = |[M[z := N]]| by Lemma 2 0O

Proposition 4 The maps []: Ap — A and | | : A — Ap establish a one-to-one corre-
spondence between Ap and A:

(i) For any M € Ap, M = |[M]].
(ii) For any M € R, [|M]] -3 M.
Proof. By induction on the structure of M. For (ii) we show one of the base cases.

Case of M = a:
[1a]] = [[a](Az.z)] = (A\z.z)@ —p @]

Definition 5 (Sabry-Walder [SW96])

The maps [| and | | form a Galois connection from Ay to A whenever M —hu |P] if and
only if [M] —% P.

M e — K5 M
#lA” tK

IP] € A —Y K5 P

It can be confirmed that the maps [] : Ay — A and | | : A = Ap form a Galois connection
by Propositions 2, 3, 4, and the following proposition:

123

Proposition 5 (Sabry-Wadler [SW96])
The maps [| and | | form a Galois connection from Ap to X if and only i
conditions hold:

(i) M =3, L[M]],

(i) [LP]1 =% P

(iii) My o}, M, implies [M1] =% [M,], and
(iv) P =% P implies | P1] =}, | P2].

See also the following diagrams:

(1)
M € Ap —1— K3 [M]
*lAn I
IM]] € Ap —H— K5 M
(ii) -
f |P) € Aou ——— A > [|P]]
I | * &
Pl € Au +—2— K> P
(ii))
M, € Ap ____fl___) A > I-Ml]
" I
M, € Au ___f_]___) A > [M,]
(iv)
|_P1J € Ap (—-——L—J—— A > B
*| Ap *lK
] € Ap —— K> PR

Proposition 6 (i) (Conservative extension) Let My, M2 € Ap.
If we have [M;] =5 [M3], then My =p, Mo.

(ii) (Galois connection)

The maps []: Ap — Aand| | : K — Ap form a Galois conmn
Ap-calculus to the A-calculus.

124

(iii) (Equational/reduction correspondence)
(1) My =pu M3 if and only if [My] =5 [Mz].
In particular, My =%, M, if and only if [M;] —)} [M,].
(2) Pr =3 P, if and only if | P | =, | P2].
Proof. (i) From Proposition 4.

(ii) From Propositions 2, 3, 4, and 5.
(iii) From (ii). O

Acknowledgement

Thanks to Izumi Takeuti for helpful comments on this work.

References

[BHF99] K. Baba, S. Hirokawa, and K. Fujita: Parallel Reduction in Type-Free Au-
Calculus, The 7th Asian Logic Conference, 1999.

[BHFO01] K. Baba, S. Hirokawa, and K. Fujita: Parallel Reduction in Type-Free A~
Calculus, Electronic Notes in Theoretical Computer Science, Vol. 42, pp. 52-66, 2001.

[Fujiol] K. Fujita: Simple Model of Type Free Au-calculus, 18th Conference Proceedings
Japan Society for Software Science and Technology, 2001.

[Fuji02] K. Fujita: Continuation Semantics and CPS-Translation of Ap-calculus, Scientiae
Mathematicae Japonicae, 2002 to appear.

[HS97] M. Hofmann and T. Streicher: Continuation models are universal for Ap-calculus,
Proc. the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 387-395,
1997.

[LS86] J. Lambek and P. J. Scott: Introduction to higher order categorical logic, Cambridge
University Press, 1986.

[Pari92] M. Parigot: Au-Calculus: An Algorithmic Interpretation of Classical Natural
Deduction, Lecture Notes in Computer Science 624, pp. 190-201, 1992.

[Pari97] M. Parigot: Proofs of Strong Normalization for Second Order Classical Natural
Deduction, J. Symbolic Logic 62 (4), pp. 1461-1479, 1997.

[Scot72] D. Scott: Continuous Lattices, Lecture Notes in Mathematics 274, pp. 97-136,
1972. -

[Seli01] P. Selinger: Control Categories and Duality: on the Categorical Semantics of the
Lambda-Mu Calculus, Math. Struct. in Comp. Science 11, pp. 207-260, 2001.

125

[SR98] T. Streicher and B. Reus: Classical Logic, Continuation Semantics and Abstract
Machines, J. Functional Programming 8, No. 6, pp. 543-572, 1998.

[Stoy77] J. E. Stoy: Denotational Semantics: The Scott-Strachey Approach to Programmang
Language Theory, The MIT Press, 1977.

[SW96] A. Sabry and P. Wadler: A Reflection on Call-by-Value, Proc. of the ACM SIG-
PLAN International Conference on Functional Programming, pp. 13-24, 1996.

