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ABSTRACT. We give anew proof of the result that transcendental entire functions have
infinitely many periodic points of all periods greater than one, and we discuss the main
tool used there: the Ahlfors theory of covering surfaces.

1. INTRODUCTION

This paper is an extended version of aseries of two talks given at the Research Institute
of Mathematical Sciences in Kyoto about the Ahlfors theory of covering surfaces, and the
applications it has found in complex dynamics. Some applications of one of the principal
results of the Ahlfors theory -the five islands theorem -to various questions in complex
dynamics have been surveyed in [11]. This includes topics such as the Hausdorff dimension
of Julia sets or the existence of singleton components of Julia sets. In the first part of this
paper (\S \S 2-3) we discuss Ahlfors’ “Scheibensatz,” which contains the five islands theorem
as aspecial case. Then we describe in some detail how the Ahlfors theory can be used
to prove the existence of periodic points of agiven period, atopic treated rather briefly
in [11]. Thus the present paper complements the survey [11] in some sense.

Based on ideas introduced by Essen and Wu $[18, 19]$ , and extended in [5], we present
areasonably self-contained proof of the result (Theorem $\mathrm{E}$ in \S 5) that atranscendental
entire function has infinitely many repelling periodic points of all periods greater than
one.

2. THE PRINCIPAL RESULTS OF THE AHLFORS THEORY

Let $D\subset\hat{\mathbb{C}}:=\mathbb{C}\cup\{\infty\}$ be adomain and let $f$ : $Darrow\hat{\mathbb{C}}$ be ameromorphic function. Let
$V\subset\hat{\mathbb{C}}$ be aJordan domain. Asimply-connected component $U$ of $f^{-1}(V)$ with $\overline{U}\subset D$ is
called an island of $f$ over $V$ . Note that then $f|_{U}$ : $Uarrow V$ is aproper map. The degree
of this proper map is called the multiplicity of the island $U$ . An island of multiplicity 1is
called asimple island.

Let now $q\in \mathrm{N}$ and $\mu_{1}$ , $\ldots$ , $\mu_{q}\in \mathrm{N}$ , and let $D_{1}$ , $\ldots$ , $D_{q}\subset\hat{\mathbb{C}}$ be Jordan domains with
pairwise disjoint closures. By $\mathcal{F}(D, \{(D_{j}, \mu_{j})\}_{j=1}^{q})$ we denote the family of all functions
meromorphic in $D$ which have no island of multiplicity less than $\mu_{j}$ over $D_{j}$ , for all
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$i\in\{1, \ldots, q\}$ . We shall always suppose that

(1) $\sum_{j=1}^{q}(1-\frac{1}{\mu_{j}})>2$.

One of the main results of the Ahlfors theory (called “Scheibensatz” by Ahlfors [1, p. 190])
can be stated as follows.

Theorem $\mathrm{A}.\mathrm{I}$ . $\mathcal{F}(D, \{(D_{j}, \mu_{j})\}_{j=1}^{q})$ is normal

Aclosely related statement is as follows.

Theorem A.2. $\mathcal{F}(\mathbb{C}, \{(D_{j}, \mu_{j})\}_{j=1}^{q})$ contains only the constant functions.
In the above results, we may put $\mu_{j}=\infty$ , meaning that $1/\mu_{j}=0$ in (1) and that the

functions in $\mathcal{F}$ have no islands at all over $D_{j}$ .
We discuss some special cases of Theorem $\mathrm{A}.\mathrm{I}$ .
(i) $q=5$, $\mu_{1}=\mu_{2}=Is$ $=\mathrm{P}4$ $=\mu_{5}=2$ . Then Theorem A.I says that afamily

of meromorphic functions is normal, if the functions in the family do not have asimple
island over any of five given Jordan domains with disjoint closures. This is the celebrated
Ahlfors five islands theorem.

(ii) $q=4$ , $\mu_{1}=\mu_{2}=\mu_{3}=2$ , $\mu_{4}=\infty$ . We note that if $f$ is holomorphic and $\infty\in D_{4}$ ,
then $f$ has no island over $D_{4}$ . Theorem A.I thus implies that afamily of holomorphic
functions is normal, if the functions in the family do not have asimple island over any of
three given plane Jordan domains with pairwise disjoint closures.

(iii) $q=3$ , $\mu_{1}=\mu_{2}=3$ , $\mu_{3}=\infty$ . with $\infty\in D_{3}$ we now deduce from Theorem A.I
that afamily of holomorphic functions is normal, if the functions in the family do not
have an island of multiplicity less than three over any of two given plane Jordan domains
with disjoint closures.

As already mentioned, Theorems A.I and A.2 can be considered as the main results
of the Ahlfors theory of covering surfaces. Besides Ahlfors’s original paper [1], we refer
to [21, Chapter 5], [28, Chapter XIII] or [34, Chapter $\mathrm{V}\mathrm{I}$] for an account of the Ahlfors
theory. Anew proof of Theorems A.I and A.2 was given in [10]. (Actually [10] was
mainly concerned with the Ahlfors five islands theorem, but it was pointed out in [10,
\S 5.1] that the method used also yields the more general “Scheibensatz.”) In the first part
of the proof in [10] it was shown by afairly simple and elementary argument that the
conclusion of Theorems A.I and A.2 holds if the $D_{j}$ are sufficiently small disks. In the
second part of the proof quasiconformal mappings were used to reduce the case of general
Jordan domains $D_{j}$ to the case of small disks.

Since the version where the $D_{j}$ are small disks suffices for the applications considered
in this paper (as well as for many other applications), and since its proof is considerably
easier and more elementary than the proof of the general version, we state this simplified
version formally. We use the notation $D(a, r):=\{z\in \mathbb{C} : |z-a|<r\}$ for $a\in \mathbb{C}$ and
$r>0$ . In the following, let $a_{1}$ , $\ldots$ , $a_{q}\in \mathbb{C}$ be distinct and let $\mu_{1}$ , $\ldots$ , $\mu_{q}\in \mathrm{N}$, and suppose
that (1) is satisfied
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Theorem $\mathrm{B}.\mathrm{I}$ . There exists $\epsilon$ $>0$ such that $\mathcal{F}(D, \{(D(a_{j}, \epsilon), \mu_{j})\}_{j=1}^{q})$ is normal.

Theorem B.2. There exists $\epsilon>0$ such that $\mathcal{F}(\mathbb{C}, \{(D(a_{j}, \epsilon), \mu_{j})\}_{j=1}^{q})$ contains only the
constant functions.

For completeness we include aproof of Theorems B.I and B.2 in \S 3 below, following
the arguments of [10, 11].

3. Aproof OF THEOREMS B.1 AND B.2

We denote the spherical derivative of ameromorphic function f by $f^{\#}$ .
Lemma 1. Let $D\subset \mathbb{C}$ be a domain and let $\mathcal{F}$ be a family offunctions meromorphic in $D$ .
If $\mathcal{F}$ is not normal, then there exist a sequence $(z_{k})$ in $D$ , a sequence $(\rho_{k})$ of positive real
numbers, a sequence $(f_{k})$ in $\mathcal{F}$, a point $z_{0}\in D$ and a non-constant meromorphic function
$f$ : $\mathbb{C}arrow\hat{\mathbb{C}}$ such that $z_{k}arrow z_{0}$ , $\rho_{k}arrow 0$ and $f_{k}(z_{k}+\rho_{k}z)arrow f(z)$ locally uniformly in C.
Moreover, $f$ can be chosen such that $f^{\#}(z)\leq 1=f\#(0)$ for all $z\in \mathbb{C}$ .

This lemma is due to Zalcman [35]. For asurvey of various applications of this lemma
we refer to [36]. We shall also need the following result.

Lemma 2. Let $q\in \mathrm{N}$, $a_{1}$ , $\ldots$ , $a_{q}\in\hat{\mathbb{C}}$ distinct and $\mu_{1}$ , $\ldots$ , $\mu_{q}\in \mathrm{N}$. Suppose that (1) is

satisfied. Let $f$ : $\mathbb{C}arrow\hat{\mathbb{C}}$ be a meromorphic function. Suppose that the $a_{j}$ -points of $f$ have
multiplicity at least $\mu_{j}$ , for all $j\in\{1, \ldots, q\}$ . Then $f$ is constant.

This result was proved by Nevanlinna using his theory on the distribution of values,
see [27, p. 102] or [28, \S X.3]. Adifferent proof was given by Robinson [29]. For aproof of
Lemma 2based on Lemma 1we refer to [10, \S 3].

It is clear that Lemma 2follows from Theorem B.2. Using Lemma 1, however, we will
see that Theorems B.I and B.2 can in turn be deduced from Lemma 1.

To deduce Theorem B.I from Lemma 1we assume that Theorem B.I is false. Apply-
ing Lemma 1to the family $\mathcal{F}(\mathbb{C}, \{(D(a_{j}, \epsilon), \mu_{j})\}_{j=1}^{5})$ we obtain ameromorphic func-
tion $f_{\epsilon}$ : $\mathbb{C}arrow\hat{\mathbb{C}}$ with $f_{\epsilon}\#(z)$ $\leq 1=f_{\epsilon}\#(0)$ for all $z\in$ C. It is easy to see that
$f_{\epsilon}\in \mathcal{F}(\mathbb{C}, \{(D(a_{j}, \epsilon’), \mu_{j})\}_{j=1}^{5})$ if $\epsilon’>\epsilon$ . By Marty’s theorem, $\{f_{\epsilon}\}_{\epsilon>0}$ is normal. Thus
there exists asequence $(\epsilon_{k})$ tending to zero such that $f_{\epsilon_{k}}arrow f$ for some meromorphic
function $f$ : $\mathbb{C}arrow\hat{\mathbb{C}}$. Since $f_{\epsilon}\#(0)=1$ for all $\epsilon>0$ we have $f^{\#}(0)=1$ so that $f$ is
non-constant. Moreover, we see that all $a_{j}$ -points of $f$ have multiplicity at least $\mu_{j}$ ,

$\mathrm{f}\mathrm{o}\mathrm{r}\square$

$j\in\{1$ , $\ldots$ , 5 $\}$ , contradicting Lemma 2.

To prove Theorem $B.2$ we note that if $f$ : $\mathbb{C}arrow\hat{\mathbb{C}}$ is anon-constant meromorphic
function, then $\{f(nz)\}_{n\in \mathrm{N}}$ is not normal at 0. Thus Theorem B.2 follows

$\mathrm{i}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{y}\square$

from Theorem B.2.
We note that Lemma 1can in turn be used to deduce Theorem B.I from Theorem B.2.

4. FIXED POINTS AND PERIODIC POINTS

Let $X$, $\mathrm{Y}$ be sets and let $f$ : $Xarrow \mathrm{Y}$ be afunction. We define the iterates $f^{n}$ : $X_{n}arrow \mathrm{Y}$

by $X_{1}:=X$ , $f^{1}:=f$ and $X_{n}:=f^{-1}(X_{n-1}\cap \mathrm{Y})$ , $f^{n}:=f^{n-1}\circ f$ for $n\in \mathrm{N}$ , $n\geq 2$ . Note
that $X_{2}=f^{-1}(X_{1}\cap \mathrm{Y})\subset X=X_{1}$ and thus $X_{n+1}\subset X_{n}\subset X$ for all $n\in \mathrm{N}$.
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Apoint $\xi$ $\in X$ is called aperiodic point of period $n$ of $f$ if $\xi\in X_{n}$ and $f^{n}(\xi)=\xi$ , but
$f^{m}(\xi)\neq\xi$ for $1\leq m\leq n-1$ . Aperiodic point of period 1is called afixed point. The
periodic points of period $n$ are thus the fixed points of $f^{n}$ which are not fixed points of
$f^{m}$ for any $m$ less than $n$ .

We shall be concerned with periodic points of holomorphic functions. Let $\xi$ be a
periodic point of period $n$ of aholomorphic function $f$ . Then A $:=(f^{n})’(\xi)$ is called
the multiplier of 4. We say that aperiodic point is repelling, indifferent or attracting
depending on whether the modulus of its multiplier is greater than, equal to or less
than 1. An indifferent periodic point is called rationally indifferent if the multiplier is a
root of unity and irrationally indifferent otherwise.

The following lemma indicates why the Ahlfors theory may be useful to prove the
existence of fixed points and periodic points.

Lemma 3. Let $D\subset\hat{\mathbb{C}}$ be a domain, $f$ : $Darrow\hat{\mathbb{C}}$ a meromorphic function and $V\subset \mathbb{C}a$

Jordan domain.
(i) If $f$ has a simple island $U$ over $V$ such that $\overline{U}\subset V$, then $f$ has a repelling fixed point

in $U$ .
(ii) If $f$ has an island $U$ over $V$ such that $\overline{U}\subset V$ , then $f$ has a fixed point in $U$ which

is repelling or has multiplier 1.

Here we shall need only (i), but for completeness we have also included (ii). We will,
however, only sketch the proof of (ii).

To prove (i) we note that there exists abranch $\phi$ of the inverse function of $f$ such that
$\phi(V)=U$ . It follows easily that $\phi^{n}arrow u$ as $narrow\infty$ for some $u\in U$ , locally uniformly in
$V$ . This implies that $u$ is an attracting fixed point of $\phi$ , and thus arepelling fixed point
of $f$ . Cl

To prove (ii) we consider the set $P$ of all images of critical points of $f|_{U}$ under iterates
of $f|_{U}$ ;that is, $P$ is the set of all $z\in V$ for which there exists $n\in \mathrm{N}$ and $c\in U$ such that
$f’(c)=0$, $f^{n}(c)=z$ and $f^{m}(c)\in U$ for $1\leq m<n$ . Then $P\cap V\backslash U$ is finite. Given
$v\in V\backslash P$ there exists $u\in U\backslash P$ with $f(u)=v$ and we can connect $u$ and $v$ by apath
$7\subset V\backslash P$ . Moreover, there exists asimply-connected domain $W$ with $\gamma\subset W\subset V\backslash P$ .
Let now $\phi$ : $Warrow \mathbb{C}$ be the branch of the inverse function of $f$ which satisfies $\phi(v)=u$ .
Then we find that all iterates of $\phi$ are defined on $V$ , and it turns out that $\bigcup_{n=1}^{\infty}\phi^{n}(\gamma)$

defines acurve which ends at apoint $a\in U$ . Moreover, $a$ is afixed point of $f$ which is
repelling or has multiplier 1; see, $\mathrm{e}$ . $\mathrm{g}.$ , [24, p. 154] or [33, p. 57] for more details of this
argument. 0

An alternative, less elementary proof of Lemma 3, (ii) is described after Lemma 4in
\S 6 below.

The periodic points play an important role in complex dynamics. Let $f$ be an entire
or rational function. The basic objects studied in complex dynamics are the Julia set
of $f$ which, by definition, is the set where the iterates of $f$ fail to be normal, and its
complement, the set of normality or Fatou set of $f$ . One of the fundamental results of the
theory is that the Julia set is equal to the closure of the set of repelling periodic points.
While this result was obtained for rational functions already by Fatou [20, \S 30, p. 69]
and Julia [23, p. 99, p. 118] in their memoirs that founded the theory, it was proved for
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entire functions much later by Baker [3]. Baker’s proof is based on Theorem A.I and
Lemma 3, (i). Meanwhile, however, simpler proofs based on Lemma 1are available [4,
12, 31]; see also [11, \S 6.2] for further discussion.

5. EXISTENCE OF pER1OD1C pOINTS OF A G1VEN pERIOD

We consider the polynomial $p(z):=-z+z^{2}$ . We note that $p(z)-z=z(z-2)$ and
$p^{2}(z)-z=z^{3}(z-2)$ . Thus $p$ and $p^{2}$ have the same fixed points so that $p$ has no periodic
point of period 2. The following result of Baker [2] shows that $p$ is essentially the only
polynomial of degree greater than one where periodic points of some period are missing.

Theorem C. Let $f$ be a polynomial of degree $d\geq 2$ and let $n\in \mathrm{N}$. Suppose that $f$ has no
periodic point of period $n$ . Then $d=n=2$ . Moreover, there exists a linear transformation
$L$ such that $f(z)=L^{-1}(p(L(z)))$ , with $p(z)=-z+z^{2}$ .

The following result was conjectured in [22, Problem 2.20] and proved in [7, Theorem 1]
and [8, \S 1.6, Satz 2].

Theorem D. Let $f$ be a transcendental entire function and let $n\in \mathrm{N}$, $n\geq 2$ . Then $f$

has infinitely many periodic points of period $n$ .

Actually the following stronger result was proved in [7, 8].

Theorem E. Let $f$ be a transcendental entire function and let $n\in \mathrm{N}$, $n\geq 2$ . Then $f$

has infinitely many repelling periodic points of period $n$ .

Similarly to Theorem C one can also describe the cases where apolynomial fails to
have repelling periodic points of some period [8, \S 1.4, Satz 1].

Theorem F. Let $f$ be a polynomial of degree $d\geq 2$ and let $n\in \mathrm{N}$ . Suppose that $f$ has
no repelling periodic point of period $n$ . Then one of the following cases holds:

(i) $n=1$ , $d\geq 2$ ,
(ii) $n=2$ , $d=2$ ,
(iii) $n=2$ , $d=3$,
(iv) $n=2$ , $d=4$,
(v) $n=3$, $d–2$ .

Examples in [8, \S 1.4] show that each of the five exceptional cases listed in Theorem $\mathrm{F}$

does occur.
The proof of Theorem $\mathrm{F}$ actually gives the following result.

Theorem G. Let $f$ be a polynomial of degree $d\geq 2$ and let $n\in \mathrm{N}$. Let $N$ be the number
of repelling periodic points of period N. Then

(2) N $\geq d^{n}-\sum_{k<n,k|n}d^{k}-2n(d-1)$
.

Anew proof of Theorem $\mathrm{D}$ was given in [5, \S 4]. Here we show that the arguments
developed there also lead to anew proof of Theorem E. As we will use Theorem $\mathrm{G}$ there,
we will also sketch its proof
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6. POLYNOMIAL-L1KE MAPS

Besides the results from the Ahlfors theory discussed in \S 2, we will need the concept
of apolynomial-like map to prove Theorem D. By definition, if $U$, $V\subset \mathbb{C}$ are bounded,
simply-connected domains with $\overline{U}\subset V$, and if $f$ : $Uarrow V$ is aproper holomorphic map
(of degree $d$), then the triple $(f, U, V)$ is called apolynomial-like map (of degree $d$). We
note that if $f$ , $U$ and $V$ are as in Lemma 3, then $(f, U, V)$ is apolynomial-like map. The
fundamental result about polynomial-like maps is the following one (see [13, Theorem
$\mathrm{V}\mathrm{I}.1.1]$ or [16, Theorem 1] $)$ .
Lemma 4. Let $(f, U, V)$ be a polynomial-like map of degree $d$ . Then there exists a poly-
nomial $p$ of degree $d$ and a quasiconformal map $\phi:\mathbb{C}arrow \mathbb{C}$ such that $f(z)=\phi^{-1}(p(\phi(z)))$

for all $z\in U$ . Moreover, $\phi(U)$ contains the filled Julia set of $p$ and thus, in particular, all
periodic points of $p$ .

Here the filled Julia set of apolynomial $p$ is defined as the set of all points that do not
tend to $\infty$ under iteration of $p$ .

We remark that it easy to see that polynomials have afixed point which is repelling or
has multiplier 1. Therefore Lemma 3follows from Lemma 4. However Lemma 4can be
considered as afairly advanced result, and thus the proof of Lemma 3sketched in \S 4 is
considerably more elementary than the one via Lemma 4.

Using Lemma 4one can generalize many results about the dynamics of polynomials
to polynomial-like mappings. In particular this applies to Theorems $\mathrm{C}$ , $\mathrm{F}$ and $\mathrm{G}$ , as
well as to Lemmas 8-10 in \S 9 below. Alternatively, we can prove these Theorems and
Lemmas directly for polynomial-like maps, with essentially the same proofs that work for
polynomials, and thus avoid the use of Lemma 4.

7. PRELIMINARIES FOR THE PROOF OF THEOREM $\mathrm{E}$

As mentioned, we shall use arguments similar to those used in [5], which in turn were
very much inspired by papers by Ess\’en and Wu $[18, 19]$ .

Let $f$ : $Darrow \mathbb{C}$ be holomorphic and let $U$, $V\subset \mathbb{C}$ be Jordan domains. Similarly as in [5]
we will use the notation $U^{f}\sim^{m}’ V$ if $f|_{D\cap U}$ has an island of multiplicity at most $m$ over $V$ .
We write $U\sim Vf$ if $f|_{D\cap U}$ has an island over $V$ ;that is, if $U^{f}\sim^{m}’ V$ for some $m\in \mathrm{N}$. Note
that if $U^{f}\sim^{m}’ V$ and $V\wedge Wg,n$ then $U^{g\circ f}\sim^{mn}$’

$W$ . Lemma 3now takes the following form.
Lemma 5.

(i) If V $\sim Vf,1$ , then f has a repelling fixed point in V.
(ii) If V $\sim Vf$ , then f has a fixed point in V which is repelling or has multiplier 1.
As in [5], we shall use some elementary concepts from graph theory. For aset $V$ and

aset $E\subset V\cross V$ we call the pair $G=(V, E)$ adigraph. The elements of $V$ are called
vertices and those of $E$ are called edges. In contrast to usual terminology we allow edges $e$

of the form $e=(v, v)$ with $v\in V$ . (Such edges are called loops.)
Let $n\in \mathrm{N}$ and $w=$ $(v_{0}, v_{1}, \ldots, v_{n})\in V^{n+1}$ . Then $w$ is called aclosed walk of length $n$

if $(v_{k-1}, v_{k})\in E$ for $k\in\{1, \ldots, n\}$ and $v_{0}=v_{n}$ . Note that we have not excluded the
case that $v_{j}=v_{k}$ for $j$ , $k\in\{1, \ldots, n\}$ , $j\neq k$ . We call aclosed walk $w=(v_{0}, v_{1}, \ldots, v_{n})$

primitive if there does not exist $p\in \mathrm{N}$, $1\leq p<n$ , such that $p|n$ and $v_{j}=v_{k}$ for all
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$j$ , $k\in\{1, \ldots, n\}$ satisfying $p|(j-k)$ . Aprimitive closed walk is thus aclosed walk which
is not obtained by running through aclosed walk of smaller length several times.

Given pairwise disjoint disks $D_{1}$ , $\ldots$ , $D_{q}\subset \mathbb{C}$ and aholomorphic function $f$ we consider
the digraphs $G(f, \{D_{j}\}_{j=1}^{q})=(V, E)$ and $G_{1}(f, \{D_{j}\}_{j=1}^{q})=(V, E_{1})$ , with vertex set $V:=$

$\{D_{1}, \ldots, D_{q}\}$ , and edge sets given by $E:=\{(D_{j}, D_{k})\in V\cross V : D_{j}\sim f D_{k}\}$ and $E_{1}:=$

$\{(D_{j}, D_{k})\in V\cross V : D_{j}\sim^{1}’ D_{k}\}f$ .
Combining Lemma 5with the remarks preceding it we obtain the following result.

Lemma 6.
(i) If $G_{1}(f, \{D_{j}\}_{j=1}^{q})=(V, E_{1})$ contains a primitive closed walk of length $n$ , then $f$ has

a repelling periodic point of period $n$ in each $D_{j}$ belonging to the walk.
(ii) If $G(f, \{D_{j}\}_{j=1}^{q})=(V, E)$ contains a primitive closed walk of length $n$ , then $f$ has $a$

periodic point of period $n$ in each $D_{j}$ belonging to the walk.

To give conditions where the hypothesis of Lemma 6are satisfied, we recall that the
outdegree of avertex $v$ in agraph $(V, E)$ is defined to be the cardinality of the set of
all $u\in V$ for which $(v, u)\in E$ . We have the following elementary results [5, Lemmas 6
and 9].

Lemma 7. Let $q$ , $n\in \mathrm{N}$, $n\geq 2$ , and let $G=(V, E)$ be a digraph with $q$ vertices.
(i) If $q\geq 6$ and if the outdegree of each vertex is a least $q-2$, then $G$ contains $a$

primitive closed walk of length $n$ .
(ii) If $q\geq 4$ and if the outdegree of each vertex is a least $q-1$ , then $G$ contains $a$

primitive closed walk of length $n$ .
Finally we recall that afamily $\mathcal{F}$ of functions holomorphic in adomain $D$ is called

quasinormal (cf. [14, 25, 30]) if for each sequence $(f_{k})$ in $\mathcal{F}$ there exists asubsequence
$(f_{k_{j}})$ and afinite set $E\subset D$ such that $(f_{k_{\mathrm{j}}})$ converges locally uniformly in $D\backslash E$ . If the
cardinality of the exceptional set $E$ can be bounded independently of the sequence $(f_{k})$ ,
and if $q$ is the smallest such bound, then we say that $\mathcal{F}$ is quasinorrmal of order $q$ .

Note that the maximum principle implies that if asequence $(f_{k})$ of functions holomor-
phic in adomain $D$ converges locally uniformly in $D\backslash E$ for some finite subset $E$ of $D$ ,
but not in $D$ , then $f_{k}arrow\infty$ in $D\backslash E$ .

8. Aproof OF THEORY $\mathrm{E}$

We choose asequence $(c_{k})$ in $\mathbb{C}$ which tends to $\infty$ and define $f_{k}$ : $\mathbb{C}arrow \mathbb{C}$ by $f_{k}(z)=$

$f(c_{k}z)/c_{k}$ . It is easy to see that no subsequence of $(f_{k})$ is normal at 0. We note that if
4is aperiodic point of $f_{k}$ , then $c_{k}\xi$ is aperiodic point of $f$ , with the same period and
multiplier. Let $\mathcal{F}:=\{f_{k}\}_{k\in \mathrm{N}}$ . We consider two cases.

Case 1: $\mathcal{F}$ is not quasinormal of order 6. Then there exists asubsequence $(f_{k_{j}})$ and
six distinct points $a_{1}$ , $\ldots$ , $a_{6}\in \mathbb{C}$ such that no subsequence of $(f_{k_{j}})$ is normal at one of
these six points. Without loss of generality we may assume that $a_{1}=0$ and that for
each $\ell\in\{1$ , $\ldots$ , 6 $\}$ , no subsequence of $(f_{k})$ is normal at $a_{\ell}$ . We choose $\epsilon$ $>0$ as in
Theorem $\mathrm{B}.\mathrm{I}$ . It follows from Theorem B.I that if $\ell\in\{1$ , $\ldots$ , 6 $\}$ and $k$ is large enough,
then $D(a_{\ell}, \epsilon)\sim^{1}D(a_{m},\epsilon)f_{k}$,for at least four values of $m\in\{1$ , $\ldots$ , 6 $\}$ . Thus each vertex of
$G_{1}(f, \{D(a_{j}, \epsilon)\}_{j=1}^{6})=(V, E_{1})$ has outdegree at least 4. Lemmas 6and 7now imply that
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if $k$ is large enough, then $f_{k}$ has arepelling periodic point $\xi_{k}$ of period $n$ . Moreover, we
may assume that $\xi_{k}\in D(a_{\ell_{k}},\epsilon)$ with $\ell_{k}\neq 1$ . This implies that $\zeta_{k}:=c_{k}\xi_{k}arrow\infty$ . Since $\zeta_{k}$

is arepelling periodic point of $f$ , we conclude that $f$ has infinitely many repelling periodic
points.

Case 2: $\mathcal{F}$ is quasinormal of order 6. Then there exists asubsequence $(f_{k_{j}})$ and six
points $a_{1}$ , $\ldots$ , $a_{6}\in \mathbb{C}$ such that $(f_{k_{j}})$ converges locally uniformly in $\mathbb{C}\backslash \{a_{1}, \ldots, a_{6}\}$ .
On the other hand, no subsequence of $(f_{k})$ is normal at 0and thus we deduce that
$0\in\{a_{1}, \ldots, a_{6}\}$ and that $f_{k_{j}}arrow\infty$ in $\mathbb{C}$

$\langle$ $\{a_{1}, \ldots, a_{6}\}$ . Without loss of generality we
shall assume that $f_{k}arrow\infty$ in $\mathbb{C}\backslash \{a_{1}, \ldots, a_{6}\}$ . Since $f_{k}(0)=f(0)/c_{k}arrow 0$ we find
that if $k$ is large enough, then there exists acomponent $U_{k}$ of $f_{k}^{-1}(D(0,1))$ such that
$(f_{k}, U_{k}, D(0,1))$ is apolynomial-like map, say of degree $d_{k}$ . It is easy to see that $d_{k}arrow\infty$

as $karrow\infty$ . Lemma 4and Theorem $\mathrm{G}$ now imply that $f_{k}$ and hence $f$ have at least
$N_{k}:=d_{k}^{n}- \sum_{\ell<n,\ell|n}d_{k}^{\ell}-2n(d_{k}-1)$ repelling periodic points of period $n$ . Since $d_{k}arrow \mathrm{o}\mathrm{o}$

we conclude that $N_{k}arrow\infty$ as $karrow\infty$ . $\square$

Remark. If we only want to prove Theorem $\mathrm{D}$ , then we can do without Lemma 4and
Theorem G. Instead we choose $c_{k}$ such that $f(c_{k})$ remains bounded so that $f_{k}(1)=$

$f(c_{k})/c_{k}arrow 0$ . In Case 2we then find that $1\in\{a_{1}, \ldots, a_{6}\}$ and that if $k$ is sufficiently
large, then $G(f_{k}, \{D(0, \frac{1}{4}), D(1, \frac{1}{4})\})$ is the complete digraph, and thus contains primitive
closed walks of any length. This, together with Lemma 6, (ii) yields the conclusion.

9. SOME RESULTS FROM COMPLEX DYNAMICS

To prove Theorem $\mathrm{G}$ we shall need some classical results from complex dynamics; see,
$\mathrm{e}$ . $\mathrm{g}.$ , [6, 13, 24, 26, 33] for an introduction to the subject. Let $f$ be apolynomial of degree
at least two and let $z_{0}$ be aperiodic point of period $p$ of $f$ . For $1\leq j\leq p-1$ we define
$z_{j}:=f^{j}(z_{0})$ . We call $\{z_{0}, z_{1}, \ldots, z_{\mathrm{p}-1}\}$ acycle of periodic points.

Suppose first that $z_{0}$ is attracting. Then the other $z_{j}$ are also attracting. We also say
that the cycle of periodic points is attracting. For $0\leq j\leq p-1$ we denote by $U_{j}$ the
component of the Fatou set that contains $Zj$ . Then $\bigcup_{j=0}^{p-1}U_{j}$ is called a cycle of immediate
attracting basins.

Lemma 8. Each cycle of immediate attracting basins contains a critical point.
Suppose now that $z_{0}$ is rationally indifferent and let $t$ be the smallest positive integer

such that $(f^{p})’(z_{0})^{t}=1$ . Then $f^{pt}$ has the form
(3) $f^{pt}(z)=z+a_{m+1}(z-z_{0})^{m+1}+O((z-\eta)^{m+2})$

as $zarrow z_{0}$ , with $a_{m+1}\neq 0$ . It turns out that $m$ is of the form $m=\ell t$ for some $\ell\in \mathrm{N}$.
Moreover for $k\in \mathrm{N}$ we have

$f^{kpt}(z)=z+ka_{m+1}(z-z_{0})^{m+1}+O((z-z_{0})^{m+2})$

as $zarrow z_{0}$ . Next, for $0\leq j\leq p-1$ there are $m$ components $U_{\dot{|}j}(1\leq i\leq m)$ of the
Fatou set of $f$ such that $z_{j}\in\partial U_{\dot{|}j}$ and $f^{\nu \mathrm{p}}|_{U_{\mathrm{j}}}.\cdotarrow z_{j}$ as $\nuarrow\infty$ . The $U_{\mathrm{j}}.\cdot$ are called Lean
domains. The set of the $pm=p\ell t$ Leau domains $D_{j}$ falls into $\ell$ disjoint subsets called
cycles of Leau domains, each of $pt$ domains, the domains of each subset being permuted
cyclically by $f$ .
Lemma 9. Each cycle of Leau domains contains a critical point.
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Finally we mention the following result of Douady [15].

Lemma 10. A polynomial of degree $d$ has at most $d-1$ non-repelling cycles of periodic
points.

The idea in the proof of Lemma 10 is to perturb $f$ slightly so that the indifferent
periodic cycles become attracting. More specifically, aperturbation of the form $z$ }$arrow$

$f_{\epsilon}(z):=f(z)+\epsilon P(z)$ with asuitable polynomial $P$ (of high degree) and sufficiently small
$\epsilon>0$ yields the desired result. Note that the degree of $f_{\epsilon}$ as apolynomial may be larger
than $d$. The point is that if $\epsilon$ is sufficiently small, then there exist domains $U$ and $V$

containing the filled Julia set of $f$ such that $(f_{\epsilon}, U, V)$ is apolynomial-like map of degree
$d$ . The conclusion then follows from Lemmas 4and 8.

However, as remarked earlier, one can also prove Lemma 10 without making reference
to Lemma 4, by proving Lemma 8directly for polynomial-like maps. Thus Lemma 10 has
afairly elementary proof. The proof of the corresponding result for rational functions,
due to Shishikura [32], is much more involved; see also [17].

Finally we note that for our purposes aweaker bound for the number of non-repelling
cycles of apolynomial of degree $d$ would suffice, $\mathrm{e}$ . $\mathrm{g}.$ , the bound $2d-2$ obtained with
Fatou’s method.

10. Aproof OF THEOREMS F AND $\mathrm{G}$

Proof of Theorem $G$. For $k\in \mathrm{N}$ we denote by $F_{k}$ the number of fixed points of $f^{k}$ counted
according to multiplicity, and by $\overline{F}_{k}$ the corresponding number where multiplicities are
ignored. Similarly, the number of periodic points of $f$ of period $k$ is denoted by $P_{k}$ , if
multiplicities are counted, and by $\overline{P}_{k}$ otherwise. Clearly we have $\overline{P}_{k}\leq\overline{F}_{k}\leq F_{k}=d^{k}$ and

$\overline{F}_{n}-\overline{P}_{n}\leq\sum_{k<n,k|n}\overline{P}_{k}\leq\sum_{k<n,k|n}d^{k}$
.

We write $\overline{F}_{n}=F_{n}-(F_{n}-\overline{F}_{n})=d^{n}-(F_{n}-\overline{F}_{n})$ and obtain

(4)
$\overline{P}_{n}\geq\overline{F}_{n}-\mathrm{I}d^{k}=d^{n}-\sum_{kk|n<n,k|n}d^{k}-(F_{n}-\overline{F}_{n})$

.

To estimate the term $F_{n}-\overline{F}_{n}$ , let $z_{0}$ be afixed point of $f^{n}$ that contributes to it. Let
$m$ be the contribution of $z_{0}$ to the term $F_{n}-\overline{F}_{n}$ ;that is, $z_{0}$ is afixed point of $f^{n}$ of
multiplicity $m+1$ . Let $p$ be the period of $z_{0}$ . Then the periodic cycle $\{z_{0}, z_{1}, \ldots, z_{p-1}\}$ ,
with $z_{j}=f^{j}(z_{0})$ , contributes $pm$ to the term $F_{n}-\overline{F}_{n}$ . Let $\ell$ be the number of cycles of
Leau domains associated to the periodic cycle $\{z_{0}, z_{1}, \ldots, z_{p-1}\}$ . We shall show that

(5) pm $\leq n\ell$ .

In fact, let $t$ be the smallest positive integer such that $(f^{p})’(z_{0})^{t}=1$ . Then $pt|n$ , and $f^{pt}$

has the form (3), with $m=\ell t$ . Now (5) follows since $pm=p\ell t$ and $pt\leq n$ .
It follows from (5) that $F_{n}-\overline{F}_{n}\leq nL$ , where $L$ is the number of cycles of Leau domains

of $f$ . Since $L\leq d-1$ by Lemma 9, we obtain

(6) $F_{n}-\overline{F}_{n}\leq n(d-1)$

9
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Finally we note that if $Q$ denotes the number of non-repelling periodic points of pe-
riod $n$ , then $N.=\overline{P}_{n}$ - $Q$ . Since the number of non-repelling periodic cycles of period $n$

is at most $d-1$ by Lemma 10, we obtain $Q\leq n(d-1)$ and thus

(7) $N\geq\overline{P}_{n}-n(d-1)$ .
Combining (4), (6) and (7) we obtain (2). $\square$

Proof of Theorem $F$. As already mentioned, Theorem $\mathrm{F}$ follows easily from Theorem G.
In fact, if $n=2$, then $N\geq d^{2}-d-4(d-1)=(d-1)(d-4)$ by (2), and thus $N>0$ if
$d>4$ .

If $n=3$ , then (2) yields $N\geq d^{3}-d-6(d-1)=(d-1)(d-2)(d+3)$ so that $N>0$
if $d>2$ .

Finally, if $n\geq 4$ , let $m$ be the largest integer less than $n$ that divides $n$ . Then $m\leq n-2$

since $n\geq 4$ . From (2) we obtain
$N$ $\geq$

$d^{n}- \sum_{k\leq m}d^{k}-2n(d-1)$

$=d^{n}- \frac{\Psi^{+1}-d}{d-1}-2n(d-1)$

$\geq$ $d^{n}-d^{m+1}+d-2n(d-1)$

$\geq d^{n}-d^{n-1}+d-2n(d-1)$

$=$ $(d^{n-1}-2n)(d-1)+d$
$\geq$ $(2^{n-1}-2n)+d$

$\geq d$,

and this completes the proof of Theorem F. 口

Remark. It follows from (4) and (6) that

$\overline{P}_{n}\geq d^{n}-\sum_{k<n,k|n}d^{k}-n(d-1)$
.

This implies that $\overline{P}_{n}>0$ , except possibly if $n=d=2$. Afurther investigation of the
case $n=d=2$ then leads to Theorem C. This is essentially proof of Theorem $\mathrm{C}$ given
by Baker [2].

REFERENCES
[1] L. V. Ahlfors, Zur Theorie der $\dot{\mathrm{U}}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{a}\mathrm{g}\mathrm{e}\mathrm{r}\mathrm{u}\mathrm{n}\mathrm{g}\mathrm{s}\mathrm{f}\mathrm{l}\tilde{\mathrm{a}}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{n}$ , Acta Math. 65 (1935), 157-194, and Collected

Papers, Birkh\"auser, Boston, Basel, Stuttgart, 1982, Vol. I, PP. 214-251.
[2] I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), $61\succ$

622.
[3] –, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256.
[4] D. Bargmann, Simple proofs of some fundamental properties of the Julia set, Ergodic Theory $Dyarrow$

namical Systems 19 (1999), 553-558.
[5] D. Bargmann and W. Bergweiler, Periodic points and normal families, Proc. Amer. Math. Soc. 129

(2001), 2881-2888.
[6] A. F. Beardon, Iteration of Rational Functions, Springer, New York, Berlin, Heidelberg, 1991.
[7] W. Bergweiler, Periodic points of entire functions: proof of aconjecture of Baker, Complex Variables

Theory.Appl. 17 (1991), 57-72

10



AHLFORS THEORY AND COMPLEX DYNAMICS

[8] –, Periodische Punkte bei der Iteration ganzer Funktionen, Habilitationsschrift, Rheinisch-
Westf\"alische Techn. Hochsch., Aachen 1991.

[9] –, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N. S.) 29 (1993), 151-188.
[10] –, Anew proof of the Ahlfors five islands theorem, J. Analyse Math. 76 (1998), 337-347.
[11] –, The role of the Ahlfors five islands theorem in complex dynamics, Conform. Geom. Dyn. 4

(2000), 22-34.
[12] F. Berteloot and J. Duval, Une d\’emonstration directe de la densit\"e des cycles r\’epulsifs dans l’ensemble

de Julia, in: Dolbeault, P. (ed.) et al., Complex analysis and geometry, Birkh\"auser, Basel, Prog.
Math. 188 (2000), 221-222.

[13] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, New York, Berlin, Heidelberg, 1993.
[14] C.-T. Chuang, Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.
[15] A. Douady, Systemes dynamiques holomorphes, Astirisque 105-106 (1982/83), 39-63.
[16] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. \’Ecole Norm.

Sup. (4) 18 (1985), 287-343.
[17] A. Epstein, Infinitesimal Thurston rigidity and the Fatou-Shishikura inequality, preprint 1999,

$\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}:\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{h}.\mathrm{D}\mathrm{S}/9902158$ .
[18] M. Ess\"en and S. Wu, Fix-points and anormal family of analytic functions, Complex Variables Theory

Appl. 37 (1998), 171-178.
[19] –, Repulsive fixpoints of analytic functions with applications to complex dynamics, J. London

Math. Soc. (2) 62 (2000), 139-148.
[20] P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. fi}.ance 47(1919), 161-271; 48 (1920),

33-94, 208-314.
[21] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[22] –, Research Problems in Function Theory, Athlone Press, London, 1967.
[23] G. Julia, Sur l’it&ration des fonctions rationelles, J. Math. Pures Appl. (7) 4(1918), 47-245, and

(Euvres de Gaston Julia, Gauthier-Villars, Paris, 1968, Vol. I.
[24] J. Milnor, Dynamics in One Complex Variable, Vieweg, Braunschweig, Wiesbaden, 1999.
[25] P. Montel, Legons sur les families normales des fonctions analytiques et leurs applications, Gauthier-

Villars, Paris, 1927.
[26] S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, Holomorphic Dynamics, Cambridge Studies

in Advanced Mathematics 66, Cambridge University Press 2000.
[27] R. Nevanlinna, Le th&Orkme de Picard-Borel et la thiorie des fonctions miromorphes, Gauthiers-

Villars, Paris, 1929.
[28] –, Eindeutige analytische Funktionen, Springer, Berlin, G\"ottingen, Heidelberg, 1953.
[29] R. M. Robinson, Ageneralization of Picard’s and related theorems, Duke Math. J. 5(1939), 118-132.
[30] J. L. Schiff, Normal Families, Springer, New York, Berlin, Heidelberg, 1993.
[31 W. Schwick, Repelling periodic points in the Julia set, Bull. London Math. Soc. 29 (1997), 314-316.
[32 M. Shishikura, On the quasi-conformal surgery of rational functions, Ann. Sci. itcole Norm. Sup.

(4) 20 (1987), 1-29.
[33 N. Steinmetz, Rational Iteration, Walter de Gruyter, Berlin, 1993.
[34] M. Tsuji, Potential Theory in Modern Rmction Theory, Maruzen, Tokyo, 1959.
[35 L. Zalcman, Aheuristic principle in complex function theory, Amer. Math. Monthly 82 (1975),

813-817.
[36] –, Normal families: new perspectives, Bull. Amer. Math. Soc. (N. S.) 35 (1998), 215-230.

MATHEMATISCHES SEMINAR, $\mathrm{C}\mathrm{H}\mathrm{R}\mathrm{I}\mathrm{S}\mathrm{T}\mathrm{I}\mathrm{A}\mathrm{N}-\mathrm{A}\mathrm{L}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{C}\mathrm{H}\mathrm{T}\mathrm{S}$ -UNIVBRSIT\"AT zu KIEL, LUDEWIG-MEYN-
STR. 4, $\mathrm{D}$-24098KIEL, GERMANY

$E$-mail address: bergweilerOmath. $\mathrm{u}\mathrm{n}\mathrm{i}$ -kiel.de

11


