<table>
<thead>
<tr>
<th>Title</th>
<th>The sets of non-escaping points of generalized Chebyshev mappings (Complex dynamics and related fields)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Uchimura, Keisuke</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2002), 1269: 103-109</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42159</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The sets of non-escaping points of generalized Chebyshev mappings

Keisuke Uchimura (内村 桂輔)
Tokai Univ. Dept. of Math. (東海大学数学科)

1 Introduction

Let G_c be the polynomial self-mapping of \mathbb{C}^2 defined by

$$G_c(x, y) = (x^2 - cy, y^2 - cx).$$

It admits an invariant line $\{x = y\}$ on which it acts as the quadratic polynomial

$$f_c(z) = z^2 - cz.$$

If c is real, the map G_c admits an invariant plane $\{x = \overline{y}\}$, on which it acts as

$$F_c(z) = z^2 - cz\overline{z}.$$

The purpose of this paper is to understand the dynamics of F_c as a self-map of \mathbb{C}. The mapping G_c can be extended as a holomorphic self-map of \mathbb{CP}^2

$$g_c([x : y : z]) = [x^2 - cyz : y^2 - cxz : z^2].$$

Ueda [1999] shows that any holomorphic map on \mathbb{CP}^2 of degree 2 is equivalent to one of the following maps:

1. $U_1([x : y : z]) = [x^2 : y^2 : z^2]$,
2. $U_2([x : y : z]) = [x^2 + yz : y^2 : z^2]$,
3. $U_3([x : y : z]) = [x^2 + yz : y^2 + xz : z^2]$,
4. $U_4([x : y : z]) = [x^2 + \lambda xy + y^2 : z^2 + xy : yz]$.

Note that g_c is equivalent to U_3.
The map
\[F_c(z) = z^2 - cz \]
has a connection with a physical model when \(c = 2 \). It is Chebyshev map
\[F_2(z) = z^2 - 2z. \]

A. Lopes [1990,1992] considered the dynamics of \(F_2 \) as a special kind of Potts model and showed that triple point phase transition (three equilibrium states) exists. He conjectured that if \(c > 2 \), a Cantor set with expanding dynamics exists. It is known that for expanding systems equilibrium states are unique. We explain triple point phase transition. We consider the pressure
\[P(t) = \sup_{\nu \in M(f)} \{ h(\nu) - \frac{t}{2} \int \log |\det(Df(z))| d\nu(z) \}. \]

\(M(f) \) denotes the set of invariant probabilities and \(h(\nu) \) is the entropy of \(\nu \). For each \(t \), if the measure \(\mu(t) \) is the solution of the variation problem, \(\mu(t) \) is called the equilibrium measure. Multiple equilibrium measures of \(F_2(z) = z^2 - 2z \) are stated as follows:

1. if \(-\frac{4}{3} < t \) then \(\mu(t) = \mu = \frac{1}{2} \delta_{p_2} + \frac{1}{2} \delta_{p_3} \)
2. if \(t = -\frac{4}{3} \) then there exist triple point phase transition \(\mu(t) : \mu \) (not magnetic), \(\frac{1}{2} \delta_{p_2} + \frac{1}{2} \delta_{p_3} \) (magnetic), \(\delta_{p_1} \) (anti-ferromagnetic),
3. if \(t < -\frac{4}{3} \) then there exist two equilibrium states \(\mu(t) : \frac{1}{2} \delta_{p_2} + \frac{1}{2} \delta_{p_3}, \delta_{p_1} \).

We give an affirmative answer to Lopes's conjecture. More generally, we show an analogue of the result which are well known for quadratic polynomials. In the paper we assume that \(c \) is real.
2 Dynamics of $G_c(x, y)$ and $F_c(z)$

We show the following two theorems. Let $K(g) = \{ z \in \mathbb{C} \mid g^n(z) : n = 0, 1, 2, ..., \text{is bounded} \}$.

Theorem 1. $K(F_c)$ is connected with the simply connected complement in $\mathbb{C}P^1$ if and only if $-4 \leq c \leq 2$.

Theorem 2. If $c > 2$, then

1. $K(F_c)$ is a Cantor set;
2. the two-dimensional Lebesgue measure of $K(F_c)$ is 0;
3. F_c restricted to $K(F_c)$ is topological conjugate to the shift on 4 symbols;
4. the measure of maximal entropy of $G_c(x, y)$ is supported in the real plane $\{ x = \bar{y} \}$.

We see the analogue as follows.

Let $f_c(z) = z^2 + c$ and $F_c(z) = z^2 - cz$.

(a) $K(f_c)$ is connected with the simply connected complement if and only if $-2 \leq c \leq \frac{1}{4}$.

(A) $K(F_c)$ is connected with the simply connected complement if and only if $-4 \leq c \leq 2$.

Note that $f_c(x)$ on $[-2, \frac{1}{4}]$ and $F_c(x)$ on $[-4, 2]$ are topological conjugate.

(b) If $c < -2$ then,

1. $K(f_c)$ is a Cantor set;
2. the one dimensional Lebesgue measure of $K(f_c)$ is 0;
3. $\{K(f_c), f_c\}$ and $\{\Sigma_2, \sigma\}$ are equivalent;
4. Julia set of f_c is included in the set $[-q, q]$.

(B) If $c > 2$ then,
(1) $K(F_c)$ is a Cantor set;
(2) the two dimensional Lebesgue measure of $K(F_c)$ is 0;
(3) $\{K(F_c), F_c\}$ and $\{\Sigma_4, \sigma\}$ are equivalent;
(4) the smallest Julia set of G_c is included in the set $\{x = \bar{y}\}$.

To prove the assertion (1) of Theorem 2, we show the following result for non-conformal maps F_c. If $c > 2$, for any connected component $K(i_1, \ldots, i_n)$ in $F_c^{-n}(D)$, the diameter $[K(i_1, \ldots, i_n)]$ approaches 0 as $n \to \infty$. To prove this we introduce a Riemannian metric

$$\frac{1}{\mu}\{(\overline{z}^2 - 3z)dz^2 + (9 - z\overline{z})dzd\overline{z} + (z^2 - 3\overline{z})d\overline{z}^2\},$$

where $\mu = -z^2\overline{z}^2 + 4(z^3 + \overline{z}^3) - 18z\overline{z} + 27$.

This metric goes to ∞ on the boundary ∂S. This is a generalization of the invariant measure

$$\frac{1}{\pi \sqrt{x(1-x)}} \quad \text{for} \quad f(x) = 4x(1-x).$$

3 Proofs

We show only the proof of the assertion (4) of Theorem 2 in this paper. Proofs of the other assertions of Theorem 2 and that of Theorem 1 are stated in Uchimura [2001] and so are omitted. In this paper we use the same definitions and notations as are used in Uchimura [2001].

Lemma 1. The number of periodic points of order n of $g_c([x : y : z]) = [x^2 - cyz : y^2 - cxz : z^2]$ with $z \neq 0$ is 4^n.

Proof. From Corollary 3.2 of [Fornaess and Sibony, 1994], this lemma follows immediately. \qed

Lemma 2. If $c > 2$, the number of periodic points of order n of the function $F_c(z) = z^2 - c\overline{z}$ is 4^n.

Proof. From the proof of Theorem 4.1 of [Uchimura, 2001], we see that there exists a positive integer n such that

$$(F_{c})^{-n}(D_{c}) \subset \frac{c}{2}S.$$

Let N be the smallest integer satisfying the above property. Let

$$\Gamma = (F_{c})^{-N}(int(D_{c})).$$

Then it can be proved that Γ is an open connected set. From Proposition 2.2 of [Uchimura, 2001], we know that there exist homeomorphisms $\varphi_{k}, \ (k = 0, 1, 2, 3)$, from $\frac{c^{2}}{4}S$ to S_{k} with $S_{k} \subset \frac{c}{2}S$ such that the composition $F_{c} \circ \varphi_{k}$ is an identity map. From Proposition 3.1 of [Uchimura, 2001], we have

$$(F_{c})^{-1}(\Gamma) \subset \Gamma.$$

Hence

$$\bigcup_{k=0}^{3} \varphi_{k}(\Gamma) \subset \Gamma$$

and so

$$\varphi_{k}(\Gamma) \subset \Gamma.$$

Applying Fixed Point Theorem to φ_{k}, we get a fixed point p_{k} in Γ such that $\varphi_{k}(p_{k}) = p_{k}$. Hence we have 4 fixed points of F_{c}.

By the similar argument, we can prove this lemma when $n > 1$.

\square

Combining Lemma 1 and Lemma 2, we have the following proposition.

Proposition 3. If $c > 2$, then any periodic point of $G_{c}(x, y)$ lies in the plane $\{(x, \bar{x}) | x \in C\}$.

Let $H = \{(x, \bar{x}) | x \in C\}$. We denote the Jacobian matrix of the map $G_{c}(x, y)$ at the point (u, v) by $DG_{c}(u, v)$. G_{c} restricted on H is the map $F_{c}(z)$. The map $F_{c}(z)$ may be viewed as a map from \mathbb{R}^{2} to \mathbb{R}^{2}. We denote the Jacobian matrix of the map F_{c} at (u_{1}, u_{2}) by $DF_{c}(u)$ where $u = u_{1} + iu_{2}, \ u_{1}, u_{2} \in \mathbb{R}$.
Lemma 4. We consider the map $G_c(x, y)$ when c is real. Let (u, v) be a periodic point. Suppose the periodic point (u, v) lies in H. Then the set of eigenvalues of $DG_c(u, \bar{u})$ are identical with that of $DF_c(u)$.

Proof. Clearly,

$$DG_c(x, y) = \begin{pmatrix} 2x & -c \\ -c & 2y \end{pmatrix}. $$

Then

$$DG_c(u, \bar{u}) = \begin{pmatrix} 2(u_1 + iu_2) & -c \\ -c & 2(u_1 - iu_2) \end{pmatrix}. $$

On the other hand,

$$DF_c(u) = \begin{pmatrix} 2u_1 - c & -2u_2 \\ 2u_2 & 2u_1 + c \end{pmatrix}. $$

Set

$$U = \frac{1}{2} \begin{pmatrix} 1 + i & -1 + i \\ 1 + i & 1 - i \end{pmatrix}. $$

Clearly U is an unitary matrix. Then we can easily prove that

$$U^{-1}DG_c(u, \bar{u})U = DF_c(u). \quad \square $$

In Proposition 3, we show that if $c > 2$, all periodic points of $G_c(x, y)$ lie in H. Next we show they are all repelling.

Proposition 5. If $c > 2$, then any periodic point of $G_c(x, y)$ is repelling.

Proof. From Lemma 4, we see that to prove this proposition it suffices to show that any periodic point of $F_c(z)$ is repelling. This follows from the fact that for any connected component $K(i_1, \ldots, i_n)$ in $F_c^{-n}(D)$, the diameter $[K(i_1, \ldots, i_n)]$ approaches to 0 as $n \to \infty. \quad \square$

Combining Proposition 5 and Corollary V.2.1. in [Briend, 1997], we can prove the assertion (4) of Theorem 2. \quad \square
References

