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APPLICATIONS OF MANE’S THEOREM
YESHUN SUN AND YONGCHENG YIN

ABSTRACT. In this paper, we show that the Julia set of a critically
non-recurrent rational map on Riemann sphere is either shallow
with respect to spherical metric or itself the whole sphere. Rigidity
and ergodicity resuits are also obtained for such maps.

Key words and phrases. Julia set, critically non-recurrent rational

map, distortion, shallow, rigidity, ergodicity.

1. INTRODUCTION

Let f : C — C be a rational map with degree deg(f) > 2. A point
z is said to be a periodic point if f¥(z) = z for some k > 1. The
minimal of such k is called the period of z. For a periodic point 2,
denote the multiplier of zg by A = (f*)'(29). The periodic point z, is
either attracting, indifferent or repelling according to |A\| < 1,|\| =1
or |A| > 1. In the indifferent case, we say 2 is parabolic if X is the root
of unity.

The Julia set, denoted by J(f), is the closure of set of repelling
periodic points. Its complement is called Fatou set, denoted by F'(f). A
connected component of F'(f) is called a Fatou component. D. Sullivan
proved that each Fatou component U is preperiodic, i.e., there exist
integers m > 1,n > 0 so that f™**(U) = f*(U) and every periodic
Fatou component is either an attracting basin, a parabolic basin, a
Siegel disk or a Herman ring. For the classical results of complex
dynamics, see [B], [Mi] and [CG].

This work is supported by National Natural Science Foundation of China, Project
No. 10171090.
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The post-critical set P(f) of f, i.e., the closure of the forward orbits
of critical points, will play the crucial rule in the study of complex dy-
namics. Recall that the w-limit set w(c) of cis {z € C| there exists ny —

oo such that z = limg_, f™(c)}.

Definition 1.1. A rational map f : C — C is called critically non-

recurrent if each critical point ¢ € J(f) is non-recurrent, i.e., ¢ € w(c).

We equip Riemann sphere C with the standard spherical metric ds =
ﬁ%—z—lgldzL If we identify the unit sphere S% in R® with the Riemann
sphere, then this metric coincides with the spherical distance and is
invariant under SO(3) as well as 1/z. Restricted to any proper compact
subset of Riemann sphere, this metric is equivalent to the Euclidean
metric. Denote B(z,¢) the ball centered at = and of radius ¢ in the
spherical metric on C and D(z, €) the disk centered at z and of radius
€ in the Euclidean metric on C.

The following definition is given by C. McMullen[Mc].

Definition 1.2. A compact subset X C C is shallow if there exists
0 < k < 1 such that any ball B(z,7), where z € X and 0 < r < 1,
contains a smaller ball B(y, kr) Cc C\ X.

It’s easy to prove that if X is shallow, then its box dimension BD(X) <
2 and its Hausdorff dimension HD(X) < BD(X) < 2.
Our first result on critically non-recurrent rational maps is the fol-

lowing.

Theorem 1.1. For a critically non-recurrent rational map f : f - C,
the Julia set J(f) is either shallow or J(f) = C.

An immediate consequence of Theorem 1.1 is:

Corollary 1.1 (Cf. [U]). For a critically non-recurrent rational map
f:C—C, HD(J(f)) <2 or J(f) =C.
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Remark 1.1. C. McMullen [Mc] and F. Przytycki and S. Rohde [PR]
proved the same theorems for quadratic polynomials with Siegel disk
of bounded type rotation numbers and Collet-Eckmann rational maps

without parabolic points.

Qusiconformality is a relaxation of conformality in complex analysis.
It turns out to be very useful in the study of complex dynamics and

can be defined in more general setting.

Definition 1.3. A homeomorphism ¢ : X — X of metric space (X, d)

is called quasiconformal if there exists a constant K such that

. maxg(y,z)=r d(¢(y)’ ¢(£L‘))
S iatymyer A(0(Y), 6(2)) ~ &

for all z € X.

A conjugacy quasiconformal off J(f) being actually globally quasi-
conformal reflects the rigidity of the systems. The next result is about

the rigidity of critically non-recurrent rational maps.

Theorem 1.2. Let f be a critically non-recurrent rational map. If the
orientation preserving homeomorphism ¢ : C — C conjugates f to a
rational map g, then ¢ is isotopic relative to J(f) to a quasiconformal

conjugacy.

Remark 1.2. P. Haissinsky [H] obtained the same result for uniformly
weakly hyperbolic rational maps defined therein in different way. F.
Przytycki and S. Rohde [PR1] proved it for topological Collet-Eckmann

rational maps.

Recall that a homeomorphism ¢ : X — X is isotopic to ¢ : X — X
relative to a subset A C X if there exists a continuous map H : X x
[0,1] = X such that H(z,0) = ¢ and H(z,1) = ¢ for all z € X and
H(z,t)=zforallz€ Aand 0<t < 1.

The Lebesgue measure on Riemann sphere induced by the spherical
‘metric is denoted by mes(X) for measurable subset X C C. Therefore

the full measure of the Riemann sphere is 4.
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Definition 1.4. A rational map f : C — C is ergodic if any measurable

set A satisfying f~!(A) = A has zero or full measure in the sphere.

Now we come to our ergodicity result on critically non-recurrent

rational maps.

Theorem 1.3. For a critically non-recurrent rational map f : C-C,
either the Julia set J(f) is the whole sphere and f is ergodic or the
Hausforff dimension of the Julia set J(f) is strictly less than 2.

The following notations will be used in the subsequent sections.

(1) Reserve d(dg, resp.) to denote the spherical(Euclidean, resp.)
distance on C(C, resp.) and diam X (diamg X, resp.) the cor-
responding diameter of the subset X C C(X c C, resp.).

(2) The distortion Dist(X, 2)(Distg(X, 2), resp.) of a compact sub-
set X C C(X C C, resp.) about z ¢ X is

maxyex d(y, z) Mmaxyex |y — 2|)
minyex d(y, z) * mingex |y — 2|’

(3) Two positive numbers A and B are K-commensurable or simply
commensurable if K~ < A/B < K for some K > 1 indepen-

resp.).

dent of A and B. A < B means A and B are commensurable.

2. BACKGROUND MATERIALS

2.1. Distortion lemmas. The distortion theorem of univalent maps is
a powerful tool in the study of complex dynamics. The following distor-
tion theorem of the version for p-valent maps is well-known(See [CJY]
or Appendix C in [ST]).

Lemma 2.1. Let U, and U, be simply connected domains in C and

g: Uy = U, be a proper holomorphic map of deg g < p. Then

{wlpUz(wa g(Zo)) < C_—l} - g({zlpUl (z7 ZO) < T}) - {wlpUz(w’ g(Zo)) <t

for any zy € Uy, where py, and py, are hyperbolic metrics of Uy and

Us,, and C is a constant depending only on p and r.
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Denote p the hyperbolic metric in D(0, 1) and B,(0, r) the hyperbolic
ball centered at 0 of radius r.

Lemma 2.2. Let h: D(0,1) = D(0,1) be a proper holomorphic map
of degree at most p and h(0) = 0. Then there erists a constant R*
depending only on p and R such that D(0, R*) C h(B,(0, R)) and the
component of h='(D(0, R*)) containing 0 is a subset of B,(0, R).

Proof. Assume degh = p’ < p. In the case p’ = 1, the conclusion fol-
lows immediately from Koebe one-quarter theorem of univalent maps.
Now we suppose p' > 2. Let 0 = 2, 2;,--- ,2y_; be the preimages of
h(z) = 0 and h; : D(0,1) — D(0,1) be the univalent map so that
hj(2;) =0,0 < j <p —1. Then
P-1

h(z) = €” T hi(2)
7=0

for some 0 € R.

There are at most p’ points of {2;/0 < j < p' — 1} in the closed
hyperbolic ball B,(0, R). We can find a hyperbolic circle y centered at
0 in B,(0, R) such that

R
p(2,2) 2 50—

20 — 1)

forany 2€ yand 0 < j <p’' — 1. Then for all z € 4,

plhi(2),0) = plh;(2), hy(3)) = p(z, %) > ———

2(p — 1)
Going back to the Euclidean metric, we have
R
-0 — 1
dg(hi(2),0) > —p—— =C}.
e~ 1
Then
p-1
ds(h(2),0) = [ du(hi(2),0) > ¢ = R*(¢', R).
3=0
and R* = min{R*(¢’, R) : 1 < p’ < p} is the constant needed. O

From Lemma 2.2, we have a useful corollary in spherical metric.
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Corollary 2.1. Fiz the positive integer p and g9 > 0. Let U be a simply
connected subset of C missing a spherical disk of radius €o and g : U —
B(wo, 28) be a proper holomorphic map of degg < p,wo = g(2), and
§ < I8, If g maps B(z,7) C U into B(wo,6), then there ezist
constants K depending only on p and &y, and r* > diamg(B(20,7))/K
so that B(wo, ™) C g(B(2,7)) and the component of g~*(B(wo, "))

containing zo is a subset of B(z,r).

Proof. By rotating U and B(wyo, 26) respectively to avoid the spherical
disk at infinity and of radius &y, we prove the statement in Euclidean
metric first.

Assume (8g(D(z0,7))) N (8D(wy, 8)) # O at first. Let U’ be the com-
ponent of g~!(D(wp,d)) containing z. Then mod (U \U’) > %5‘%.
Therefore, diam,, D(29,7) < 1 and, from distortion lemmas for uni-
valent maps, py(z,2) < 1 for any point z € dD(z,r), for a con-
stant C(p) depending only on p. Take R = mingecop(z,r) pu(z, 20). By
Lemma 2.2, there exists r* = 26R* such that D(wo,7*) C g(D(z0,7))

and the component of g=1(D(wp, 7*)) containing 2o is a subset of D(z, 7).

Denote K = 1/R*. Then r* > diamg(D(z0,7))/K.

In the case dg(D(z9, 7))NOD(wo, 8) = 0, take &' = d(wo, 0g(D(20,7)))
< §. We replace U by the component of g~ (D(wy, 20')) containing 2o.
Using the same method as above, we get the constant K.

Coming back to the spherical metric, we know the constant K de-

pends also on &p. O

2.2. Mané’s theorem. In [Ma](see also [ST]), R. Maiié proved a

beautiful theorem. It is the key lemma in the proof of our main results.

Lemma 2.3 (Maiié’s theorem). Let f : C — C be a rational map of
degree at least two and p an integer depending only on f. If a point
z € J(f) is not a parabolic periodic point and is not contained in the

w-limit set of a recurrent critical point, then for all € > 0 there ezists
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0 > 0, such that for each n > 0 and each connected component U of
f~(B(z,46)),
(1) the spherical diameter of U is < € and deg(f™ : U — B(z,4)) <
p, and
(2) for all e, > O there erists ng > 0 such that if n > ng, the
spherical diameter of component U of f~(B(z,9)) is < ¢;.

Note that for a critically non-recurrent rational map, a common §
can be taken in above lemma for all points in a compact subset of Julia

set containing no parabolic points.

2.3. Dynamics near parabolic points. Let f, : C — C be a rational
map with a non-degenerate parabolic fixed point 0, ie., fj(0) =
and f7'(0) # 0. Choose a neighborhood Uy of 0 so that f, maps U,
homeomorphically onto a neighborhood Uj.

Lemma 2.4 (Fatou coordinates). Take fo,Up and U} as above. Then
there ezist simply connected domains Dy compactly contained in Uy N

0> whose union forms a punctured neighborhood of 0, satisfying
f(;l:(D:t) cDiU {0} and nn>o ( ) {0}

Moreover, there exist univalent maps . : D, — C such that

(1) @+(fo(2)) = @+(2) +1,
(2) Range(<I>+) D {¢|- E1r < arg(¢ — Rp) < —1r} and Range(®_ ) »)

{C|"7r < arg(¢ + Ro) < Z'lr} for some Ry > 0.

The domains D, and D_ in Lemma 2.4 are called attracting petal
and repelling petal respectively. We will make use of this coordinates
to deal with the parabolic points in critically non-recurrent rational
maps.

Set Vi = {¢|Re¢ < —Ro},Vo = {¢|Re¢ < —Ry, |Im¢| > Ro},{l =
{¢l = Ro— 1 < Re( < —Ry,[Im{| < Ro},Q = Q9 —3,j > 1 and
Vg = ®Z1(Vy), Vo = ®-1(Vp), Q; = ®-1(€);),5 > 0. From Lemma 2.4,

116



YESHUN SUN AND YONGCHENG YIN

V, is contained in the Fatou set F(fy) = C\ J(fo) and fo : Qj41 = Q;

is a homeomorphism for j > 0.

2.4. Definition of quasiconformality. In [KK], S. Kallunki and P.
Koskela improved the remarkable result about the definition of quasi-
conformal map in Euclidean space in [HK]. We state it in Riemman
sphere case with the original inequality replaced by an equivalent con-
dition. This is because that the original inequality appeared in [KK]
holds when r — 0. Then we may use this inequality in spherical metric.
Moreover, we can replace the basis of disks and its image by that of
uniformly bounded distortion.

By definition, a subset E C C of o-finite length is the countable
union of subsets of finite one dimensional Hausdorff measure in spher-
ical metric(Cf. [G]).

Lemma 2.5. Let ¢ : C — C is a homeomorphism. If there are
a set E of o-finite length and a constant K such that there ezists
a basis of neighborhoods {U(z)} of =z with Dist(U(z),z) < K and
Dist(¢(U(z)), é(z)) < K for each z € C\ E, then ¢ is quasiconformal.

3. PROOFS OF MAIN RESULTS

3.1. Proof of Theorem 1.1. Suppose that J(f) # C. One can find
a spherical disk in C of radius &, disjoint from J(f).
For z € J(f), r > 0, define

h(z,r) = sup{{| there is B(y,€) C F(f) N B(z,r)}.

Then h: J(f) x Ry — R, is continuous.
Since int(J(f)) = 0,

h(r) = inf{h(z, ) |z € J(f)} > 0

for any r > 0.
First of all, we suppose f is a critically non-recurrent rational map

having no parabolic periodic points. From Lemma 2.3, there are 0 <
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d < 5% and p < oo so that for any £ € J(f), n > 0 and any
component V of f~"(B(z,2d)), V is simply connected domain missing

a spherical disk of radius of ¢y, and
deg(f" : V — B(z,24)) < p.

For any z € J(f) and 0 < r < 4y, look at the forward images
B = f™(B(20,7)), 2m = f™(20), m > 0.

Let ng be the smallest integer so that diamB,,,; > 8. Then
lodo < diamB,,, < &y for some 0 < ly < 1. By Corollary 2.1, there are a
constant K depending only on p and ¢, and a disk B(2pn,,79) C By, with
ro > diam By,,/K > lydp such that the component of f~"°(B(zp,,70))
containing 2o is a subset of B(z,r). There exists B(yp, %h(ro)) C

B(zp,,70) N F(f). Let Dy be a component of f~"°(B(yo, %h(ro))) con-
tained in B(z,r),y € Do N f~™(yo). Then Dist(8Dy,y) < M for some
M depending only on p and diam Dy =< r. Therefore, there exists
0 < k' < 1 which does not depend on 2z and r so that B(y,k'r) C
Dy C B(z,r) N F(f).

Now let f be a non-recurrent rational map having parabolic peri-
odic points. For simplicity, we suppose f has only one non-degenerate
parabolic fixed point 0.

Take 2;(j > 0) as in Section 2.3. The set X, = J(f)\ (U;j>192;U{0})
is a compact subset of J(f). By Lemma 2.3, there exist 6; > 0 and
P1 < 0o so that for all z € Xy, n > 0, 0 < § < 4; and any component
V of f~"(B(z,26)), V is simply connected and

deg(f": V — B(z,2)) < p1.

Let K, be the constant depending only on p; and & in Corollary 2.1.
Suppose both diam D and diam(f(D)) are less than é. If D contains a
disk B(z, €) with ¢ > diam D/Kj, then f(D) contains a disk B(f(z), €*)
such that the component of f~!(B(f(z),€*)) containing z is a subset
of B(z,€), where €* > diam f(D)/K, for a constant K, depending only

on K, and ¢,.
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Choose N large enough so that N > 128K,R, and d(0,09,) >
4K,diam,, for n > N. Take 6; = ndiam Qy for a suitable 7 so that

B(z,26;) C Vg = Vo U (Uj>085)

for any z € UYL, Q;.

Now we prove that the Julia set J(f) is shallow.

For any z € J(f) and 0 < r < 8 = min(;,02), denote By, =
f™(B(20,7)), Zm = f™(2), m > 0. Let ng be the smallest integer
such that diamB,,+1 > dp. Then diamB, < § for m < ng and
diamB,,, < do.

If z,, € Xo, then the same argument as in no parabolic periodic
points case shows there exists B(y,kir) C B(z0,7) N F(f) for some
0<k <1 |

Suppose zn, € (Uj>1€;)U{0} and mo > 0 is the smallest integer such
that z; € (U;>19;) U {0} for all mg < j < no. Then By, contains a
disk W = B(2p,, €*) with ¢ > diamB,,,/ Ko such that the component
of f~™°(W) containing z is a subset of B(z,T)-

We claim that there exists a disk B(yo,70) C Bm, N F(f) such that
f~™(B(yo, 7)) has a component contained in B(zo,r) for some ro <
diam B, .

Case 1. If z,,, = 0, take ro = %e*.

Case 2. If z,, € Q;, for 1 < jo < N, then By, C B(z4,,00) and
B(2n,,200) C V. Let B’ be a component of f(mo—mo)(B(2,,,2d))
containing By,,. Then fm~™0 : B’ — B(zn,,200) is univalent and
mod (B'\ Bp,) > 51; log 2. By distortion theorem of univalent map,
Dist(8W1, zn,) < 1 and there is B(y}, r5) C WiNF(f) for some rg =< do,
where W, = f*~mo(W). Hence there is B(yo, 7o) C WNF(f) for some
To < diamB,,,.

Case 3. If z,, € Qj, for jo > N, zm, € Qjp + (no — Mo) = Qi

(%a). When diam B,,, > 2Kdiam Q;,, d(zm,,0W) > 2diam,,
take To = %d(zmo, ow).
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(3b). When diam B,,, < 2Kodiam;;, D = D(zp,, 2diam B,,,) C
V*. Let D= ®_(D),W = &_(W),W; = ®_(W,) and Zpn, = ®_(2m, ).
Then Distg(OW, Zm,) < 16 Dist(0W, 2,,,) < 16K, |

If dg(Zmy, OW) > 4Ry, then there is a disk B = D(j,, %dE(zmo, W)
C Vp such that ®-'(B) = B contains a disk B(yo,r) C W NV, C
W N F(f) for ry < diam B,y,,.

If dg(Zmg, OW) < 4Ry, then W C D(Zp,,64KoRo) and W, = W +
(no — mg) C D(Zp,,64K0R0), Zng = Zmo + (Mo — mp) = ®_(2p,). Since
Zno € o, jo > N > 128K, Ry, we have D' = D(3,,,128K,R,) C Vg,
D = &-}(D') c V*, B,y C D' and mod (D' \ B,,) > %logZ.
Hence Dist (0W, 2,,) < 16Distg (OW), Zn,) = 16Distg (W , Zp,) <
162K,.

Let D” be the component of f~("~mo)(D') containing By,,. Then

mo—mo : D" — D' is univalent. By distortion theorem, there is a disk
B(y@,ro) C W N F(f) for some ry < diam By,

The proof of our claim is completed.

Now we come back to the proof of the main theorem.

If mg = 0, we are done. If mg > 1, then B, _; N f~}(B(yo,70))
contains a disk with radius r < diamB,,,_;. The same argument as in
no parabolic points case shows that there is B(y, ko) C B(zp,7)NF(f)
for some 0 < k; < 1. Take k' = min(ky,k;). Then for any 2y, €
J(f), r >0, B(z,r) contains a disk B(y, k'r) C F(f) and hence J(f)
is shallow.

3.2. Proof of Theorem 1.2. Suppose that f and g are two critically
non-recurrent rational maps which are conjugated by a homeomor-
phism . By a routine argument on Fatou set, 1 is isotopic relative to
J(f) to a new conjugacy ¢ which is quasiconformal on Fatou set F(f).
We shall prove that ¢ is actually a globally quasiconformal map.

Let Xo(f) € J(f)(resp. Xo(g9) C J(g)) be the compact sets de-
fined in the proof of Theorem 1.1. Let d¢(d,, resp.)< Z(We will apply
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Corollary 2.1 for ¢ = %) and integers p(f)(p(g), resp.) be the num-
bers guaranteed by Mafé’s theorem for Xo(f)( Xo(g), resp.) and for
e =Z. In cases J(f) = C and J(f) containing no parabolic points, let
Xo(f) = J(f). 1

Take a small 0 < 79 < 56; such that for all z € J(f), ¢(B(z, 1)) C

B($(z), 35,)

Let z € J(f) and U,(z) be a component of f~"(B(f"(z),r0)) con-
taining z. There is a constant K; does not depend on y such that
Dist(¢(B(y, 7)), #(y)) < K. If z is not eventually mapped to the
parabolic periodic points, it visits Xo( f) infinitely many times. It fol-
lows from the distortion theorem for p-valent version that there are

subsequence {n;} and a constant K independent of x such that
Dist(Up, (z),z) < K

and
Dist(¢(Un, (2)), 8(2)) < K.

It then follows from Lemma 2.5 that ¢ : C — C is quasiconformal.

The proof is complete.

3.3. Proof of Theorem 1.3. By Corollary 1.1, we assume the Julia
vset of f is the whole sphere.

Let X C C be a completely invariant subset. Suppose that mes(X) >
0. We shall prove that X has the full measure.

Let o € X be a density point of X. Let z, = f*(z), n > 0. We
can choose a subsequence {z,, } converging to z*. Let A = {z, } U
{z*}. Then A is a proper compact subset of J(f). Let § and p be
the numbers given for £ in Mafié’s theorem with e-neighborhood of
A missing a spherical disk of radius & and U,, be the component of
[~ (B(zp,, %6)) containing zo. Then U,, shrinks to zo nicely since
Dist(Uy,, 7o) < K, K depending only on p and &y. Therefore,

Jim P =

1,
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which is equivalent to

li mes(U,.,, N (C—\ X)) =0
Pyl mes(U,, ) e

It follows from distortion theorem that,

mes(B(am, 50)1 €\ X)) _

I
k—o0

mes(B(zn,, 59))

which is equivalent to

mes(B(zy,,, %6) N X)

klim 1 =1,
oo mes(B(z,,, 56))
and hence 1
mes(B(z*, 56) N X)

1.

mes(B(z*, %5))

This implies that B(z*, %6) C X ae.
Since B(z*, %6) C C = J(f), there exists an integer k such that
FE¥(D(z*, %6)) = C. Hence C C X a.e. This means that X has full

measure and completes the proof.

REFERENCES

[A] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand,
1966.

[B]  A.Beardon, Iteration of Rational Functions, GTM, no. 132, Springer-Verlag,
New York, 1991.

[CG] L. Carleson and T. Gamelin, Compler Dynamics, Universitext: Tracts in
Mathematics, Springer-Verlag, New York, 1993.

[CJY] L. Carleson, P. Jones, and J.-C. Yoccoz, Julia and John, Bol. Soc. Bras.
Mat. 25 (1994), 1-30.

[G] F.W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer.
Math. Soc. 103 (1962), 353-393.

[H]  P. Haissinsky, Rigidity and ezpansion for rational maps, J. of London Math.
Soc. 63 (2001), no. 1, 128-140.

122



[HK]

(KK]

[Ma]
[Mc]

[Mi]

[PR]

[PR1]

[ST]

WY

YESHUN SUN AND YONGCHENG YIN

J. Heinonen and P. Koskela, Definitions of quasiconformalty, Invent. Math.
120 (1995), 61-79.

S. Kallunki and P. Koskela, Exceptional sets for the definition of quasicon-
formality, Amer. J. Math. 122 (2000), 735-743.

R. Maiié, On a theorem of Fatou, Bol. Soc. Bras. Mat. 24 (1993), 1-11.

C. McMullen, Self-similarity of Siegel disks and the Hausdorff dimension of
Julia sets, Acta. Math. 180 (1998), 247-292.

J. Milnor, Dynamics in One Complex Variable: Introductory Lectures,
Vieweg, 1999.

F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund.
Math. 155 (1998), 189-199.

, Rigidity of holomorphic Collet-Eckmann repellers, Ark. Mat. 37
(1999), 357-371.

M. Shishikura and Tan Lei, An alternative proof of Mafié’s theorem on

non-ezpanding Julia sets, The Mandelbrot Set, Theme and Variations (Tan
Lei, ed.), Lecture Note Series, no. 274, London Mathematical Society, 2000,
pp. 265-279.

M. Urbanski, Rational functions with no recurrent critical points, Ergo. Th.
& Dynam. Sys. 14 (1994), 391-414.

Yongcheng Yin, Geometry and dimension of Julia sets, The Mandelbrot Set,
Theme and Variations (Tan Lei, ed.), Lecture Note Series, no. 274, London
Mathematical Society, 2000, pp. 281-287.

DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU, ZHE-
JIANG 310027, CHINA

E-mail address: sun@math.zju.edu.cn

DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU, ZHE-
JIANG 310027, CHINA

123



