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Abstract

We make asurvey on recent progresses in 3-dimensional topological quantum
field theories arising from operator algebras. The main focus is on the Reshetikhin-
Turaev invariants arising from the coset models, as studied by F. Xu.

1Introduction
Interactions between low-dimensional topology and operator algebras have been quite
fruitful in the last two decades since the discovery of the Jones polynomial. Our aim here
is to review the recent advance of these interactions. Probably, the most detailed studies of
quantum invariants of links and 3-manifolds so far from the operator algebraic viewpoint
have been through Ocneanu’s generalization of the Turaev-Viro invariants as explained in
[6, Chapter 12], but Sato and Wakui have already presented their work on this topic in
this RIMS project, so we will make areview on different topics, the Reshetikhin-Turaev
type invariants arising from operator algebraic studies of quantum fields. This is mainly
due to F. Xu $[24, 25]$ .

2Modular tensor categories arising from operator
algebras

The Reshetikhin-Turaev type invariants gives an invariant of 3-dimensional closed mani-
folds from amodular tensor category as explained in [20]. We first discuss how amodular
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tensor category appears naturally in the framework of alegbraic quantum field theory [8],
which is astudy of quantum field theory through operator algebraic methods.

In amodular tensor category, each object is something like arepresentation of some
algebraic structure and we have notions such as atensor product, irreducible decomposi-
tion, and a(quantum) dimension. We show how such acategory is realized in the current
setting.

First we recall ageneral background. Let $A$ be an algebra of bounded linear operators
on afixed Hilbert space $H$ , where we usually assume that $H$ is separable and infinite
dimensional. We also assume that $A$ is closed under the $*$ -operation. We further require
that $A$ is closed under an appropriate topology. Actually, we have two choices for an
‘appropriate topology” One is the norm topology and the other is the strong operator
topology. In this note, it is more convenient to use the latter. In this case, such an algebra
$A$ of operators is called avon Neumann algebra. In order to avoid technical problems, it
is simpler to assume that the algebra $A$ is simple in the sense that it does not have anon-
trivial closed tw0-sided ideal. Such an algebra $A$ is called afactor, though aterminology
(‘simple von Neumann algebra” would be easier to understand. This simplicity property
is equivalent to triviality of the center of the algebra $A$ . The most naive approach to
representation theory in the framework of operator algebra theory would be astudy of
representations of such afactor on different Hilbert spaces from $H$ , but such atheory is
rather trivial, unfortunately. In anatural setting in connection to quantum field theory,
afactor $A$ becomes as0-called type III factor and then, all representations on separable
Hilbert spaces are unitarily equivalent. So we need something else in order to get asensible
representation theory.

In the setting of algebraic quantum field theory, we assign avon Neumann algebra
$A(O)$ for each appropriate region $O$ in the spacetime. This algebra is generated all the
“observables” in the spacetime region $O$ . We now take the circle $S^{1}$ as acompactified
spacetime, though the name “spacetime” would not be so suitable for this case. Then as
aregion $O$ , we take anon-empty, non-dense, open connected set $I$ , which is called an in-
terwal. So we have an assignment $A(I)$ of avon Neumann algebra on afixed Hilbert space
$H$ to each such an interval $I$ . One might think that one-dimensional “spacetime” is too
trivial, but many mathematically interesting phenomena related to low-dimensional topol-
ogy such as braiding arise only in low-dimensional “spacetime” and the one-dimensional
theory is quite deep. We have aset of axioms this assignment should satisfy, based on
physical reasons. Here we briefly explain some of the axioms. See [15], for example, for a
complete description of the axioms.

For intervals $I\subset J$ , we require $A(I)\subset A(J)$ . Since $A(I)$ should be an algebra of
“observables” on abounded spacetime region $I$ , this requirement is quite natural. We
then require that $xy=yx$ for $x\in A(I)$ , $y\in A(J)$ if I and $J$ are disjoint. The origin
of this requirement is that if two spacetime regions are “spacelike”, then the observables
on these regions have no influence on the other, thus the operator must commute. Now
we are in aone-dimensional situation and use disjointness of the intervals instead of the
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spacelike condition. By this physical reason, this axiom is called locality. We also require
that we have a(projective) unitary representation $u_{g}$ of the “symmetry group” $G$ of the
space time. As this group $G$ , we now take the Mobius group $PSL(2, \mathrm{R})$ . (We also often
take the Poincare group of the Minkowski space as $G$ in ahigher dimensional case.) Then
we assume $u_{g}A(I)u_{g}^{*}=A(gI)$ . We also assume existence of aspecial vector called the
vacuum vector, unique up to scalars. For an interval $I$ , we denote the interior of its
complement by $I’$ . Then the standard axioms imply that we have $A(I’)=A(I)’$ , where
the right hand side means $\{y|xy=yx, \forall x\in A(I)\}$ by definition and is called the
commutant of $A(I)$ . This property means the locality holds in amaximal sense, and it
is often called the Haag duality. The uniqueness of the vacuum vector implies that each
von Neumann algebra $A(I)$ is afactor, actually an algebra called ahyperfinite IIIi factor
which is unique up to isomorphism.

One example of such afamily $\{A(I)\}_{I}$ of operator algebras constructed by A. Wasser-
mann [21] is as follows. Consider the loop group $LSU(N)$ of $SU(N)$ . Their positive
energy representations give a“fusion category” for each fixed level $k$ as in [18]. Now for
avacuum representation $\pi$ of level $k$ , we can define $A(I)$ to be the operator algebra gen-
erated by $\pi(f)’ \mathrm{s}$ with $f\in LSU(N)$ being identity outside of the interval $I$ . Wassermann
[21] has shown that this net $\{A(I)\}_{I}$ satisfies the above axioms and ageneral positive
energy representation of $LSU(N)$ of level $k$ corresponds to arepresentation of the net
$\{A(I)\}_{I}$ in the sense below. In this way, we can capture the usual tensor category of the
WZW-model $SU(N)_{k}$ in the framework of algebraic quantum field theory.

Now we explain the representations of the net $\{A(I)\}_{I}$ . These von Neumann alge-
bras act on aHilbert space $H$ from the beginning by definition, but we also consider
representations of the net, which are families of representations $\pi_{I}$ of $A(I)$ with anatural
compatibility condition, on another Hilbert space. This is aquite natural notion of a
representation, but it is not clear at all how to define a“tensor product” of two such rep-
resentations. (Note that we have no coproducts now.) In order to define atensor product,
it is useful to rewrite the definition of arepresentation using an endomorphism. That is,
fix an interval $I$ . Then with achange of representations within aunitary equivalence
class, we can always assume that arepresentation $\pi$ acts on the initial Hilbert space $H$

and $\pi(x)=x$ if $x\in A(I’)$ . Then by the consequence of the Haag duality, this $\pi$ restricted
on $A(I)$ gives an endomorphism of $A(I)$ . If we have two representations $\pi$ and $\sigma$ realized
in this way, we can compose $\pi$ and $\sigma$ as endomorphisms of $A(I)$ . This composition defines
anotion of a“tensor product” of representations of $\pi$ and $\sigma$ . Aspecial endomorphism
arising from arepresentation as above is called aDoplicher-Haag-Roberts (DHR) endo
morphism. (We omit exact properties of the DHR endomorphisms. See [8], for example.)
Then we can also define notions of aconjugate endomorphism which corresponds to acon-
tragredient representation, a $(\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{m}/\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l})$dimension which now takes avalue in
$[1, \infty]$ , irreducible decomposition for these DHR endomorphisms. The dimension of an
endomorphism $\sigma$ is the square root of the Jones index of an inclusion $\sigma(A(I))\subset A(I)$ .
(Actually, they are defined for general endomorphisms of opeator algebras called type III
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factors. See Longo [14]. The notion of the Jones index is an analogue of an index of a
subgroup or adegree of an extension of afield.) In this way, we have atensor category
of DHR endomorphisms where irreducible objects are DHR endomorphisms which do not
decompose into direct sums of endomorphisms. Note that we have no reason to expect
$rrcy–\sigma_{i}r$ here, though tensor products for group representations are commutative. But in
the setting of the DHR endomorphisms, we do have commutativity up to unitary eqruv-
alence, that is, we have Ad(u)7ra $=\sigma\pi$ and this unitary $u$ , depending on $\pi$ , $\sigma$ gives a
braiding structure. In this way, the category of DHR endomorphisms of anet becomes
braided. It is at this point that low-dimensionality of the spacetime plays an important
role.

For aconstruction of aReshetikhin-Turaev invariant, we are interested in the situation
where we have only finitely many irreducible objects. Such asituation is often called a
rational theory. We now give an operator algebraic condition which implies this rationality
and, furthermore, modularity of the tensor category.

Split the circle into four intervals and label them $I_{1}$ , I2, $I_{3}$ , I4 in acounterclockwise
order. Then both $A(I_{1})$ and $A(I_{3})$ commute with $A(I_{3})$ and $A(I_{4})$ and thus we have
$A(I_{1})\vee A(I_{3})\subset(A(I_{3})\vee A(I_{4}))’$ , where both algebra are actually factors. This inclusion
of factors has the Jones index in $[1, \infty]$ and we call it the $\mu$-index of the net $\{A(I)\}_{I}$ . Our
results in [12] says that if the $\mu$-index of anet is finite, then this net has only finitely
many unitary equivalence classes of representations, they have all finite dimensions, and
the braided category of the DHR endomorphisms of the net is modular in the sense of [20].
(The modularity condition means invertibility of the $S$-matrix defined with the braiding as
in [19].) Note that this modularity is often difficult to show in other approaches to tensor
categories and it is quite convenient to show this with an operator algebraic method. In
this case, we say that the net is completely rational. The above example of $SU(N)_{k}$ is
completely rational by aresult of Xu [23].

So we can construct aReshetikhin-Turaev invariant of 3-manifolds from acompletely
rational net. We study relations of two such invariants when the two nets have some
operator algebraic relations. For this purpose, we first consider arather simple situation.
When afactor is contained in another factor, we call it asubfactor. We consider afamily
of subfactors $A(I)\subset B(I)$ parametrized by the intervals on $S^{1}$ as above. We call it anet
of subfactors. Asystematic study of such nets of subfactors was started in [16]. We can
define the Jones index of anet of subfactors as that of $A(I)\subset B(I)$ , which is independent
of $I$ . Under the assumption of finite Jones index, Longo [15] has shown that if one of the
two nets $\{A(I)\}_{I}$ and $\{B(I)\}_{I}$ is completely rational, so is the other. An example of anet
of subfactors with complete rationality is given by conformal inclusions as in [22]. Also
the orbifold construction gives anet of subfactors with complete rationality as in [26].

For anet of subfactors with finite index and complete rationality, it is expected that
we have some relations between the representation theories of the two nets, as we have
relations between the representation theories of a(compact) group and its subgroup.
As atool to study such relations, we explain $\alpha$-induction which produces an (almost
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representation of the larger net of factors from arepresentation of the smaller one. (The
name “induction” comes from analogy to group representations.) This method was first
defined in [16] based on an old suggestion of Roberts, and its interesting properties were
studied in detail by Xu [22]. It was further studied in [1], [2], [3], [4], [5], partly in
connection to [17]. For anet of subfactors $\{A(I)\subset B(I)\}_{I}$ and fixed interval $I$ , take a
DHR endomorphism Aof the net $\{A(I)\}_{I}$ . Then using abraiding, we can extend this
endomorphism of $A(I)$ to that of $B(I)$ . Since this extension does depend on which of the
two, mutually opposite, braiding we use, we denote this dependence by the symbol 010.
The extended endomorphism is thus denoted by $\alpha_{\lambda}^{\pm}$ . This is not aDHR endomorphism of
the larger net $\{B(I)\}_{I}$ in general, but irreducible endomorphisms arising from irreducible
decompositions of $\alpha_{\lambda}^{+}’ \mathrm{s}$ produces atensor category, which has no braiding in general. But
if we restrict our attention to the extended endomorphisms which arise from both $\alpha_{\lambda}^{+}$

and $\alpha_{\mu}^{-}$ for some DHR endomorphisms $\lambda$ , $\mu$ of the subnet $\{A(I)\}_{I}$ , we do get aDHR
endomorphism of the larger net $\{B(I)\}_{I}$ and all DHR endomorphisms of the larger net
$\{B(I)\}_{I}$ arise in this way. Although we use aname induction, the tensor category of the
representations of the larger net is smaller in an appropriate sense. See the above-cited
papers for various properties and example of a-induction.

3Coset models
We now focus on aparticular construction of a(completely rational) net of factors ffom
given nets of factors and the corresponding Reshetikhin-Turaev invariant. This is based
on Xu’s work [25].

Consider anet of subfactors $\{A(I)\subset B(I)\}_{I}$ again, but now with infinite Jones index.
We can then consider a net of factors $\{A(I)’\cap B(I)\}_{I}$ . We assume that the larger net
$\{B(I)\}_{I}$ is completely rational and the index of asubfactor $A(I)\vee(A(I)’\cap B(I))\subset B(I)$

is finite. Then the net $\{A(I)’\cap B(I)\}_{I}$ is also completely rational by the above-mentioned
result of Longo. We call this net the coset net of $\{A(I)\subset B(I)\}_{I}$ . In ausual setting, we
know about the representation theories of the two nets $\{A(I)\}_{I}$ and $\{B(I)\}_{I}$ and want to
find the representation theory of the coset net $\{A(I)\subset B(I)\}_{I}$ .

One example in [25] is given as follows. Let $\{A(I)\}_{I}$ , $\{B(I)\}_{I}$ be the nets corresponding
to $SU(N)_{m+n}$ , $SU(N)_{m}\cross SU(N)_{n}$ . Then the diagonal embedding of $SU(N)\subset SU(N)\cross$

$SU(N)$ produces anet of subfactors $\{A(I)\subset B(I)\}_{I}$ . Now aresult in [24] says that
we have a(not necessarily irreducible) DHR endomorphism of the coset net labeled with
$(\pi, \sigma)$ , for irreducible DHR endomorphisms $\sigma$, $\pi$ of the nets $\{A(I)\}_{I}$ , $\{B(I)\}_{I}$ , respectively.
Now the irreducible DHR endomorphisms are labeled with $\mathit{1}=0,1$ , $\ldots$ , $m+n$ and those
of $\{A(I)\}_{I}$ are with $(j, k)$ with $j=0,1$ , $\ldots$ , $m$ and $k=0,1$ , $\ldots$ , $n$ . For simplicity, consider
$SU(2)_{m-1}\subset SU(2)_{m-2}\cross SU(2)_{1}$ . Then $j=0,1$ , $\ldots$ , $m-1$ , $k=0,1$ , $l=0,1$ , $\ldots$ , $m-1$ . So
the above pair $(\pi, \sigma)$ is represented with atriple $(j, k, l)$ with acondition $j+k-l\in 2\mathrm{Z}$ .
Since $k=0,1$ is uniquely determined by the pair $(j, l)$ and the condition $j+k-l\in$
$2\mathrm{Z}$ , we may and do denote the triple $(j, k, l)$ by apair $(j, l)$ . It turns out each such
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DHR endomorphism of the coset is irreducible and all the irreducible endomorphisms

of the coset arise in this way. Furthermore, the pair $(j, l)$ and $(j’, l’)$ represents unitarily
equivalent endomorphisms if and only if $(j, l)=(j’, l’)$ or $j+j’=m-2$ , $l+l’=m-1$ . For
example, for $m=4$ , we have six irreducible, mutually inequivalent DHR endomorphisms.
Actually, one can show that this modular tensor category corresponds to the Virasoro
algebra at central charge $1-6/m(m+1)$ . (See [11] on this matter related to the Virasoro
algebra.)

In general, for acoset net $\{A(I)’\cap B(I)\}_{I}$ , we have a(possibly reducible) end0-
morphism labeled with apair $(\pi, \sigma)$ where $\sigma$ , $\pi$ are irreducible DHR endomorphisms of

{A $(\mathrm{I})$ } $\mathrm{i}$ , $\{B(I)\}_{I}$ , respectively.
Now recall aReshetikhin-Turaev invariant arising from amodular category. Roughly

speaking, we first realize a3-manifold with aDehn surgery along alink in $S^{3}$ and consider
aweighted sum of colored link invariants where each “color” is given by an irreducible
object of the tensor category. One can show that this complex number is independent
of the link we choose and indeed an invariant of amanifold. (See [20] for details of the
definition.) Xu [25] first considered acolored link invariant arising from acoset model.

Suppose alink $L$ has $k$ connected components. Then he has shown

$L((\pi_{1}, \sigma_{1})$ , $(\pi_{2}, \sigma_{2})$ , $\ldots$ , $(\pi_{k}, \sigma_{k}))=L(\pi_{1}, \pi_{2}, \ldots, \pi_{k})\overline{L(\sigma_{1},\sigma_{2},\ldots,\sigma_{k})}$,

where $\pi_{j}$ , $\sigma_{j}$ denote irreducible DHR endomorphisms of the net $\{A(I)\}_{I}$ , $\{B(I)\}_{I}$ , respec-
tively, and $(\pi_{j}, \sigma_{j})$ denote anot necessarily irreducible DHR endomorphism of the coset
net $\{A(I)’\cap B(I)\}_{I}$ . (The symbol $L(\pi_{1}, \pi_{2}, \ldots, \pi_{k})$ denotes acolored link invariant arising
from the net $\{A(I)\}_{I}$ where the $k$ components are colored with $\pi_{1}$ , $\pi_{2}$ , $\ldots$ , $\pi_{k}$ , respectively.
The other two colored link invariants are interpreted similarly.) Then, one might expect
asimple relation among the three Reshetikhin-Turaev invariants arising from these three
nets, such as $\tau_{A’\cap B}(M)=\tau_{B}(M)\overline{\tau_{A}(M)}$ , where $\tau_{A}(M)$ is the Reshetikhin-Turaev invari-
ant of aclosed oriented 3-manifold $M$ arising from the net $\{A(I)\}_{I}$ , and the other two
symbols have similar meanings. Xu [25] worked out this problem, and found that the
correct relation is

$\tau_{A’\cap B}(M)c(M)=\tau_{B}(M)\overline{\tau_{A}(M)}$ ,

where the inclusion $\{A(I)\subset B(I)\}_{I}$ is given by $SU(N)_{m+1}\subset SU(N)_{m}\cross SU(N)_{1}$ and
$c(M)$ is arather simple invariant expressed in terms of the linking matrix of alink repre-
senting M. (This $c(M)$ is given explicitly in [25], but we omit the expression.) Further-
more, using Kirby-Melvin [13], Xu showed that we have an example of a3-manifold $M$

for which $\tau_{B}(M)\overline{\tau_{A}(M)}=0$ , $\tau_{A’\cap B}(M)\neq 0$ , and $c(M)=0$ . Thus, the invariant $\tau_{A’\cap B}(M)$

arising from the coset has more information than $\tau_{B}(M)\overline{\tau_{A}(M)}$ .
As amore explicit example, consider the nets of subfactors $\{A(I)\subset B(I)\}_{I}$ arising

from the inclusion $SU(2)_{4}\subset SU(2)_{2}\cross SU(2)_{2}$ . Then we have DHR endomorphisms
labeled with triples $(j, k, l)$ with $l=0,1$ , $\ldots$ , 4, $j=0,1,2$ , $k=0,1,2$ and $j+k-l\in 2\mathrm{Z}$ .
We have 23 such triples. Then we have identification of irreducible DHR endomorphisms
given by $(j, k, l)\cong(2-j, 2-k, 4-l)$ except for the case of (1, 1, 2) which gives areducibl$\mathrm{e}$
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DHR endomorphism and decomposes into asum of two irreducible DHR endomorphisms.
That is, we have amodular tensor category having 13 irreducible objects. We do not
know exact relations between $\tau_{A’\cap B}(M)$ and $\tau_{B}(M)\overline{\tau_{A}(M)}$ . We even do not know whether
$\tau_{A’\cap B}(M)$ is abetter invariant than $\tau_{B}(M)\overline{\tau_{A}(M)}$ or not.

Finally, we briefly mention the orbifold net. Let $\{A(I)\}_{I}$ be acompletely rational net
of factors and $G$ afinite group of automorphisms acting on this net in an appropriate
sense. Set $B(I)$ be the fixed point subalgebra of $A(I)$ with this action. Then the net
$\{B(I)\}_{I}$ is also completely rational and called the orbifold net of $\{A(I)\}_{I}$ . Xu [26]has
studied some general properties of the orbifold nets and several interesting examples. We
do not know about relations between $\tau_{A}(M)$ and $\tau_{B}(M)$ in this setting and would like to
obtain such arelation.
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