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Abstract We study the relations of knots and links contained in aspatial graph.

This is an survey article on the results about knots and links contained in aspatial
graph. We do not intend to cover all results in this topic. We only treat some of them
here.

The set of knots and links contained in aspatial graph is anaive invariant of spatial
graph. However it is of course not acomplete invariant in general. For example Ki-
noshita’s theta curve in Fig. 1is not trivial but contains only trivial knots as the trivial
theta curve. See for other such examples [5], [20] and [15].

Fig. 1
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Anyway we are interested in the set of knots and links contained in aspatial graph. In

[6] it is shown that any given $n(n-1)/2$ knot types are realized by an embedding of $\theta_{n}$ at

once. Here $\theta_{n}$ denotes the graph on two vertices and $n$ edges joining them. For example,

suppose that trefoil knot, figure eight knot and $(2, 5)$ -torus knot are given. Then there is

an embedding of $0=\theta_{3}$ that contains all of them. See Fig. 2for such an example.

Fig. 2

Now we give aprecise definition. Let $G$ be afinite graph. We consider $G$ as a

topological space as well as acombinatorial object. Let $\Gamma$ be aset of subgraphs of $G$ .

Suppose that for each $H\in\Gamma$ , an embedding $\phi_{H}$ : $Harrow R^{3}$ is given. Then we say that

the set of embeddings $\{\phi_{H}|H\in\Gamma\}$ is realizable if there is an embedding $\varphi$ : $Garrow R^{3}$ such

that the restriction map $\varphi|_{H}$ is ambient isotopic to $\phi_{H}$ for each $H\in\Gamma$ . The fundamental

problem is whether or not given $\{\phi_{H}|H\in\Gamma\}$ is realizable.

Let $f$ : $Garrow R^{3}$ be an embedding. Then the Wu invariant $\mathcal{L}(f)$ of $f$ is an element

of an abelian group $L(G)$ associated to $G$ . See [16] for their definitions. Let $H$ be a

subgraph of $G$ . Then there is anatural homomorphism $h_{H}$ : $L(G)arrow H$ . Let $I_{G}$ be a

subset of $L(G)$ that is defined by $I_{G}=$ { $\mathcal{L}(f)|f$ : $Garrow R^{3}$ is an embedding}. Then the

following is known in [17] as anecessary condition of realizability.

Theorem 1. Suppose that $\{\phi_{H}|H\in\Gamma\}$ is realizable. Then there is an element $x\in I_{G}$

such that $h_{H}(x)=\mathcal{L}(\phi_{H})$ for each $H\in\Gamma$ .

From now on we only consider the case that $\Gamma=\Gamma(G)$ is the set of all cycles of $G$ .
Here acycle is asubgraph of $G$ that is homeomorphic to acircle. Acycle on $n$ vertices

is called an $n$-cycle. Let $\Gamma_{n}(G)$ be the set of all $n$-cycles of $G$ . We say that agraph
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$G$ is adaptable if any set of embeddings $\{\phi_{H}|H\in\Gamma(G)\}$ is realizable. Then the result
stated above is rephrased that $\theta_{n}$ is adaptable. In [21] it is shown that $K_{4}$ is adaptable.
Here $K_{n}$ denotes the complete graph on $n$ vertices. Moreover in [22] it is shown that all
proper subgraphs of $K_{5}$ are adaptable. In [22] Yasuhara establised amethod of realization
of knots and links in aspatial graph based on band description of knots. Now we are
interested in whether or not $K_{5}$ is adaptable. The answer is ‘No’. In fact we have the
following theorem.

Theorem 2. A set of embeddings $\{\phi_{H}|H\in\Gamma(K_{5})\}$ is realizable if and only if there is

an integer $m$ such that

$\sum_{H\in\Gamma_{5}(K_{5})}a_{2}(\phi_{H}(H))-\sum_{H\in\Gamma_{4}(K_{5})}a_{2}(\phi_{H}(H))=\frac{m(m-1)}{2}$.

We note that the ‘only if part of Theorem 2is shown in [8] and the ‘if’ part of
Theorem 2is shown in [19]. We refer the reader to [19], [12], [13] and [11] for related
results.

Now we are interested in the existence of nontrivial knots and links in alarge complete
graph. The following theorem in [1] is amilestone in this area.

Theorem 3. (1) For any embedding $f$ : $K_{6}arrow R^{3}$ the sum of the linking numbers of the
links in $f(K_{6})$ is an odd number.

(2) For any embedding $f$ : $K_{7}arrow R^{3}$ the sum of the second coefficients of the Conway
polynomials of the knots of 7-cycles in $f(K_{7})$ is an odd number.

In [9] it is shown that for any knot $J$ there is anatural number $n$ such that every
linear embedding of $K_{n}$ into $R^{3}$ contains acycle that is ambient isotopic to $J$ . See also
[7] [10] etc. for related results.

In [3] it is shown that every embedding of $K_{10}$ into $R^{3}$ contains a3-component non-
splittable link. In [4] it is shown that for any natural number $n$ there is agraph $G$ such
that every embedding of $G$ into $R^{3}$ contains an $n$-component nonsplittable link
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In [2] it is shown that for any natural number $n$ there is anatural number $m$ such that

every embedding of $K_{m}$ contains a2-component link whose absolute value of the linking

number is greater than or equal to $n$ . It is also shown in [2] that for any natural number

$n$ there is anatural number $m$ such that every embedding of $K_{m}$ contains aknot whose

absolute value of the second coefficient of the Conway polynomial is greater than or equal

to $n$ . In the first result $m$ is actually given by apolynomial of $n$ whose degree is 2. In

the second result $m$ is actually given by apolynomial of $n$ whose degree is 1. Recently

the author and Shirai showed that in the first result $m$ can be given by apolynomial of

$n$ whose degree is 1, and in the second result $m$ can be given by apolynomial of $n$ whose

degree is 1/2. See [14] for mor details.

Let $\sigma_{2n+3}^{n}$ be the $n$-skeketon of a $(2n+3)$-simplex. In [18] it is shown that for any

embedding of $\sigma_{2n+3}^{n}$ into the $(2n+1)$-sphere the sum of the linking numbers of the 2-
component $n$-links contained in the embedding is an odd number. The case $n=1$ is just

Theorem 3(1). Thus this result is ahigher dimensional generalization of Theorem 3(1).
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