<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>回帰モデルにおける比推定量の分布の近似について (Statistical Experiments and Clinical Trials)</td>
</tr>
<tr>
<td>著者</td>
<td>河合 伸一</td>
</tr>
<tr>
<td>集合</td>
<td>数理解析研究所講究録</td>
</tr>
<tr>
<td>発行年</td>
<td>2002-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42238</td>
</tr>
<tr>
<td>版本</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>読売大学</td>
</tr>
</tbody>
</table>
回帰モデルにおける比推定量の分布の近似について

河合伸一（独立行政法人 防災科学技術研究所）
Shinichi Kawai, National Research Institute
for Earth Science and Disaster Prevention

1. はじめに

線形回帰モデル $Y = \alpha + \beta X + U$ において，比 $\rho = E(Y)/E(X)$ を推定する問題は多くの人により研究されてきた。例えば、標本を無作為にいくつかのグループに分割するという Quenoulli (1956) によるジャックナイフ法を用いた ρ の推定については Durbin (1959)，Rao (1965)，Rao and Webster (1966)，Gray and Schucany (1972)，Rao (1988)，Akahira and Kawai (1990)，Kawai and Akahira (1994) などによって論じられた。この中では，最適な分割数や，ジャックナイフ推定量の最適性，ジャックナイフ推定量と他の ρ の推定量の比較などが行われた。

ここでは，線形回帰モデルにおける ρ の比推定量の確率分布の高次近似を考える。特に，標本数が n のときに，Edgeworth 展開を用いて，標本平均をもとに作る通常の比推定量の分布の近似を $o(1/n)$ の次数まで行う。例として，X にガンマ分布，カイ二乗分布及び対数正規分布を仮定した場合に，この高次近似を正規近似及びモンテカルロシミュレーションによる経験分布関数と数値的に比較する。また，Cornish-Fisher 展開によるパーセント点の近似についても考える。

2. 比推定量の分布の高次近似

$(X_1, Y_1), \ldots, (X_n, Y_n)$ を同じ確率分布に従う大きさ n の無作為標本とする。ただし，$P \{ X_i > 0 \} = 1 (i = 1, \ldots, n)$ である。いま，比 $\rho = E(Y_i)/E(X_i)$ を推定する問題を考える。X_i と $Y_i (i = 1, \ldots, n)$ の間に次のような線形回帰モデルを仮定する。

$$Y_i = \alpha + \beta X_i + U_i \ (i = 1, \ldots, n).$$

ここで，$X_1, \ldots, X_n, U_1, \ldots, U_n$ は互いに独立であるとする。また，$k_0 := E(X_i) \neq 0$, $k_1 := V(X_i)$, $k_2 := E(X_i^3)$, $k_3 := E(X_i^4)$, $E(U_i) = 0$, $\delta := V(U_i)$, $\eta := E(U_i^3)$, $\gamma := E(U_i^4)$ とする。ここで，$\delta = O(1)$ である。さらに，$ar{X} = \sum_{i=1}^n X_i/n$, $\bar{Y} = \sum_{i=1}^n Y_i/n$, $\bar{U} = \sum_{i=1}^n U_i/n$ とする。比 ρ の推定量として一般によく考えられるのは比推定量

$$R := \frac{\bar{Y}}{\bar{X}} = \beta + \frac{\alpha + \bar{U}}{\bar{X}}$$
ある。もし, $P\{ X \leq 0 \} = 0$ であれば, $\sqrt{n} (R - \rho)$ の分布関数 (c.d.f.) は次のように与えられる。

\begin{equation}
F_R(r) := P\{ \sqrt{n} (R - \rho) \leq r \} = P\left\{ \tilde{U} - \left(\frac{\alpha}{k_0} + \frac{r}{\sqrt{n}} \right) \tilde{X} \leq -\alpha \right\}.
\end{equation}

いま,

$$W := \tilde{U} - \left(\frac{\alpha}{k_0} + \frac{r}{\sqrt{n}} \right) \tilde{X}$$

とすると,

\begin{equation}
\mu_W := E(W) = -\alpha - \frac{1}{\sqrt{n}} (k_0 r),
\end{equation}

\begin{equation}
\sigma_W^2 := V(W) = \frac{1}{n} A + \frac{1}{n \sqrt{n}} B + \frac{1}{n^2} C
\end{equation}

となる。ここで,

$$A := \delta + \frac{k_1}{k_0^2} \alpha^2, \quad B := 2 \frac{k_1}{k_0} r \alpha, \quad C := k_1 r^2$$

である。W を基準化したものを Z すると,

$$Z := \frac{W - \mu_W}{\sigma_W}$$

であり, $E(Z) = 0, V(Z) = 1$ である。Z の 3 次と 4 次のキュミュラントをそれぞれ κ_3 と κ_4 とする。Edgeworth 展開を用いると (2.1) より,

\begin{equation}
F_R(r) = P\{ Z \leq z \}
= \Phi(z) - \phi(z) \left\{ \frac{\kappa_3}{6} (z^2 - 1) + \frac{\kappa_4}{24} (z^3 - 3z) + \frac{\kappa_3^2}{72} (z^5 - 10z^3 + 15z) \right\}
+ o\left(\frac{1}{n} \right)
\end{equation}

である。ここで,

$$z = -\frac{\alpha - \mu_W}{\sigma_W}$$

であり, $\kappa_3 = E \left[(Z - E(Z))^3 \right] = E(Z^3)$, \hspace{1cm} \(\kappa_4 = E \left[(Z - E(Z))^4 \right] - 3 \{ V(Z) \}^2 = E(Z^4) - 3 \)

であり, $\Phi(z)$ と $\phi(z)$ はそれぞれ標準正規分布の分布関数と密度関数をあらわす。このとき,

\begin{equation}
E(Z^3) = E \left(\frac{W - \mu_W}{\sigma_W} \right)^3 = \sigma_W^{-3} E(W - \mu_W)^3,
\end{equation}

\begin{equation}
E(Z^4) = E \left(\frac{W - \mu_W}{\sigma_W} \right)^4 = \sigma_W^{-4} E(W - \mu_W)^4
\end{equation}
である。Taylor 展開を用いて (2.3) より、

(2.9) \[\sigma_{W}^{-3} = \frac{n \sqrt{n}}{A^{3/2}} \left\{ 1 + \frac{1}{\sqrt{n}} \left(-\frac{3B}{2A} \right) + o\left(\frac{1}{\sqrt{n}} \right) \right\}, \]

(2.10) \[\sigma_{W}^{-4} = \frac{n^2}{A^2} \left\{ 1 + \frac{1}{\sqrt{n}} \left(-\frac{2B}{A} \right) + \frac{1}{n} \left(-\frac{2C}{A} + 3\frac{B^2}{A^2} \right) + o\left(\frac{1}{n} \right) \right\}, \]

である。また、

(2.11) \[E(W - \mu_{W})^3 = E(W^3) - 3E(W^2)\mu_{W} + 2\mu_{W}^3, \]

(2.12) \[E(W - \mu_{W})^4 = E(W^4) - 4E(W^3)\mu_{W} + 6E(W^2)\mu_{W}^2 - 3\mu_{W}^4 \]

の関係より、

\[c := \frac{\alpha}{k_0} + \frac{r}{\sqrt{n}}, \]

\[E_{ij} := E(\overline{U}^i \overline{X}^j) = E(\overline{U}^i) E(\overline{X}^j) \quad (i, j = 0, 1, \ldots, 4 \text{ and } 2 \leq i + j \leq 4) \]

とすると、\(W = \overline{U} - c\overline{X} \) であり、次の関係が成り立つ。

(2.13) \[E(W^2) = E_{20} - 2cE_{11} + c^2E_{02}, \]

(2.14) \[E(W^3) = E_{30} - 3cE_{21} + 3c^2E_{12} - c^3E_{03}, \]

(2.15) \[E(W^4) = E_{40} - 4cE_{31} + 6c^2E_{22} - 4c^3E_{13} + c^4E_{04}. \]

ここで,

\[E_{20} = E(\overline{U}^2) = \frac{1}{n}\delta, \quad E_{02} = E(\overline{X}^2) = k_0^2 + \frac{1}{n}k_1, \]

\[E_{30} = E(\overline{U}^3) = \frac{1}{n^2}\eta, \quad E_{21} = E(\overline{U}^2 \overline{X}) = \frac{1}{n}(k_0\delta), \]

\[E_{03} = E(\overline{X}^3) = k_0^3 + \frac{1}{n}(3k_0k_1) + \frac{1}{n^2}(k_2 - 3k_0k_1 - k_0^3), \]

\[E_{40} = E(\overline{U}^4) = \frac{1}{n^2}(3\delta^2) + \frac{1}{n^3}(-3\delta^2 + \gamma), \]

\[E_{31} = E(\overline{U}^3 \overline{X}) = \frac{1}{n^2}(k_0\eta), \quad E_{22} = E(\overline{U}^2 \overline{X}^2) = \frac{1}{n}(k_0^2\delta) + \frac{1}{n^2}(k_1\delta), \]

\[E_{04} = E(\overline{X}^4) = k_0^4 + \frac{1}{n}(6k_0^2k_1) + \frac{1}{n^2}(-4k_0^4 - 12k_0^2k_1 + 4k_0k_2 + 3k_1^2) \]

\[+ \frac{1}{n^3}(3k_0^4 + 6k_0^2k_1 - 3k_1^2 - 4k_0k_2 + k_3), \]

\[E_{1j} = E(\overline{U} \overline{X}^j) = 0 \quad (j = 1, 2, 3) \] である。これらの \(E_{ij} \) の値を (2.13) - (2.15) に代入して、

(2.16) \[E(W^2) = \alpha^2 + \frac{1}{\sqrt{n}}(2k_0r\alpha) + \frac{1}{n} \left(\delta + \frac{k_1}{k_0^2} \alpha^2 + k_0^2r^2 \right) \]

\[+ \frac{1}{n\sqrt{n}} \left(2\frac{k_1}{k_0}r\alpha \right) + \frac{1}{n^2}(k_1r^2), \]
\(E(W^3) = -\alpha^3 + \frac{1}{\sqrt{n}} (-3k_0r\alpha^2) \)
\[+ \frac{1}{n} \left(-3\alpha \delta - \frac{3k_1}{k_0^2} \alpha^3 - 3k_0^2r^2\alpha \right) \]
\[+ \frac{1}{n\sqrt{n}} \left(-3k_0r\delta - \frac{9k_1}{k_0} \alpha^2 - k_0^3r^3 \right) \]
\[+ \frac{1}{n^2} \left\{ \eta \right. - \left(\frac{k_2}{k_0^3} - \frac{3k_1}{k_0^2} - 1 \right) \alpha^3 - 9k_1r^2\alpha \right\} \]
\[+ \frac{1}{n^2\sqrt{n}} \left\{ -3 \left(\frac{k_2}{k_0^2} - \frac{3k_1}{k_0} - k_0 \right) r\alpha^2 - 3k_0k_1r^3 \right\} \]
\[+ \frac{1}{n^3} \left\{ -3 \left(\frac{k_2}{k_0} - 3k_1 - k_0^2 \right) r^2\alpha \right\} \]
\[+ o\left(\frac{1}{n^3} \right) \]

\(E(W^4) = \alpha^4 + \frac{1}{\sqrt{n}} (4k_0r\alpha^3) \)
\[+ \frac{1}{n} \left(6\alpha^2\delta + 6k_0^2r^2\alpha^2 + 6\frac{k_1}{k_0^2} \alpha^4 \right) \]
\[+ \frac{1}{n\sqrt{n}} \left(12k_0r\alpha\delta + 4k_0^3r^3\alpha + 24k_0^2r^3\alpha \right) \]
\[+ \frac{1}{n^2} c_1 + \frac{1}{n^2\sqrt{n}} c_2 + \frac{1}{n^3} c_3 \]
\[+ o\left(\frac{1}{n^3} \right) \]

となる。ここで、

\[c_1 := -4\alpha^4 + 3\delta^2 - 4\alpha\eta + 6k_0^2r^2\delta + k_0^4r^4 + 36k_1r^2\alpha^2 \]
\[- 12\frac{k_1}{k_0^2} \alpha^4 + 6\frac{k_1}{k_0^2} \alpha^2 \delta + 4\frac{k_2}{k_0^3} \alpha^4 + 3\frac{k_1^2}{k_0^4} \alpha^4, \]

\[c_2 := -16k_0r\alpha^3 - 4k_0r\eta + 24k_0k_1r^3\alpha \]
\[- 48\frac{k_1^2}{k_0^3} \alpha^3 + 12\frac{k_1}{k_0^2} r\alpha\delta + 16\frac{k_2}{k_0^3} r\alpha^3 + 12\frac{k_1^2}{k_0^3} r^3\alpha, \]

\[c_3 := 3\alpha^4 + \gamma - 3\delta^2 - 24k_0^2r^2\alpha^2 - 72k_1r^2\alpha^2 + 6k_1^2r^2\delta + 6k_0^2k_1r^4 \]
\[+ 24\frac{k_2}{k_0} r^2\alpha^2 + 6\frac{k_1}{k_0^2} \alpha^4 + 18\frac{k_2}{k_0^3} r^2\alpha^2 - 4\frac{k_2}{k_0^3} \alpha^4 - 3\frac{k_1^2}{k_0^4} \alpha^4 + \frac{k_3}{k_0^4} \alpha^4, \]

(2.2) と (2.16) - (2.18) を (2.11) と (2.12) に代入すると、

\(E(W - \mu w)^3 = \frac{1}{n^2} D + \frac{1}{n^2\sqrt{n}} E + o\left(\frac{1}{n^2\sqrt{n}} \right) \),
(2.20) \[E(W - \mu_W)^4 = \frac{1}{n^2} (3A^2) + \frac{1}{n^2\sqrt{n}} (6AB) + \frac{1}{n^3} F + o\left(\frac{1}{n^3}\right) \]
となる。ここで,
\[D := \eta + \left(1 - \frac{k_2}{k_0^3} + 3 \frac{k_1}{k_0^2}\right) \alpha^3, \]
\[E := 3 \left(k_0 + 3 \frac{k_1}{k_0} - \frac{k_2}{k_0^2} \right) r \alpha^2, \]
\[F := 3 \alpha^4 + \gamma - 3 \delta^2 + 6 k_1 r^2 \delta \]
\[+ 6 \frac{k_1}{k_0^2} \alpha^4 - 3 \frac{k_1^2}{k_0^4} \alpha^4 + 18 \frac{k_1^2}{k_0^2} r^2 \alpha^2 - 4 \frac{k_2}{k_0^3} \alpha^4 + \frac{k_3}{k_0^4} \alpha^4 \]
である。\((2.9), (2.10), (2.19), (2.20)\)を\((2.7)\)と\((2.8)\)に代入すると, \((2.5)\)と\((2.6)\)より,
(2.21) \[\kappa_3 = \frac{1}{A^{3/2}} \left\{ \frac{1}{\sqrt{n}} D + \frac{1}{n} \left(E - \frac{3}{2} \frac{BD}{A} \right) \right\} + o\left(\frac{1}{n}\right), \]
(2.22) \[\kappa_4 = \frac{1}{A^2} \left(F - 3B^2 - 6AC \right) + o\left(\frac{1}{n}\right) \]
となる。また, \((2.21)\)より,
(2.23) \[\kappa_3^2 = \frac{1}{n} \left(\frac{D^2}{A^3} + o\left(\frac{1}{n}\right) \right) \]
である。したがって, \(F_R(r)\)の高次近似は上記の \(A, B, C, D, E, F\) を求めることによって, \((2.21), (2.22), (2.23)\)を求め, これを\((2.4)\)に代入することによって得られる。
一方, Cornish-Fisher 展開を用いて, 比推定量のパーセント点の高次近似を考えることもできる。いま, \(r\)の関数であるものは, \(z(r), \mu_W(r), \sigma_W(r), B(r), C(r), E(r), F(r), \kappa_3(r), \kappa_4(r)\)のように明記して, 上記と同じ記号を用いることにする。
\(r_p\)を \(\sqrt{n} (R - \rho)\)の上側 \(100p\)パーセント点とする。すなわち,
\[F_R(r_p) = P\{ \sqrt{n} (R - \rho) \leq r_p \} = 1 - p \]
である。このとき, \(F_R(r_p) = P\{ Z \leq z(r_p) \}\)である。ここで,
(2.24) \[z(r_p) = \frac{-\alpha - \mu_W(r_p)}{\sigma_W(r_p)} = \frac{k_0 r_p}{\sqrt{A + \frac{1}{\sqrt{n}} B(r_p) + \frac{1}{n} C(r_p)}} \]
である。Cornish-Fisher 展開を用いて,
(2.25) \[z(r_p) = u_p + \frac{\kappa_3(r_p)}{6} (u_p^2 - 1) + \frac{\kappa_4(r_p)}{24} (u_p^3 - 3u_p) \]
\[+ \frac{\kappa_3^2}{36} (-2u_p^3 + 5u_p) + o\left(\frac{1}{n}\right) \]
である。ここで,
(2.26) \[\kappa_3(r_p) = \frac{1}{A^{3/2}} \left\{ \frac{1}{\sqrt{n}} D + \frac{1}{n} \left(E(r_p) - \frac{3}{2} \frac{B(r_p)D}{A} \right) \right\} + o\left(\frac{1}{n}\right), \]
\[
\kappa_4(r_p) = \frac{1}{n} \frac{1}{A^2} \left(F(r_p) - 3B(r_p)^2 - 6AC(r_p) \right) + o\left(\frac{1}{n} \right)
\]
である。また, \(u_p \) は標準正規分布の上側 100p パーセント点, すなわち, \(\Phi(u_p) = 1 - p \) である。したがって, \(r_p \) は (2.25) に (2.24),(2.26), (2.27) を代入した式を解くことによっ
tて求めることができる。 (2.25) を数値的に解くためには, Newton 法のような反復法が適
用される。

3. 適用例

近似式の精度を確認するために, いくつかの例を示す。\(\sqrt{n}(R - \rho) \) の真の確率分布関
数である \(F_R(r) \) を求めるのは容易ではないので, パラメータに適当な値を設定して, 経
験分布関数をモンテカルロシミュレーションで求める。これを真の確率分布関数とみな
し, \(F_R(r) \) の近似式と比較を行う。\(\sqrt{n}(R - \rho) \) の経験分布関数を \(\hat{F}_R(r) \) とすると, \(\hat{F}_R(r) \)
は次のように定義される。

\[
\hat{F}_R(r) := \frac{\#\{ \sqrt{n}(R - \rho) \leq r \}}{b}
\]

ここで \(b \) はシミュレーションを行う回数, \(\#\{ \sqrt{n}(R - \rho) \leq r \} \) はシミュレーションで得
られる \(\sqrt{n}(R - \rho) \) の値が \(r \) を越えない回数をそれぞれ表す。 \(F_R(r) \) の近似式としては,
Edgeworth 展開によるものと, 正規分布によるもの (Edgeworth 展開の第 1 項のみ使
用することに相当) の 2 つを考える。

以下の例では, \(U_1, \ldots, U_n \) が独立に平均 0, 分散 \(\sigma^2 \) の正規分布に従っていると仮定す
る。このとき, \(E(U_i) = 0 \) (\(i = 1, \ldots, n \)), \(\delta = \sigma^2, \eta = 0, \gamma = 3\sigma^4 \) である。いまま, \(\alpha = 2, \beta = 1, \sigma = 1 \), そして, シミュレーションの繰り返し回数 \(b \) を 10000 にする。

例 3.1 (Gamma case). \(X_1, \ldots, X_n \) は独立にガンマ分布に従うとする。密度関数は,
\(x > 0 \) のとき,

\[
\frac{1}{\Gamma(h)} e^{-x} x^{h-1},
\]

その他のときは 0 である。また, \(h > 0 \) である。このとき, \(k_0 = k_1 = h, k_2 = (h +
2)(h + 1), k_3 = h^4 + 6h^3 + 11h^2 + 6h \) である。

Figure 1 は \(n = 10 \) のとき, \(h = 0.5, 1, 1.5, 2 \) のそれぞれの場合の経験分布関数 \(\hat{F}_R(r) \)
と \(F_R(r) \) の近似の比較を表している。Figure 2 は Figure 1 で近似の度合いが一番悪い
\(h = 0.5 \) の場合について, \(n = 10, 15, 20, 25 \) とした場合の近似の比較を表している。

この例でパーセント点の高次近似の適用を行う。確率の計算の場合と同様に, \(F_R(r) \)
のパーセント点の真の値を計算するのは難しいので, 経験分布関数 \(\hat{F}_R(r) \) の上側 100p
パーセント点である \(b(1 - p) + 1 \) 番目の順序統計量: \(r_p = r_{b(1-p)+1} \) を \(F_R(r) \) の真のパ
ーセント点とみなす。

いま, \(\hat{F}_R(r) \) の上側 5 パーセント点 \(r_{(0.05)} \) と \(F_R(r) \) の上側 5 パーセント点 \(r_{0.05} \) の近
似の比較を行う。近似としては, Cornish-Fisher 展開 (2.25) によるものと, 正規分布に
よるものの 2 つを考える。正規分布による近似では \(z(r_p) = u_p \) の関係を満たす \(r_p \) を求
Table 1. X にガンマ分布を仮定した場合に $n = 10, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000$ としたときの $h = 1(0.5)5$ における $F_R(r)$ の上側 5パーセント点 $r_{0.05}(9501)$ と $r_{0.05}$ の近似の比較。

<table>
<thead>
<tr>
<th>h</th>
<th>$r_{0.05}(9501)$</th>
<th>Cornish-Fisher Approximation of $r_{0.05}$</th>
<th>Error from $r_{0.05}(9501)$</th>
<th>$r_{0.05}$ Approximation</th>
<th>Error from $r_{0.05}(9501)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.668303</td>
<td>5.60528</td>
<td>-0.063023</td>
<td>7.24965</td>
<td>1.581347</td>
</tr>
<tr>
<td>1.5</td>
<td>3.008991</td>
<td>2.93707</td>
<td>-0.071921</td>
<td>3.42589</td>
<td>0.416899</td>
</tr>
<tr>
<td>2</td>
<td>1.920881</td>
<td>1.89113</td>
<td>-0.029751</td>
<td>2.10446</td>
<td>0.183579</td>
</tr>
<tr>
<td>2.5</td>
<td>1.349946</td>
<td>1.35846</td>
<td>0.008514</td>
<td>1.47162</td>
<td>0.121674</td>
</tr>
<tr>
<td>3</td>
<td>1.030939</td>
<td>1.04394</td>
<td>0.013001</td>
<td>1.11164</td>
<td>0.080601</td>
</tr>
<tr>
<td>3.5</td>
<td>0.8527138</td>
<td>0.839629</td>
<td>-0.0130848</td>
<td>0.883396</td>
<td>0.0306822</td>
</tr>
<tr>
<td>4</td>
<td>0.6910905</td>
<td>0.697767</td>
<td>0.006765</td>
<td>0.727797</td>
<td>0.0387055</td>
</tr>
<tr>
<td>4.5</td>
<td>0.6071027</td>
<td>0.594297</td>
<td>-0.0128057</td>
<td>0.615828</td>
<td>0.0087253</td>
</tr>
<tr>
<td>5</td>
<td>0.5126955</td>
<td>0.51592</td>
<td>0.0032245</td>
<td>0.531902</td>
<td>0.0192065</td>
</tr>
</tbody>
</table>

Table 1 に $n = 10$ のときに $h = 1(0.5)5$ とした場合のそれぞれの値を表している。

例 3.2 (χ^2-case). X_1, \ldots, X_n は独立に自由度 ν のカイ 2 乗分布に従うとする。密度関数は, $x > 0$ のとき,

$$
\frac{1}{2^{\nu/2}\Gamma(\nu/2)}e^{-x/2}x^{\nu/2-1}
$$

その他のときは 0 である。このとき, $k_0 = \nu, k_1 = 2\nu, k_2 = \nu(\nu + 2)(\nu + 4), k_3 = \nu(\nu + 2)(\nu + 4)(\nu + 6)$ である。

Figure 3 は $n = 10$ のとき, $\nu = 1, 2, 3, 4$ のそれぞれの場合の経験分布関数 $F_R(r)$ と $F_R(\nu)$ の近似の比較を表している。Figure 4 は Figure 3 で近似の度合いが一番悪い $\nu = 1$ の場合について, $n = 10, 15, 20, 25$ とした場合の近似の比較を表している。

例 3.3 (Lognormal case). X_1, \ldots, X_n は独立に対数正規分布に従うとする。密度関数は, $x > 0$ のとき,

$$
\frac{1}{x\sqrt{2\pi}\sigma_{LN}}e^{-\frac{1}{2}\left(\frac{\log x - \zeta}{\sigma_{LN}}\right)^2}
$$

その他のときは 0 である。ここで, $\sigma_{LN} > 0$ である。X の r 次のモーメントは $E(X^r) = e^{r\zeta + \frac{1}{2}r^2\sigma_{LN}}$ である。いま, $\zeta = 0$ とする。このとき, $k_0 = e^{1/2}\sigma_{LN}, k_1 = e^{2\sigma_{LN}^2} - e^{\sigma_{LN}^2}, k_2 = e^{3/2}\sigma_{LN}, k_3 = e^{3/2}\sigma_{LN}^3$ である。
Figure 1. X にガンマ分布を仮定した場合に $n = 10, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000$ としたときの $h = 0.5, 1, 1.5, 2$ における $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較。

Figure 2. X にガンマ分布を仮定した場合に $h = 0.5, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000$ としたときの $n = 10, 15, 20, 25$ における $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較。
Figure 3. X に χ^2 分布を仮定した場合に $n = 10$, $\alpha = 2$, $\beta = 1$, $\sigma^2 = 1$, $b = 10000$ としたときの $\nu = 1, 2, 3, 4$ における $F_R(r)$ と $F_R(r)$ の近似の比較.

Figure 4. X に χ^2 分布を仮定した場合に $\nu = 1$, $\alpha = 2$, $\beta = 1$, $\sigma^2 = 1$, $b = 10000$ としたときの $n = 10, 15, 20, 25$ における $F_R(r)$ と $F_R(r)$ の近似の比較.
Figure 5. X に対数正規分布を仮定した場合に $n = 20, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000$ としたときの $\sigma_{LN} = 0.5(0.1)1$ における $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較。

Figure 6. X に対数正規分布を仮定した場合に $\sigma_{LN} = 1, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000$ としたときの $n = 10(10)50, 100$ における $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較。
Figure 5 は \(n = 20 \) のとき，\(\sigma_{LN} = 0.5(0.1)1 \) のそれぞれの場合の経験分布関数 \(\hat{F}_R(r) \) と \(F_R(r) \) の近似の比較を表している。 Figure 6 は Figure 5 で近似の度合いが一番悪い \(\sigma_{LN} = 1 \) の場合について，\(n = 10(10)50, 100 \) とした場合の近似の比較を表している。

付録
付録として，近似式の導出及び適用例の計算に用いたプログラムを示す。

プログラム 1-1 から 1-3 は，式 (2.16)-(2.20) を導出自ための Mathematica による数式処理の例である。なお，このプログラムにおける \(E_{W^2}, E_{W^4}, EW3m, EW4m \) は \(E(W^2), E(W^4), E(W - \mu_W)^3, E(W - \mu_W)^4 \) にそれぞれ対応する。

プログラム 2 は，例 3.1 の \(\hat{F}_R(r) \) と \(F_R(r) \) の近似値の計算および図を描くための S-PLUS によるプログラムである。このプログラムは，経験分布関数 \(\hat{F}_R(r) \) 作成のためのモンテカルロシミュレーションによるデータの生成，\(F_R(r) \) の近似値の計算，これら二つを用いた図の作成の 3 つの部分からなり，それぞれ ratio, pratio, PlotCDF の名前がついている。pratio において，a, b, c, d, e は近似式の導出における \(A, B, C, D, E \) に対応する。また，g は \(\kappa_4 \) (2.22) 式の \(n^{-1} \) の項にある \(F - 3B^2 - 6AC \) を計算したものに対応する。

プログラム 3 は，例 3.1 の上側 5 パーセント点 \(r_{0.05} \) の近似値を計算するための Mathematica によるプログラムである。このプログラムは，関数として作成し，\(h \) を与えることによって，近似値が計算される。\(h = 1 \) を与えたときの出力も示している。このプログラムにおける，\(f_0, f_1, f_2, f_3 \) は \(z(r_p), \kappa_3(r_p), \kappa_4(r_p), \kappa_3^2 \) の値にそれぞれ対応する。
プログラム 1-1. Mathematica による数式処理の例。
プログラム 1-2. Mathematica による数式処理の例（つづき）.
プログラム1-3. Mathematicaによる数式処理の例（つづき）
プログラム 2. 例 3.1 の $\hat{F}_{R}(r)$ と $F_{R}(r)$ の近似値の計算および図を描くための S-PLUS によるプログラム。
プログラム 3. 例 3.1 の上側 5 パーセント点の近似値を計算するための Mathematica によるプログラムと実行例。

