<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>回帰モデルにおける比推定量の分布の近似について</td>
</tr>
<tr>
<td>責任者</td>
<td>河合 伸一</td>
</tr>
<tr>
<td>キャリクター</td>
<td>数理解析研究所講究録 その41:</td>
</tr>
<tr>
<td>事務所</td>
<td>数理解析研究所高階演算情報实验室</td>
</tr>
<tr>
<td>資料種類</td>
<td>部門研究記録</td>
</tr>
<tr>
<td>キュレネイ</td>
<td>京都大学</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42238</td>
</tr>
<tr>
<td>東京都</td>
<td></td>
</tr>
<tr>
<td>部門</td>
<td>部門研究記録</td>
</tr>
<tr>
<td>部門研究記録</td>
<td>京都大学</td>
</tr>
<tr>
<td>提供者</td>
<td>京都大学学術情報リポジトリ</td>
</tr>
</tbody>
</table>
回帰モデルにおける比推定量の分布の近似について

河合 伸一 (独立行政法人 防災科学技術研究所)
Shinichi Kawai, National Research Institute for Earth Science and Disaster Prevention

1. はじめに

線形回帰モデル $Y = \alpha + \beta X + U$ において、比 $\rho = E(Y)/E(X)$ を推定する問題は多くの人により研究されてきた。例えば、標本を無作為にいくつかのグループに分割するという Quenoulli (1956) によるジャックナイフ法を用いた ρ の推定については Durbin (1959), Rao (1965), Rao and Webster (1966), Gray and Schucany (1972), Rao (1988), Akahira and Kawai (1990), Kawai and Akahira (1994) などによって論じられた。この中では、最適な分割数や、ジャックナイフ推定量の最適性、ジャックナイフ推定量と他の ρ の推定量の比較などが行われた。

ここでは、線形回帰モデルにおける ρ の比推定量の確率分布の高次近似を考える。特に、標本数が n のときに、Edgeworth 展開を用いて、標本平均をもとに作る通常の比推定量の分布の近似を $o(1/n)$ の次数まで行う。例として、X にガンマ分布、サイイ乗分布及び対数正規分布を仮定した場合に、この高次近似を正規近似及びモンテカルロシミュレーションによる経験分布関数と数値的に比較する。また、Cornish-Fisher 展開によるパーセント点の近似についても考える。

2. 比推定量の分布の高次近似

$(X_1, Y_1), \cdots, (X_n, Y_n)$ を同じ確率分布に従う大きさ n の無作為標本とする。ただし、$P\{X_i > 0\} = 1 (i = 1, \ldots, n)$ である。いま、比 $\rho = E(Y_i) / E(X_i)$ を推定する問題を考える。X_i と $Y_i (i = 1, \ldots, n)$ の間に次のような線形回帰モデルを仮定する。

$$ Y_i = \alpha + \beta X_i + U_i \quad (i = 1, \ldots, n). $$

ここで、$X_1, \ldots, X_n, U_1, \ldots, U_n$ は互いに独立であるとする。また、$k_0 := E(X_i) \neq 0$, $k_1 := V(X_i), k_2 := E(X_i^2), k_3 := E(X_i^3), E(U_i) = 0, \delta := V(U_i), \eta := E(U_i^3), \gamma := E(U_i^4)$ とする。ここで、$\delta = O(1)$ である。さらに、$\bar{X} = \sum_{i=1}^{n} X_i/n$, $\bar{Y} = \sum_{i=1}^{n} Y_i/n$, $\bar{U} = \sum_{i=1}^{n} U_i/n$ とする。比 ρ の推定量として一般によく考えられるのは比推定量

$$ R := \frac{\bar{Y}}{\bar{X}} = \beta + \frac{\alpha + \bar{U}}{\bar{X}} $$
である。もし、$P\{ \bar{X} \leq 0 \} = 0$ であれば、$\sqrt{n}(R-\rho)$ の分布関数 (c.d.f.) は次のように与えられる。

$$F_R(r) := P\{ \sqrt{n}(R-\rho) \leq r \} = P\left\{ \bar{U} - \left(\frac{\alpha}{k_0} + \frac{r}{\sqrt{n}} \right) \bar{X} \leq -\alpha \right\}.$$ いまま,

$$W := \bar{U} - \left(\frac{\alpha}{k_0} + \frac{r}{\sqrt{n}} \right) \bar{X}$$ とすると,

$$F_R(r) = P \{ W \leq r \} = P \{ \bar{U} - \left(\frac{\alpha}{k_0} + \frac{r}{\sqrt{n}} \right) \bar{X} \leq -\alpha \} = P \{ Z \leq z \} = \Phi(z) - \phi(z) \left\{ \frac{\kappa_3}{3} (z^2 - 1) + \frac{\kappa_4}{24} (z^3 - 3z) + \frac{\kappa_3^2}{72} (z^5 - 10z^3 + 15z) \right\} + o(\frac{1}{n})$$

である。ここで,

$$A := \delta + \frac{k_1}{k_0^2} \alpha^2, \quad B := 2 \frac{k_1}{k_0} r \alpha, \quad C := k_1 r^2$$

である。W を基準化したものを Z とすると,

$$Z := \frac{W - \mu_W}{\sigma_W}$$

である。$E(Z) = 0, V(Z) = 1$ である。Z の 3 次と 4 次のキュムラントをそれぞれ κ_3 と κ_4 とする。Edgeworth 展開を用いると (2.1) より,

$$F_R(r) = P \{ Z \leq z \} = \Phi(z) - \phi(z) \left\{ \frac{\kappa_3}{6} (z^2 - 1) + \frac{\kappa_4}{24} (z^3 - 3z) + \frac{\kappa_3^2}{72} (z^5 - 10z^3 + 15z) \right\} + o(\frac{1}{n})$$

である。ここで,

$$z = \frac{-\alpha - \mu_W}{\sigma_W},$$

$$\kappa_3 = E \left[(Z - E(Z))^3 \right] = E(Z^3),$$

$$\kappa_4 = E \left[(Z - E(Z))^4 \right] - 3 \{ V(Z) \}^2 = E(Z^4) - 3$$

であり、$\Phi(z)$ と $\phi(z)$ はそれぞれ標準正規分布の分布関数と密度関数をあらわす。このとき,

$$E(Z^3) = E \left(\frac{W - \mu_W}{\sigma_W} \right)^3 = \sigma_W^{-3} E(W - \mu_W)^3,$$

$$E(Z^4) = E \left(\frac{W - \mu_W}{\sigma_W} \right)^4 = \sigma_W^{-4} E(W - \mu_W)^4$$
である。Taylor 展開を用いて (2.3) より、

\[
\sigma_{W}^{-3} = \frac{n\sqrt{n}}{A^{3/2}} \left\{ 1 + \frac{1}{\sqrt{n}} \left(-\frac{3}{2} \frac{B}{A} \right) + \mathcal{O} \left(\frac{1}{\sqrt{n}} \right) \right\},
\]

\[
\sigma_{W}^{-4} = \frac{n^2}{A^2} \left\{ 1 + \frac{1}{\sqrt{n}} \left(-2 \frac{B}{A} \right) + \frac{1}{n} \left(-2 \frac{C}{A} + 3 \frac{B^2}{A^2} \right) + \mathcal{O} \left(\frac{1}{n} \right) \right\}
\]

である。また、

\[
E(W - \mu_{W})^{3} = E(W^3) - 3E(W^2)\mu_{W} + 2\mu_{W}^3,
\]

\[
E(W - \mu_{W})^{4} = E(W^4) - 4E(W^3)\mu_{W} + 6E(W^2)\mu_{W}^2 - 3\mu_{W}^4
\]

の関係より、

\[
c := \frac{\alpha}{k_0} + \frac{r}{\sqrt{n}},
\]

\[
E_{ij} := E(\bar{U}^i \bar{X}^j) = E(\bar{U}^i) E(\bar{X}^j) \quad (i, j = 0, 1, \ldots, 4 \text{ and } 2 \leq i + j \leq 4)
\]

とすると、\(W = \bar{U} - c\bar{X} \) であり、次の関係が成り立つ。

\[
E(W^2) = E_{20} - 2cE_{11} + c^2E_{02},
\]

\[
E(W^3) = E_{30} - 3cE_{21} + 3c^2E_{12} - c^3E_{03},
\]

\[
E(W^4) = E_{40} - 4cE_{31} + 6c^2E_{22} - 4c^3E_{13} + c^4E_{04}.
\]

ここで、

\[
E_{20} = E(\bar{U}^2) = \frac{1}{n}\delta, \quad E_{02} = E(\bar{X}^2) = k_0^2 + \frac{1}{n}k_1,
\]

\[
E_{30} = E(\bar{U}^3) = \frac{1}{n^2}\eta, \quad E_{21} = E(\bar{U}^2 \bar{X}) = \frac{1}{n}(k_0\delta),
\]

\[
E_{03} = E(\bar{X}^3) = k_0^3 + \frac{1}{n}(3k_0k_1) + \frac{1}{n^2}(k_2 - 3k_0k_1 - k_0^3),
\]

\[
E_{40} = E(\bar{U}^4) = \frac{1}{n^2}(3\delta^2) + \frac{1}{n^3}(-3\delta^2 + \gamma),
\]

\[
E_{31} = E(\bar{U}^3 \bar{X}) = \frac{1}{n^2}(k_0\eta), \quad E_{22} = E(\bar{U}^2 \bar{X}^2) = \frac{1}{n}(k_0^2\delta) + \frac{1}{n^2}(k_1\delta),
\]

\[
E_{04} = E(\bar{X}^4) = k_0^4 + \frac{1}{n}(6k_0^2k_1) + \frac{1}{n^2}(-4k_0^4 - 12k_0^2k_1 + 4k_0k_2 + 3k_1^2)
\]

\[+
\frac{1}{n^3}(3k_0^4 + 6k_0^2k_1 - 3k_1^2 - 4k_0k_2 + k_3),
\]

\(E_{1j} = E(\bar{U} \bar{X}^j) = 0 \quad (j = 1, 2, 3)\) である。これらの \(E_{ij}\) の値を (2.13) - (2.15) に代入して、

\[
E(W^2) = \alpha^2 + \frac{1}{\sqrt{n}}(2k_0r\alpha) + \frac{1}{n} \left(\delta + \frac{k_1}{k_0^2} \alpha^2 + k_0^2r^2 \right)
\]

\[+
\frac{1}{n\sqrt{n}} \left(\frac{k_1}{k_0} r\alpha \right) + \frac{1}{n^2}(k_1r^2),
\]
(2.17) \[E(W^3) = -\alpha^3 + \frac{1}{\sqrt{n}} (-3k_0r\alpha^2) \]
\begin{align*}
&+ \frac{1}{n} \left(-3\alpha \delta - 3\frac{k_1}{k_0^2} \alpha^3 - 3k_0^2 r^2 \alpha \right) \\
&+ \frac{1}{n\sqrt{n}} \left(-3k_0 r\delta - 9\frac{k_1}{k_0} r^2 \alpha^2 - k_0^3 r^3 \right) \\
&+ \frac{1}{n^2} \left\{ \eta - \left(\frac{k_2}{k_0^3} - 3\frac{k_1}{k_0^2} - 1 \right) \alpha^3 - 9k_1 r^2 \alpha \right\} \\
&+ \frac{1}{n^2\sqrt{n}} \left\{ -3 \left(\frac{k_2}{k_0^2} - 3\frac{k_1}{k_0} - k_0 \right) r^2 \alpha^2 - 3k_0 k_1 r^3 \right\} \\
&+ \frac{1}{n^3} \left\{ -3 \left(\frac{k_2}{k_0} - 3k_1 - k_0^2 \right) r^2 \alpha \right\} \\
&+ o \left(\frac{1}{n^3} \right),
\end{align*}

(2.18) \[E(W^4) = \alpha^4 + \frac{1}{\sqrt{n}} (4k_0 r\alpha^3) \]
\begin{align*}
&+ \frac{1}{n} \left(6\alpha^2 \delta + 6k_0^2 r^2 \alpha^2 + 6\frac{k_1}{k_0^2} \alpha^4 \right) \\
&+ \frac{1}{n\sqrt{n}} \left(12k_0 r\alpha \delta + 4k_0^3 r^3 \alpha + 24\frac{k_1}{k_0^2} r\alpha^3 \right) \\
&+ \frac{1}{n^2} c_1 + \frac{1}{n^2\sqrt{n}} c_2 + \frac{1}{n^3} c_3 \\
&+ o \left(\frac{1}{n^3} \right)
\end{align*}

となる。ここで，
\begin{align*}
c_1 &:= -4\alpha^4 + 3\delta^2 - 4\alpha \eta + 6k_0^2 r^2 \delta + k_0^4 r^4 + 36k_1 r^2 \alpha^2 \\
&- 12\frac{k_1}{k_0} \alpha^4 + 6\frac{k_1}{k_0^2} \alpha^2 \delta + 4\frac{k_1}{k_0^3} \alpha^4 + 3\frac{k_1}{k_0^4} \alpha^4,
\end{align*}
\begin{align*}
c_2 &:= -16k_0 r\alpha^3 - 4k_0 r\eta + 24k_0 k_1 r^3 \alpha \\
&- 48\frac{k_1}{k_0^2} \alpha^3 + 24\frac{k_1}{k_0^3} r\alpha^3 + 12\frac{k_1}{k_0^4} \alpha^3,
\end{align*}
\begin{align*}
c_3 &:= 3\alpha^4 + \gamma - 3\delta^2 - 24k_0^2 r^2 \alpha^2 - 72k_1 r^2 \alpha^2 + 6k_1 r^2 \delta + 6k_0^2 k_1 r^4 \\
&+ 24\frac{k_2}{k_0} r^2 \alpha^2 + 6\frac{k_1}{k_0^2} \alpha^4 + 18\frac{k_1}{k_0^3} r^2 \alpha^2 - 4\frac{k_2}{k_0^3} \alpha^4 - 3\frac{k_1}{k_0^4} \alpha^4 + \frac{k_3}{k_0^4} \alpha^4.
\end{align*}

(2.2) と (2.16) - (2.18) を (2.11) と (2.12) に代入すると，

(2.19) \[E(W - \mu w)^3 = \frac{1}{n^2} D + \frac{1}{n^2\sqrt{n}} E + o \left(\frac{1}{n^2\sqrt{n}} \right), \]
(2.20) $E(W - \mu_W)^4 = \frac{1}{n^2} (3A^2) + \frac{1}{n^2 \sqrt{n}} (6AB) + \frac{1}{n^3} F + o \left(\frac{1}{n^3} \right)

となる。ここで、

\[D \equiv \eta + \left(1 - \frac{k_2}{k_0^3} + 3 \frac{k_1}{k_0^2} \right) \alpha^3, \]

\[E \equiv 3 \left(k_0 + 3 \frac{k_1}{k_0} - \frac{k_2}{k_0^2} \right) r \alpha^2, \]

\[F \equiv 3 \alpha^4 + \gamma - 3 \delta^2 + 6k_1 r^2 \delta \\
+ 6 \frac{k_1}{k_0^2} \alpha^4 - 3 \frac{k_1^2}{k_0^4} \alpha^4 + 18 \frac{k_1}{k_0^2} \alpha^2 r^2 - 4 \frac{k_2}{k_0^3} \alpha^4 + \frac{k_3}{k_0^4} \alpha^4 \]

である。 (2.9), (2.10), (2.19), (2.20) を (2.7) と (2.8) に代入すると、(2.5) と (2.6) より,

(2.21) $\kappa_3 = \frac{1}{A^{3/2}} \left\{ \frac{1}{\sqrt{n}} D + \frac{1}{n} \left(E - \frac{3}{2} \frac{B D}{A} \right) \right\} + o \left(\frac{1}{n} \right),$

(2.22) $\kappa_4 = \frac{1}{n} A^2 \left(F - 3B^2 - 6AC \right) + o \left(\frac{1}{n} \right)$

となる。また、(2.21) より,

(2.23) $\kappa_3^2 = \frac{1}{n} \frac{D^2}{A^3} + o \left(\frac{1}{n} \right)$

である。したがって、$F_R(r)$ の高次近似は上記の A, B, C, D, E, F を求めることによっ
て、(2.21), (2.22), (2.23) を求め、これを (2.4) に代入することによって得られる。

一方、Cornish-Fisher 展開を用いて、比推定量のパーセント点の高次近似を考えることもできる。いま、r の関数であるものは、$z(r), \mu_W(r), \sigma_W(r), B(r), C(r), E(r), F(r), \kappa_3(r), \kappa_4(r)$ のように明記して、上記と同じ記号を用いることにする。

r_p を $\sqrt{n} (R - \rho)$ の上側 $100p$ パーセント点とする。すなわち,

\[F_R(r_p) = P \left\{ \sqrt{n} (R - \rho) \leq r_p \right\} = 1 - p \]

である。このとき、$F_R(r_p) = P \left\{ Z \leq z(r_p) \right\}$ である。ここで,

(2.24) $z(r_p) = \frac{-\alpha - \mu_W(r_p)}{\sigma_W(r_p)} = \frac{k_0 r_p}{\sqrt{A + \frac{1}{n} B(r_p) + \frac{1}{n} C(r_p)}}$

である。Cornish-Fisher 展開を用いて,

(2.25) $z(r_p) = u_p + \frac{\kappa_3(r_p)}{6} (u_p^2 - 1) + \frac{\kappa_4(r_p)}{24} (u_p^3 - 3u_p)$
+ $\frac{\kappa_3^2}{36} (-2u_p^3 + 5u_p) + o \left(\frac{1}{n} \right)$

である。ここで,

(2.26) $\kappa_3(r_p) = \frac{1}{A^{3/2}} \left\{ \frac{1}{\sqrt{n}} D + \frac{1}{n} \left(E(r_p) - \frac{3}{2} \frac{B(r_p) D}{A} \right) \right\} + o \left(\frac{1}{n} \right),$
(2.27) \[\kappa_4(r_p) = \frac{1}{n} A^2 \left(F(r_p) - 3B(r_p)^2 - 6AC(r_p) \right) + o\left(\frac{1}{n} \right) \]

である。また, u_p は標準正規分布の上側 100p 百分点, すなわち, $\Phi(u_p) = 1 - p$ である。したがって, r_p は (2.25) に (2.24),(2.26), (2.27) を代入した式を解くことによって求めることができる。 (2.25) を数値的に解くためには, Newton 法のような反復法が適用される。

3. 適用例

近似式の精度を確認するために, いくつかの例を示す. $\sqrt{n} (R - \rho)$ の真の確率分布関数である $F_R(r)$ を求めるのは容易ではないので, パラメータに適当な値を設定して, 経験分布関数をモンテカルロシミュレーションで求める. これを真の確率分布関数とみなし, $F_R(r)$ の近似式と比較を行う. $\sqrt{n} (R - \rho)$ の経験分布関数を $\hat{F}_R(r)$ とすると, $\hat{F}_R(r)$ は次のように定義される。

\[\hat{F}_R(r) := \frac{\#\{\sqrt{n} (R - \rho) \leq r\}}{b} \]

ここで b はシミュレーションを行う回数, $\#\{\sqrt{n} (R - \rho) \leq r\}$ はシミュレーションで得られる $\sqrt{n} (R - \rho)$ の値が r を越えない回数をそれぞれ表す. $F_R(r)$ の近似式としては, Edgeworth 展開によるものと, 正規分布によるもの (Edgeworth 展開の第 1 項のみを使用することに相当) の 2 つを考える。

以下の例では, U_1, \ldots, U_n が独立に平均 0, 分散 σ^2 の正規分布に従っていると仮定する. このとき, $E(U_i) = 0 (i = 1, \ldots, n), \delta = \sigma^2, \eta = 0, \gamma = 3\sigma^4$ である. いま, $\alpha = 2, \beta = 1, \sigma = 1$, そして, シミュレーションの繰り返し回数 b を 10000 にする.

例 3.1 (Gamma case). X_1, \ldots, X_n は独立にガンマ分布に従うとする. 密度関数は, $x > 0$ のとき,

\[\frac{1}{\Gamma(h)} e^{-x} x^{h-1}, \]

その他のときは 0 である. また, $h > 0$ である. このとき, $k_0 = k_1 = h, k_2 = (h + 2) (h + 1) h, k_3 = h^4 + 6h^3 + 11h^2 + 6h$ である.

Figure 1 は $n = 10$ のとき, $h = 0.5, 1, 1.5, 2$ のそれぞれの場合の経験分布関数 $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較を表している. Figure 2 は Figure 1 で近似の度合いが一番悪い $h = 0.5$ の場合について, $n = 10, 15, 20, 25$ とした場合の近似の比較を表している.

この例でパーセント点の高次近似の適用を行う. 確率の計算の場合と同様に, $F_R(r)$ のパーセント点の真の値を計算するのは難しいので, 経験分布関数 $\hat{F}_R(r)$ の上側 100p パーセント点である $b(1 - p) + 1$ 番目の順位統計量: $r_p = r_{b(1-p)+1}$ を $F_R(r)$ の真のパーセント点とみなす。

いま, $\hat{F}_R(r)$ の上側 5 パーセント点 $r_{0.05}$ と $F_R(r)$ の上側 5 パーセント点 $r_{0.05}$ の近似の比較を行う. 近似としては, Cornish-Fisher 展開 (2.25) によるものと正規分布によるものの 2 つを考える. 正規分布による近似では $z(r_p) = u_p$ の関係を満たす r_p を求
Table 1. X にガンマ分布を仮定した場合に $n=10, \alpha=2, \beta=1, \sigma^2=1, b=10000$ としたときの $h=1(0.5)5$ における $F_R(r)$ の上側5パーセント点 $r_{(9501)}$ と $r_{0.05}$ の近似の比較。

<table>
<thead>
<tr>
<th>h</th>
<th>$r_{(9501)}$ of $\tilde{F}_R(r)$</th>
<th>Cornish-Fisher Approximation</th>
<th>Error from $r_{(9501)}$</th>
<th>Normal Approximation</th>
<th>Error from $r_{(9501)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.668303</td>
<td>5.60528</td>
<td>-0.063023</td>
<td>7.24965</td>
<td>1.581347</td>
</tr>
<tr>
<td>1.5</td>
<td>3.008991</td>
<td>2.93707</td>
<td>-0.071921</td>
<td>3.42589</td>
<td>0.416899</td>
</tr>
<tr>
<td>2</td>
<td>1.920881</td>
<td>1.89113</td>
<td>-0.029751</td>
<td>2.10446</td>
<td>0.183579</td>
</tr>
<tr>
<td>2.5</td>
<td>1.349946</td>
<td>1.35846</td>
<td>0.008514</td>
<td>1.47162</td>
<td>0.121674</td>
</tr>
<tr>
<td>3</td>
<td>1.030939</td>
<td>1.04394</td>
<td>0.013001</td>
<td>1.11154</td>
<td>0.080601</td>
</tr>
<tr>
<td>3.5</td>
<td>0.8527138</td>
<td>0.839629</td>
<td>-0.0130848</td>
<td>0.883396</td>
<td>0.0306822</td>
</tr>
<tr>
<td>4</td>
<td>0.6910905</td>
<td>0.697767</td>
<td>0.006765</td>
<td>0.727797</td>
<td>0.0367065</td>
</tr>
<tr>
<td>4.5</td>
<td>0.6071027</td>
<td>0.594297</td>
<td>-0.0128057</td>
<td>0.615828</td>
<td>0.0087253</td>
</tr>
<tr>
<td>5</td>
<td>0.5126955</td>
<td>0.51592</td>
<td>0.0032245</td>
<td>0.531902</td>
<td>0.0192065</td>
</tr>
</tbody>
</table>

めることになる。Table 1 に $n=10$ のときに $h=1(0.5)5$ とした場合のそれぞれの値を表している。

例 3.2 (χ^2-case). X_1, \ldots, X_n は独立に自由度 ν のカイ 2 乗分布に従うとする。密度関数は, $x > 0$ のとき,

$$\frac{1}{2^{\nu/2}\Gamma(\nu/2)}e^{-x/2}x^{(\nu/2)-1}$$

その他のときは 0 である。このとき, $k_0 = \nu$, $k_1 = 2\nu$, $k_2 = \nu(\nu+2)(\nu+4)$, $k_3 = \nu(\nu+2)(\nu+4)(\nu+6)$ である。

Figure 3 は $n=10$ のとき, $\nu=1, 2, 3, 4$ のそれぞれの場合の経験分布関数 $\tilde{F}_R(r)$ と $F_R(r)$ の近似の比較を表している。Figure 4 は Figure 3 で近似の度合いが一番悪い $\nu=1$ の場合について, $n=10, 15, 20, 25$ とした場合の近似の比較を表している。

例 3.3 (Lognormal case). X_1, \ldots, X_n は独立に対数正規分布に従うとする。密度関数は, $x > 0$ のとき,

$$\frac{1}{x\sqrt{2\pi}\sigma_{LN}}e^{-\frac{1}{2}\left(\frac{\ln x - \xi}{\sigma_{LN}}\right)^2}$$

その他のときは 0 である。ここで, $\sigma_{LN} > 0$ である。X の r 次のモーメントは $E(X^r) = e^{r\zeta+r^2\sigma_{LN}^2/2}$ である。いま, $\zeta = 0$ とする。このとき, $k_0 = e^{\frac{1}{2}\sigma_{LN}^2}$, $k_1 = e^{2\sigma_{LN}^2} - e^{\sigma_{LN}^2}$, $k_2 = e^{3\sigma_{LN}^2}$, $k_3 = e^{6\sigma_{LN}^2}$ である。
Figure 1. X にガンマ分布を仮定した場合に $n = 10$, $\alpha = 2$, $\beta = 1$, $\sigma^2 = 1$, $b = 10000$ としたときの $h = 0.5, 1, 1.5, 2$ における $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較。

Figure 2. X にガンマ分布を仮定した場合に $h = 0.5$, $\alpha = 2$, $\beta = 1$, $\sigma^2 = 1$, $b = 10000$ としたときの $n = 10, 15, 20, 25$ における $\hat{F}_R(r)$ と $F_R(r)$ の近似の比較。
Figure 3. \(X \) に \(\chi^2 \) 分布を仮定した場合に \(n = 10, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000 \) としたときの \(\nu = 1, 2, 3, 4 \) における \(F_R(r) \) と \(F_R(r) \) の近似の比較。

Figure 4. \(X \) に \(\chi^2 \) 分布を仮定した場合に \(\nu = 1, \alpha = 2, \beta = 1, \sigma^2 = 1, b = 10000 \) としたときの \(n = 10, 15, 20, 25 \) における \(F_R(r) \) と \(F_R(r) \) の近似の比較。
Figure 5. X に対数正規分布を仮定した場合に $n=20$, $\alpha=2$, $\beta=1$, $\sigma^2=1$, $b=10000$ としたときの $\sigma_{LN} = 0.5(0.1)1$ における $F_R(r)$ と $F_R(r)$ の近似の比較。

Figure 6. X に対数正規分布を仮定した場合に $\sigma_{LN} = 1$, $\alpha=2$, $\beta=1$, $\sigma^2=1$, $b=10000$ としたときの $n=10(10)50,100$ における $F_R(r)$ と $F_R(r)$ の近似の比較。
Figure 5 は \(n = 20 \) のとき、\(\sigma_{LN} = 0.5(0.1)1 \) のそれぞれの場合の経験分布関数 \(\hat{F}_R(r) \) と \(F_R(r) \) の近似の比較を表している。Figure 6 は Figure 5 で近似の度合いが一番悪い \(\sigma_{LN} = 1 \) の場合について、\(n = 10(10)50,100 \) とした場合の近似の比較を表している。

付録

付録として、近似式の導出及び適用例の計算に用いたプログラムを示す。

プログラム 1-1 から 1-3 は、式 (2.16)-(2.20) を導出するための Mathematica による数式処理の例である。なお、このプログラムにおける \(E_W^2, E_W^s, E_W^4, EW3m, EW4m \) は \(E(W^2), E(W^s), E(W^4), E(W - \mu W)^3, E(W - \mu W)^4 \) にそれぞれ対応する。

プログラム 2 は、例 3.1 の \(\hat{F}_R(r) \) と \(F_R(r) \) の近似値の計算および図を描くための S-PLUS によるプログラムである。このプログラムは、経験分布関数 \(\hat{F}_R(r) \) 作成のためのモンテカルロシミュレーションによるデータの生成、\(F_R(r) \) の近似値の計算、これら二つを用いた図の作成の 3 つの部分からなり、それぞれ ratio, pratio, PlotCDF の名前がついている。pratio において、\(a, b, c, d, e \) は近似式の導出における \(A, B, C, D, E \) に対応する。また、\(g \) は \(\kappa_4 \) ((2.22) 式) の \(n^{-1} \) の項にある \(F - 3B^2 - 6AC \) を計算したものに対応する。

プログラム 3 は、例 3.1 の上個 5 パーセント点 \(r_{0.05} \) の近似値を計算するための Mathematica によるプログラムである。このプログラムは、関数として作成し、\(h \) を与えることによって、近似値が計算される。\(h = 1 \) を与えたときの出力も示している。このプログラムにおける、\(f_0, f_1, f_2, f_3 \) は \(z(r_p), \kappa_3(r_p), \kappa_4(r_p), \kappa_5 \) の値にそれぞれ対応する。
プログラム 1-1. Mathematica による数式処理の例。
プログラム 1-2. Mathematica による数式処理の例（つづき）.
プログラム 1-3. Mathematica による数式処理の例（つづき）.

Collect[\(t, n\)]

\[
\frac{r^3 k_0^3 + 3 r^3 k_0 k_1 - r^4 k_2}{n^{1/2}}, \quad \frac{\alpha^3 + \eta + 3 \alpha \alpha k_1 - \alpha k_2}{k_1^3}
\]

\[
3 r^2 k_0^3 + 3 r \alpha k_1^3, \quad \frac{3 r^3 \alpha k_0^3 + 9 r^2 \alpha k_1 - 3 r^2 \alpha k_2}{n}.
\]

EW4m

\[
3 \frac{\delta^2 + \gamma - 3 \delta^2}{n^2} - \frac{4 \gamma (r \frac{\alpha}{\sqrt{n}} + \frac{\alpha}{k_0}) k_0}{n^2} - 3 \left(-\alpha - \frac{r k_0}{\sqrt{n}}\right)^4.
\]

\[
6 \left(\frac{r}{\sqrt{n}} + \frac{\alpha}{k_0}\right)^2 \left(\frac{\delta k_0^2}{n} + \frac{\delta k_1}{n^2}\right) + 6 \left(-\alpha - \frac{r k_0}{\sqrt{n}}\right)^2 \left(\frac{\delta}{n} + \frac{\alpha}{k_0}\right)^2 (k_0 + 3 k_0 k_1 + k_1) + 3 \delta (k_0^2 + \frac{k_1}{n}).
\]

Simplify[\(t\)]

\[
\frac{1}{n^5 k_0^4} (12 \sqrt{n} r^3 \alpha k_0^3 + 3 r^4 k_0^3 + 6 k_0^6 (3 n^3 \alpha^2 + r^4 k_1)) +
\]

\[
4 k_0^3 (3 n^3 r^3 \alpha^3 + 6 n k_0^3 \alpha k_3 + r^4 k_2) + n^2 \alpha^4 (3 (-1 + n) k_2 + k_3) +
\]

\[
4 n^3 \alpha^3 k_0 (3 (-1 + n) r k_3 + \frac{\sqrt{n}}{\alpha} k_3 + r k_3) + k_0^3 (3 n^3 \alpha^4 + n^2 \gamma - 3 n^2 \delta^2 +
\]

\[
3 n^3 \delta^2 + 6 n r^3 \alpha^3 + n \delta) k_1 + 3 (-1 + n) r^4 k_3 + 16 \sqrt{n} r^3 \alpha k_2 + 3 r^4 k_3).
\]

Collect[\(t, n\)]

\[
3 \frac{\delta^2 + 6 \alpha^2 \delta k_1 + 3 \alpha \delta k_1}{k_1^3} + \frac{12 r \alpha \delta k_1}{k_0^3} + \frac{12 \alpha \delta k_1}{k_1^3} + \frac{3 r^4 k_0^3 + 6 r^4 k_0^3 k_1 - 3 r^4 k_2 + 4 r^4 k_0 k_1 + r^4 k_2}{n^3}.
\]

\[
3 \alpha^4 + \gamma - 3 \delta^2 + 6 \alpha^2 \delta k_1 + 3 \delta \alpha \delta k_1 + \frac{3 \alpha \delta k_1}{k_0^3} + \frac{3 \alpha \delta k_1}{k_1^3} + \frac{18 \alpha \delta k_1}{k_2^3} - 4 \alpha^2 k_1 - \frac{3 \alpha k_1}{k_2^3}.
\]

\[
12 r^2 k_0 + 24 r^2 k_0^3 k_1 + 12 \alpha \delta k_1 - 16 \alpha^2 k_1 + 4 \alpha \delta k_1 + \frac{18 \alpha \delta k_1}{k_2^3} + \frac{24 \alpha \delta k_1}{k_3^3} + 4 \alpha \delta k_1.
\]

\[
18 r^2 \alpha^2 k_1 + 36 \alpha^3 \alpha k_1 + 3 r^4 k_1, \quad \frac{18 r^2 \alpha^2 k_1 - 24 r^2 \alpha^3 k_1 - 4 r^2 \alpha^3 k_1}{n^{3/2}}.
\]

\[
12 r^3 \alpha k_0^3 + 24 r^3 \alpha k_0 k_1 - \frac{12 r^3 \alpha k_1}{k_0} - 16 r^3 \alpha k_2 + 4 r^2 \alpha k_1.
\]
function(B = 10000, n = 10, h = 2, alpha = 2, beta = 1, sigma = 1)
{
 w <- NULL
 delta <- sigma
 k0 <- h
 rho <- beta + alpha/k0
 for(i in 1:B) {
 x <- rgamma(n, h)
 u <- rnorm(n, 0, delta)
 y <- alpha + beta * x + u
 r <- sqrt(n) * (mean(y)/mean(x) * rho)
 w <- c(w, r)
 }
 return(w)
}

> pratio
function(alpha = 2, beta = 1, r = 0, n = 10, h = 2, sigma = 1, eta = 0)
{
 delta <- sigma^2; gamma <- 3 * sigma^4
 k0 <- h; k1 <- h; k2 <- (h + 2) * (h + 1) * h
 k3 <- h^4 + 6 * h^3 + 11 * h^2 + 6 * h
 a <- eta + (1 - k2/k0^3 + (3 * k1)/k0^2) * alpha^3
 b <- 3 * (k0 + (3 * k1)/k0 - k2/k0^2) * r * alpha^2
 c <- delta + k1/k0^2 * alpha^2
 d <- (2 * k1)/k0 * r * alpha
 e <- k1 * r^2
 g <- 3 * alpha^4 + gamma - 3 * delta^2 + (6 * alpha^4 * k1)/k0^2 * (4 *
 alpha^4 * k2)/k0^3 + (alpha^4 * (-3 * k1^2 + k3))/k0^4
 kappa3 <- (1/sqrt(c))^3 * ((1/sqrt(n)) * a + (1/n) * (b - (3/2 * a * d)/c))
 kappa4 <- g/(n * c^2)
 kappa32 <- a^2/(n * c^3)
 z <- (k0 * r)/sqrt(c + sqrt(1/n) * d + (1/n) * e)
 p <- pnorm(z) * dnorm(z) * (kappa3/6 * (z^2 - 1) + kappa4/24 * (z^3 - 3 * z))

 kappa32/72 * (z^5 - 10 * z^3 + 15 * z)
 pn <- pnorm(z)
 return(p, pn)
}

> PlotCDF
function(m1 = 1, m2 = 10000)
{
 par(mfrow = c(2, 2))
 y <- seq(0.0001, 1, 0.0001)
 for(h in c(0.5, 1, 1.5, 2)) {
 r <- ratio(h = h)
 r <- sort(r)
 z <- pratio(r = r, h = h)
 for(n in c(10, 15, 20, 25)) {
 r <- ratio(n = n, h = 0.5)
 r <- sort(r)
 z <- pratio(n = n, r = r, h = 0.5)
 x <- c(y, zp, zpn)
 x <- matrix(x, 10000, 3)
 matplot(r[m1:m2], x[m1:m2, 1:3], type = "l")
 title(xlab = "r", ylab = "Probability")
 }
 }
}

プログラム 2. 例 3.1 の \(\hat{F}_R(r) \) と \(F_R(r) \) の近似値の計算および図を描くための S-PLUS によるプログラム。
PPGamma[h_] :=

<< Statistics`NormalDistribution``;
ndist = NormalDistribution[0, 1];
u := 1.64485; n := 10; α := 2; β := 1; γ := 3; δ := 1; η := 0;
k0 := h; k1 := h; k2 := (h + 2) (h + 1) h;
k3 := h^4 + 6 h^3 + 11 h^2 + 6 h;
a := δ + \frac{k_1}{k_0^2} α^2; b[r_] := 2 \frac{k_1}{k_0} r α; c[r_] := k_1 r^2;
d := η + \left(1 - \frac{k_2}{k_0^3} + 3 \frac{k_1}{k_0^2}\right) α^3; e[r_] := 3 \left(k_0 + 3 \frac{k_1}{k_0} - \frac{k_2}{k_0^2}\right) r α^2;
f[r_] := 3 α^4 + γ - 3 δ^2 + 6 k_1 r^2 δ + 6 \frac{k_1}{k_0^2} γ - 3 \frac{k_1^2}{k_0^2} α^4 - 3 \frac{k_1^2}{k_0^2} α^2 + 18 \frac{k_2}{k_0^4} r^2 α^2 - 4 \frac{k_2}{k_0^3} α^4 + \frac{k_2}{k_0^3} α^4;
f_0[r_] := \frac{k_0 r}{\sqrt{a + \frac{1}{\sqrt{n}} b[r] + \frac{1}{n} c[r]}};
f_1[r_] := a^{-\frac{3}{2}} \left(\frac{1}{\sqrt{n}} d + \frac{1}{n} \left(e[r] - \frac{3}{2} \frac{b[r]}{a}\right)\right);
f_2[r_] := \frac{a^3}{n} \left(f[r] - 3 b[r] + 2 - 6 a c[r]\right); f_3 := \frac{d^2}{n a^3};
g[r_] := f_0[r] - u - \frac{f_1[r]}{6} (u^2 - 1) - \frac{f_2[r]}{24} (u^3 - 3 u) - \frac{f_3}{36} (-2 u^3 + 5 u);
(* g[r_] := f_0[r] - u; *)
FindRoot[g[r] == 0, {r, 0}]

PPGamma[1]

(r -> 5.60528)

プログラム 3. 3.1 の上側 5 パーセント点の近似値を計算するための Mathematica によるプログラムと実行例.

