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1. Introduction: In accord with the fundamental theorem of algebra, every orthogonal
polynomial of degree $n$ has exactly $n$ roots, which are real and distinct. Conventional
zeros (or roots) of orthogonal polynomials have many applications. In the Gaussian
quadrature procedure agiven definite integral is approximated by the expression:

$\int_{a}^{b}f(x)dx=\sum_{k=0}^{n}w_{k}f(x_{k})$

where $wk\{k=0$ , 1, $\cdots \mathrm{n}$) are the weighting coefficients and $x_{k}$ are the associated $n+1$

points which are the positions of the roots of aLegendre polynomial of degree $n+1$ .
In potential theory, if unit charges are placed within agiven interval [-1, 1], say, then
the point of equilibrium of the physical system corresponds to the zeros of the Jacobi
polynomial. These are two examples cited to emphasize that the zeros in these cases
correspond to the roots of the polynomial and they are always with respect to the vari-
able $x$ .

In the case of the Gauss hypergeometric series, $2F1(a, b;c;x)$ , Gauss emphasized the im-
portance of treating the $2F1$ as afunction not in one variable (x) but as afunction in all
the four variables $(a, b, c, x)$ . However, conventionally the Gauss function is considered
as afunction in the variable $x$ and $a$ , $b$ are considered as its numerator parameters and
$c$ its denominator parameter. In quantum theory of angular momentum, the 3-j and
6-j coefficients are intimately related to the generalized hypergeometric functions $3F2$

and $4F3$ of unit argument, $(x=1)$ . Tbe non trivial zeros of these angular momen-
tum coupling (3-j) and recoupling (6-j) coefficients were discussed for the first time by
Koozekanani and Biedenharn (1974). Since these coefficients can be related to the Hahn
and Racah polynomials, we choose to call these non trivial zeros as polynomial zeros,
since they arise due to the zeros of the hypergeometric functions of unit argument.

The conditions on the parameters of the $\mathrm{p}+1F_{\mathrm{P}}(1)$ relate the problem of the zeros of de-
gree 1to the solutions of the homogeneous Multiplicative Diophantine Equations, and
the problem of zeros of degree 2is related to the solutions of Pell’s equation.

While the 3-j and the 6-j coefficients are related to sets of $3F2(1)\mathrm{s}$ and sets of $4F3(1)\mathrm{s}$ ,
and through them to the Hahn and Racah polynomials respectively; the 9-j recoupling
coefficient, also called as the Russell-Saunders (or $LS-jj$) transformation coefficient,
has been shown by Srinivasa Rao nad Rajeswari (1989) to be related to atriple hyperge-
ometric series (at unit arguments). However, its connection to apolynomial is still not
unambiguously established and remains an open problem. The identification of the 9-j
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coefficeint with atriple hypergometric series has enabled us to define for the first time
its polynomial zeros. All the polynomial zeros of degree 1have been obtained as the
solutions of aset of Multiplicative Diophantine Equations (of degree 3). In this article,
the current status of this subject is presented and the open problems stated.

2. Angular Momentum: The quantum theory of angular momentum has been de-
veloped from the beginning of quantum physics and has become an essential tool in
the hands of the theoretical physicist. The article of Smorodinskii and Shelepin (1972)
entitled: Clebsch-Gordan coefficients $vi$ ewed from different sides is an excellent review
article revealing the close relation of Clebsch-Gordan coeffieints to combinatorics, finite
differences, special functions, complex angular momenta, projective geometry, etc. In
recent times, Askey -in his Preface to Special Functions, by George Andrews, Richard
Askey and Ranjan Roy (1999) –points out that the 3-j, 6-j symbols that appear in
quantum theory of angular momentum are all hypergeometric functions and many of
their elementary properties are best understood when considered as such, though not rec-
ognized widely.

In quantum physics, the angular momenta ( $L$ , $\vec{S}$, $J\hat{)}$ are vector operators acting in Hilbert
space. While $\vec{L},\vec{S}$ act on aproduct space basis $|L\mu\rangle$ $|S\nu\rangle$ , $J$ acts on the coupled basis
state $|JM\rangle$ , so that

$J\vec{|}JM\rangle=\vec{L}|L\mu\rangle\otimes 1|S\nu\rangle+1|L\mu\rangle\otimes\vec{S}|S\nu\rangle$,

where $\mu$ , $\nu$ and $M$ are scalar projection quantum numbers satisfying the additive prop-
erty: $\mu+\nu$ $=M$. This result can be written generally as:

$\Delta(J\vec{)}=\vec{J}\otimes 1+1\otimes\overline{J}’$

which implies that the vector addition of angular momenta defines acommutative c0-
product in aHopf algebra (cf. Abe (1980)). Accordingly acommutative Hopf algebra
structure is implicit in $q$-physics, recognized as such only in recent times.

For the first time, Koozekanani and Biedenharn (1974) initiated the study of non trivial
zeros of the 6-j coefficient. They tabulated the zer0-valued 6-j coefficients for the argu-
ments of any one of the six angular momenta being $\leq 37/2$ . Subsequnetly, Varshaloivch
et.al (1988) gave alisting of the zer0-valued 3-j coefficients. Bowick (1976) reduced the
sizes of these tables by taking the Regge $(1958, 1959)$ symmetries of these coefficients
into account and tabulating only the Regge inequivalent zeros.

3. Hahn polynomial and the 3-j coefficient : The 3-j or Clebsch-Gordan coefficient
is defined (Van der Waerden, 1932) as:

$(\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array})=\delta(m_{1}+m_{2}+m_{3},0)(-1)^{j_{1}-j_{2}-m_{3}}\prod_{i=1}^{3}[(j_{i}-m_{i})!(j_{i}+m_{i})!]^{1/2}$

$\cross\Delta(j_{1},j_{2}, j_{3})\sum_{\mathrm{t}}(-1)^{t}[t!\prod_{k=1}^{2}(t-\alpha_{k})$ ! $\prod_{\dot{\iota}=1}^{3}(\beta_{l}-t)!]^{-1}$ ,
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where $\delta(m, n)$ is the Kronecker delta function, being 1for $m=n$ and 0for $m\neq n$ , $m$ , $n$

being integers;
$\max(0, \alpha_{1}, \alpha_{2})\leq t\leq\min(\beta_{1}, \beta_{2}, \beta_{3})$ ,

$\alpha_{1}=j_{1}-j_{3}+m_{2}$ , $\alpha_{2}=j_{2}-j_{3}-m_{1}$ ,

$\beta_{1}=j_{1}-m_{1}$ , $\beta_{2}=j_{2}+m_{2}$ , and $\beta_{3}=j_{1}+j_{2}-j_{3}.$,

$\Delta(x, y, z)=[\frac{(-x+y+z)!(x-y+z)!(x+y-z)!}{(x+y+z+1)!}]^{1/2}$

Srinivasa Rao (1978) showed that the 72 symmetries of the 3-j coefficient can be easily
understood in terms of the set of six hypergeometric functions of unit argument:

$(\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array})=\delta(m_{1}+m_{2}+m_{3},0)\prod_{i,k=1}^{3}[R_{k}.!/(J+1)!]^{1/2}(-1)^{\sigma(pq\mathrm{r})}$

$\cross[\Gamma(1-A, 1-B, 1-C, D, E]_{3}^{-1}F_{2}(A, B, C;D, E;1)$ ,

where
$A=-R_{2p}$ , $B=-R_{3q}$ , $C=-R_{1\mathrm{r}}$ ,

$D=1+R_{3\mathrm{r}}-R_{2p}$ , $E=1+R_{2\mathrm{r}}-R_{3q}$ ,

$\Gamma(x, y, \cdots)=\Gamma(x)\Gamma(y)\cdots$ ; and $J=j_{1}+j_{2}+j_{3}$ ,

$\sigma(pqr)=\{$
$R_{3p}-R_{2q}$ for even permutations of (pqr) $=(123)$

$R_{3p}-R_{2q}+J$ for odd permutations of (pqr) $=(123)$ .

The Hahn polynomial is defined in terms of the $3F2(1)$ , by Karlin and MacGregor (1961),
as:

$Q_{n}(x)\equiv Q_{n}(x;\alpha, \beta, N)=3F_{2}(\alpha+1-n,$$-,x,$ $n+\alpha+\beta+1-N+1$ ; $1)$

for $Rl\alpha>-1$ , $Rl\beta>-1$ and positive integral $N$ , with $Q_{n}(x)$ satisfying the orthog-
onality relations :

$\sum_{x=0}^{n-1}Q_{n}(x)Q_{m}(x)\rho(x)=\frac{1}{\pi_{n}}\delta(m, n)$ ,

$\sum_{r\iota=0}^{n-1}Q_{n}(x)Q_{n}(x)\pi_{n}=\frac{1}{\rho_{(}x)}\delta(x, y)$ , (Dual)

where $\delta(x, y)$ is the Kronecker delta function and the weight functions are:

$\rho(x)=\rho(x;\alpha, \beta, N)=\frac{(\begin{array}{l}\alpha+xN\end{array})(\begin{array}{ll}\sqrt+N-x -1N-x -1\end{array})}{(\begin{array}{l}N+\alpha+\beta N-1\end{array})}$ ,

$\pi_{n}=\pi_{n}(\alpha, \beta, N)=\frac{(N n-1)}{(\begin{array}{l}N+\alpha+\sqrt+nn\end{array})}$ $\frac{(2n+\alpha+\beta+1)}{(\alpha+\beta+1)}$
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$\Gamma(\beta+1 n+\alpha+1 n-\vdash\alpha+\beta+1)$
$\cross$

$\overline{\Gamma(\alpha+1,\alpha}’+\beta+1$, $n’+\alpha+\beta\overline{-\vdash 1,(n+1)}$ ,

$(\begin{array}{l}nr\end{array})$ being the binomial coefficient.

The Van der Waerden form is not suitable for relating the 3-j coefficient to the Hahn
polynomial. This can be overcome by the use of the Thomae transformation:

$3F2$ ( $\alpha,\beta,-n\gamma,\delta$ ; $1)= \frac{\Gamma(\gamma,\gamma-\alpha+n)}{\Gamma(\gamma+n,\gamma-\alpha)}3F2($

$1+\alpha-\gamma-n,$

$\delta\alpha,\delta-\beta,-n$ ; $1,)$

on the $3F2(1)$ for the 3-j coefficient, with $\alpha=C$ ,
’
$\theta=A$ , $-n=B$ , $\gamma=D$ , $\delta=E$ , to

establish the relation:

$Q_{n}(x)=(-1)^{2j_{2}+m+n+x_{\frac{(j_{3}-j_{2}+m_{1})!}{(2j_{2})!}}}[ \frac{(j_{2}-n)!n!(2j_{3}+n+1)!}{(2(j_{3}-j_{2})+n)!}]1/2$

$\cross[\frac{(j_{3}-j_{2}-m_{1}+n)!(}{(j_{3}-j_{2}+m_{1}+n)!(j_{3}-j_{2}+m_{1}}\frac{2j_{2}-x)!x!}{+x)!(j_{3}+j_{2}-m_{1}-x)!}]1/2$

$\cross$ $(\begin{array}{lll}j_{3}-j_{2}+n j_{2} j_{3}m_{1} x-j_{2} j_{2}-m_{1}-x\end{array})$

Therefore, the zeros of the 3-j coefficient are nothing but the zeros of the Hahn polyn0-
mial.

4. Racah polynomial and the 6-j coefficient : The 6-j coefficient can be rearranged
to give rise to aset of three $4F3(1)\mathrm{s}$ , by Srinivasa Rao et.al. (1975), as:

$\{\begin{array}{lll}a b ed c f\end{array}\}=N(-1)^{\beta_{k}}\sum_{s}(-1)^{s}(\beta_{k}-s+1)!$

$\cross[\prod_{i=1}^{4}(\beta_{k}-\alpha_{i}-s)!\prod_{j=1}^{3}(s-\beta_{k}+\beta_{j})!]-1$

$=N(-1)^{E+1}\Gamma(1-E)[\Gamma(1-A, 1-B, 1-C, 1-D, F, C_{\tau})]^{-1}$

$\cross 4F3$ ( $A$ , $B$ , $C$, $D$ ;E. $F$, $G;1$ )

where
$A=e-a-b$, $B=e-c-d$, $C=f-a-c$, $D=f-b-d$,

$E=-a-b-c-d-1$ , $F=e+f-a-d+1$ , $G=e+f-b-c+1$ ;

$A=a-b-e$ , $B=d-c-e$ , $C=a-c-f$, $D=d-b-f$,
$E=-b-c-e-f-1$ , $F=a+d-b-c+1$ , $G=a+d-e-f+1$ ;

$A=b-a-e$ , $B=c-d-e$ , $C=c-a-f$, $D=b-d-f$,
$E=-a-d-e-f-1$ , $F=b+c-a-d+1$ , $G=b+c-e-f+1$ .
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Equivalently, the 6-j coefficient can also be rearranged to give rise to aset of four $4F3(1)\mathrm{s}$

(Srinivasa Rao et.al. (1977)):

$\{\begin{array}{lll}a b ed c f\end{array}\}=N(-1)^{a_{\iota}}$ $\sum_{s}(-1)^{s}(\alpha_{l}+s+1)!$

$\cross[\prod_{\dot{l}=1}^{4}(s+\alpha_{l}-\alpha_{\dot{*}}.)!\prod_{j=1}^{3}(\beta_{j}-\alpha_{l}-s)!]^{-1}$

$=N(-1)^{A’-2}\Gamma(A’)[\mathrm{r}(1-B’, 1-C’, 1-D’, E’, F’, G’)]^{-1}$

$\cross_{4}F_{3}(A’, B’, C’, D’;E’, F’, G’;1)$ ,

where
$A’=a+b+e+2$ , $B’=a-c-f$, $C’=b-d-f.$,

$\Pi$ $=e-c-d$,
$E’=a+b-c-d+1$, $F’=a+e-d-f+1$ , $G’=b+e-c-f+1$ ;

$A’=c+d+e+2$, $B’=c-a-f$, $C’=d-b-f$, $D’=e-a-d$,
$E’=c+d-a-b+1$, $F’=c+e-b-f+1$ , $G’=d+e-a-f+1j$

$A’=a+c+f+2$, $B’=c-d-e$, $C’=a-b-e$ , $D=f-b-d$,
$E’=a+c-b-d+1$ , $F’=a+f-d-e+1$ , $G’=c+f-b-e+1$ ;

$A’=b+d+f+2$, $B’=b-a-e$, $C’=d-c-e$ , $D’=f-a-c$,
$E’=b+d-a-c+1$ , $F’=b+f-c-e+1$ , $G’=d+f-a-e+1$ .

These two sets of $4\mathrm{F}3(1)\mathrm{s}$ for the 6-j coefficient have been shown by Srinivasa Rao et.al.
(1985) to be related to each other through the reversal of hypergeometric series, which
clearly establishes why the sets of three and four $4F3(1)\mathrm{s}$ are necessary and sufficient to
account for the 144 symmetries of this coefficient.

Though Racah established the discrete orthogonality property satisfied by the 6-j coeffi-
cient, he was unaware that it is indeed amanifestation of its connection to an orthogonal
polynomial. Askey and Wilson (1985) who discovered this, christened the polynomial
as the Racah polynomial. In terms of the Racah polynomial the 6-j coefficient can be
written as:

$\{\begin{array}{lll}a b c+d-xd c b+d-n\end{array}\}=(-1)^{a+b+c+d-n}\Delta(b, d, b+d-n)\Delta(a, e, b+d-n)$ $\cross$

$\mathrm{A}(\mathrm{a}, b, c+d-x)\Delta(c, d, c+d-x)\Gamma(a+b+c+d-n+z)$

$\cross[\Gamma(1+n, 1+n+a-b+c-d, 1+x, 1+2d-x, 1+N-x, 1+a+b-c-d+x)]^{-1}$

$\cross$ $P_{n}(t^{2};a’, b’, c’, d’)$ ,

where
$t=x-c-d-1/2$ $a’=-c-d-1/2$, $b’=-a-b-1/2\dot,$

$c’=a-b+1/2$, $d’=c-d+1/2$ ,

$P_{n}(t^{2};a’, b’, c’, d’)=\Gamma(a’+b’+n, a’+c’+n, a’+d’+n)$
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$\cross[\Gamma(a’+b_{\backslash }’a’+c’, a’+d’)]^{-1}$

$\cross_{4}F_{3}$.( $-n$ ,
$a’+b’+c’+d’,+n,-,1,a’-” ta’+b’,$$a+c,a+da’+t$ ; $1$).

Thus, the non-trivial zeros of the 6-j coefficient, are nothing but the polynomial zeros
of the 6-j coefficient.

5. Polynomial zeros of the 3-j and the 6-j coefficients : The identification of the
3-j and the 6-j coefficient to the Hahn and the Racah polynomials, provides us with a
means for the classification of their zeros by the degree of the polynomial. The trivial
zeros of these coefficients are those which arise due to:

(i) violation of triangle inequalities, or, violation of additive properties of vector quan-
tum numbers –Note: i.e. if $|j_{1}-j_{2}|\leq j_{3}\leq j_{1}+j_{2}$ , then the triad $j_{1},j_{2},j_{3}$ is said
to satisfy the triangle inequality;

(ii) violation of additive property of scalar (projection) quantum numbers (only in the
case of the 3-j coefficient);

(iii) symmetry properties of the coefficients.

Koozekanani and Biedenharn (1974), noted that Non-trivial zeros arise due to the sum-
mation part accidentally becoming zero and not due to (i), (ii) or (iii) stated above. We
prefer to call these structural zeros as polynomial zeros since the 3-j and 6-j coefficients
have been related to the Hahn and Racah polynomi als, respectively.

Sato and Kaguei (1972) rearranged the 3-j coefficient to obtain the following form:

a $\mathrm{b}$
$\mathrm{c}$

$(\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array})=\mathrm{d}$ $\mathrm{e}$ $\mathrm{f}=\delta(m_{1}+m_{2}+m_{3},0)(-)^{b+c-}$’

$\mathrm{g}$

$\mathrm{h}$ $\mathrm{i}$

$\cross$ $[ \frac{b^{(b-g)}d^{(d-i)}f^{(f-a)}h^{(h-c)}}{e!(a+b+c+1)!}]^{1/2}(a.i-c.g)^{(e)}$

where $(a.i-c.g)^{(e)}$ is asymbolic binomial expansion;

$(a.i-c.g)^{(e)}= \sum_{k=0}^{e}(-1)^{k}$ $(\begin{array}{l}ek\end{array})$ $c^{(e-k)}g^{(e-k)}a^{(k)}i^{(k)}$ ,

with
$p^{(\sigma)}= \frac{p!}{(p-\sigma)!}=p(p-1)$$(p-2)$ . . . $(p-\sigma+1)$ ,

being the lowering factorial and $a$ , $b$ , $\cdots$ , $i$ being the nine $\cdot \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}$ parameters that can
be formed out of the jj’s and the $m_{i}’ \mathrm{s}(i=1,2,3)$ to give rise to the $3\cross 3$ Regge (1959)
square symbol for the 3-j coefficient:

$||R_{k}||\equiv$
$\mathrm{d}\mathrm{g}\mathrm{a}$

$\mathrm{h}\mathrm{b}\mathrm{e}$

$\mathrm{c}\mathrm{f}\mathrm{i}$ $\equiv||\begin{array}{lll}-j_{1}+j_{2}+j_{3} j_{1}-j_{-}‘’+j_{3} j_{1}+j_{2}-j_{3}j_{1}-m_{1} j_{2}-m_{2} j_{3}-m_{3}j_{1}+m_{1} j_{2}+m_{2} j_{3}+m_{3}\end{array}||$ .
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Srinivasa Rao and Venkatesh (1977) observe that for $\sigma=1$ , $p^{(1)}=p!/(p-1)!=p$ is an
exact power and immediately this establishes that the binomial expansion is also exact in
this case. Therefore, when e $=1$ , the SatO-Kaguei expression above reveals polynomial
zeros of degree 1, when

$a.i=c.g\Leftrightarrow(-j_{1}+j_{2}+j_{3})(j_{3}+m_{3})=(j_{1}+j_{2}-j_{3})(j_{1}+m_{1})$ .

In the case of the 6-j coefficient, Sato (1955) used the definitions:

$p^{(\sigma)}= \frac{p!}{(p-\sigma)!}$ and $p^{(-\sigma)}= \frac{(p+\sigma)!}{p!}$

to obtain aformal binomial expansion for the 6-j coefficient. Notice that while $p^{(1)}=p$ ,
unfortunately $p^{(-1)}=p+1$ according to Sato’s definitions. Therefore, we redefine the
generalized powers as:

$p^{(\sigma)}= \frac{p!}{(p-\sigma)!}$ and $p^{(-\sigma)}= \frac{1}{p^{(\sigma)}}$

and this enables Srinivasa Rao and Venkatesh (1977) to obtain the formal binomial
expansion for the 6-j coefficient as:

$\{\begin{array}{lll}a b ed c f\end{array}\}=(-)^{a+b+\mathrm{c}+d}\Delta(abe)\Delta(cde)\Delta(acf)\Delta(bdf)$

$\cross(-1)^{\beta_{0}}\Gamma(\beta_{0}+2)[\Gamma(n+1, C_{p}+1, C_{q}+1, C_{f}+1, D_{u}+n+1, D_{v}+n+1)]^{-1}$

$\cross((D_{u}+n)(D_{v}+n)-C_{p}C_{q}C_{f}(\beta_{0}+1)^{(-1)})^{(n)}$

where $n=\beta_{0}-\alpha_{0}$ , $\beta_{0}$ being any one of $\beta_{1}$ , $\beta_{2}$ , $\beta_{3}$ ; $\alpha_{0}$ being any one of $\alpha_{1}$ , $\alpha_{2}$ , $\alpha_{3}$ , $\alpha_{4}$ ;
$C_{i}=\beta_{0}-\alpha_{i}$ , $(i=p, q, r)$ , $D_{j}=\beta_{j}-\beta_{0}$ , $(j=u, v)$ , and the indices $p$ , $q$ , $r$ and $u$ , $v$

stand for those $\mathrm{a}’ \mathrm{s}$ and $\beta’ \mathrm{s}$ other than $\beta_{0}=\min(\beta_{1}, \ \beta_{3})$ and $\alpha 0=\max(\alpha_{1}, \alpha_{2}, \alpha_{3}\alpha_{4})$ ,
with

$\alpha_{1}=a+b+e$ , $\alpha_{2}=c+d+e$ , $\alpha_{3}=a+c+f$ , $\alpha_{4}=b+d+f$ ,
$\beta_{1}=a+b+c+d$, $\beta_{2}=a+d+e+f$ , $\beta_{3}=b+c+e+f$ .

As in the case of the 3-j coefficient, with our redefined generalized powers, for $n=1$ ,
the binomial expansion for the 6-j coefficient is exact, and therefore the condition:

$(\beta_{0}+1)(D_{u}+n)(D_{v}+n)=C_{p}C_{q}C$,

reveals all the polynomial zeros of degree 1of the 6-j coefficient.

Explicitly, these identifications enable us to write down closed form expressions for degree
1polynomial zeros of both the 3-j and the 6-j coefficients as

$1-\delta(X, \mathrm{Y})\delta(n, 1)$

where for the 3-j coefficient:

$X=R_{m\mathrm{f}}R_{k\mathrm{p}}$ , $\mathrm{Y}=R_{mp}R_{lq}$ , $n=R_{lq}$ ,
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(Imk) and (pqr) correspond to permutations of (123). And for the 6-j coefficient:

$X=(\beta_{u}-\alpha_{0})(\beta_{v}-\alpha_{0})(\beta_{0}+1)$ , $Y=(\beta_{0}-\alpha_{p})(\beta_{0}-\alpha_{q})(,\theta_{0}-\alpha_{r})$ ,

where $\beta_{u}$ , $\beta_{v}$ correspond to the pair of $(\beta_{1}, \beta_{2}, \beta_{3}\backslash )$ other than $\beta_{0}$ and $\alpha_{p}$ , $\alpha_{q}$ , $\alpha_{r}$ correspond
to three of $(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4})$ other than $\alpha_{0}$ .

Finally, notice also that in terms of the set of $3F2(1)\mathrm{s}$ , the polynomial zeros of degree 1
of the 3-j coefficient, the condition to be statisfied by the parameters is:

$1+ \frac{ABC}{DE}=0$ or $ABC=-DE$,

with one of the numerator parameters $A$ , $B$ or $C$ being -1. Thus, the general form of
this equation is:

$x_{1}x_{2}=u_{1}u_{2}$ ,

which is called ahomogeneous Multiplicative Diophantine Equation of degree 2. Simi-
larly, in terms of the sets of $4\mathrm{F}3(1)\mathrm{s}$ for the 6-j coefficient, the polynomial zeros of degree
1are obtained when

$1+ \frac{ABCD}{EFG}=0$ or $ABCD=-EFG$

with $A$ , $B$ , $C$ or $D\mathrm{b}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{g}-1$ . The general form of this conditional equation is:

$x_{1}x_{2}x_{3}=u_{1}u_{2}u_{3}$

which is ahomogeneous Multiplicative Diophantine Equation of degree 3. Therefore,
the polynomial zeros of degree 1of the 3-j and the 6-j angular momentum coefficients
are intimately connected with the solutions of Multiplicative Diophantine Equations of
degree 2and degree 3, respectively.

$\mathrm{E}.\mathrm{T}$ . Bell (1933) classified the Multiplicative Diophatine Equations and obtained their
solutions in his classic paper entitled Reciprocal Arrays and Diophantine Analysis. S-
rinivasa Rao et.al (1993) showed that the concept of reciprocal arrays can be dispensed
with in the Proof of the main theorem and what is more this enabled us to provide a
simpler and elegant induction proof of the theorems. This formed the basis for providing
acomplete solution to the problem of the degree 1zeros of the 3-j and 6-j coefficients by
Srinivasa Rao, Rajeswari and King (1988), who also provided an alternative induction
proof for the main theorem -which states that $n^{2}$ independent parameters, arranged in
the form of a $n\cross n$ square array, with $n$ greatest common divisor conditions applying to
the diagonal elments of the array, are necessary and sufficient to obtain all the solutions
for the homogeneous Multiplicative Diophantine equation of degree $n$ .

6. Zeros of the 9-j coefficient : The 9-j (or the $LS-jj$ transformation) coefficient
expressed as asum over the product of three 6-j coefficients is the one which is most
often used for numerical computations. Wu (1972) pointed out that it is not a $7\Gamma\prime 6(1)$ and
later Wu (1973) claimed that he had found anew generalized hypergeometric function
in three variables: $\Phi^{(3)}(\alpha_{kl};\beta_{i}, \gamma_{m};w_{k})$ for the 9-j coefficient. The triple sum series of
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Jucys and Bandzaitis (1977) is the simplest known algebraic form for the 9-j $\mathrm{c}$

Srinivasa Rao and Rajeswari (1989) showed that this formula does not exh
the well known 72 symmetries of the 9-j coefficient and it has been ident
with aformal triple hypergeometric series due to Lauricella (1893), Saran
Srivastava (1964):

$F^{(3)}\{$
(a) :: (b); $(b’);(b’)$ : (c); $(c’);(c^{n})$

(e) :: (f); $(f’);(f’)$ : (g); $(g’);(_{\backslash }g^{n})$

; $x$ , $y$ , $z]$

$= \sum_{m,n,p}\frac{((a),m+n+p)}{((e),m+n+p)}.\frac{((b),m+n)((b’),n+p)((b’),p+m)}{((f),m+n)((f’),n+p)((f’),p+m)}$

$((c), m)((d), n)((d’),p)$ $\underline{x^{m}y^{n}z^{p}}$

$\cross\overline{((g),m)((g’),n)((g’),p)}$ $m!n!p!$

where (a) stands for asequence of parameters $(a_{1}, a_{2}, \cdots)$ and

$((a), m+n+p)\equiv((a))_{m+n+p}=(a_{1})_{m+n+p}(a_{2})_{m+n+p}\cdots$

$((b), m+n)\equiv((b))_{m+n}=(b_{1})_{m+n}(b_{2})_{m+n}\cdots$

$((c),m)\equiv((c))_{m}=(c_{1})_{m}(c_{2})_{m}\cdots$ .

The 9-j coefficient was shown by Srinivasa Rao and Rajeswari (1989) to be:

$\{\begin{array}{lll}a b cd e fg h i\end{array}\}=(-1)^{x5_{\frac{(dag)(beh)(igh)}{(def)(bac)(icf)}}}$

$\cross\frac{\Gamma(1+x1,1+x2,1+x3)}{\Gamma(1+x4,1+x5)}\frac{\Gamma(1+y1,1+y2)}{\Gamma(1+y3,1+y4,1+y5)}$

$\cross\underline{\Gamma(1+z1,1+z2)}\underline{\Gamma(1+p1}$

$\Gamma(1+z3,1+z4, 1+z5)1+p2,1+p3)$

$\cross F^{(3)}\{$

-::-;-;- : $1+x2$ , $1+x3,$ $-x4,$ $-x5$ ;
-:: $1+p2;-p1;1+p3$ : $-x1$ ;

$1+y1,1+y2,$
$-y4,-y51+y3’.,\cdot$

$1+z2,$ $-z3,$ $-z4,$
$-z5-z1,\cdot’$

.
1, 1, $1]$ ,

where
$x1=2f$, $y1=-b+e+h$, $z1=2a$ ,

$x2=d+e-f$, $y2=g+h-1$ , $z2=-a+b+c$,

$x3=c-f+i$ , $y3=2h+1$ , $z3=a+d+g+1$ ,

$x4=-d+e+f$, $y4=b+e-h$ , $z4=a-b+c$,
$x5=c+f-1$ , $y5=g-h\cdot \mathrm{T}^{1}- i$ , $z5=a-b+c$,
$p1=a+d-h+i$, $p2=-b+d-f+h$, $p3=-a+b-f+i$,

$0 \leq x\leq\cdot\min(x4, x5)=XF$, $0 \leq y\leq\min(y4, y5)=YF$, $0 \leq z\leq\min(z4$ , ;
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(abc) $=$ (abc) $\frac{(a+b+c+1)!}{(^{-a+b+c)!}/}$ .

The realization that the triple sum series is atriple hypergeometric series, evaluated
at unit argument for all the variables, enables Rajeswari and Srinivasa Rao (1989) to
define for the first time polynomial zeros for this 9-j coefficient, derive aformal binomial
expansion for it, and obtain the closed form expression to get all the polynomial zeros
of the 9-j coefficient as:

$1-\delta_{\beta 1,1,0,0}^{\alpha 1,XF,YF,ZF}-\delta_{\beta 2,0,1,0}^{\alpha 2,J\mathrm{Y}F,YF,ZF}-\delta_{\beta 3,0,0,1}^{\alpha 3,XF,YF,ZF}$ ,

where

$\alpha 1=(1+x2)(1+x3)x4x5$ , $\beta 1=(1+\mathrm{p}2)(1+p3)x1$ ,
$\alpha 2=(1+y1)(1+y\underline{9})y4y5$ , $\beta 2=(1+y3)p1(1+p2)$ ,
a3 $=(1+z2)z3z4z5$ , $\beta 3=z1p1(1+p3)$ ,

and the notation for the product of four Kronecker delta functions is:

$\delta_{a,b,c,d}^{p,q,r,s}=\delta(a,p)\delta(b, q)\delta(c, r)\delta(d, s)$.

The first few ‘generic’ zeros of the 9-j coefficient are given below:

a $\mathrm{b}$

$\mathrm{c}$
$\mathrm{d}$

$\mathrm{e}$

$\mathrm{f}$

$\mathrm{g}$

$\mathrm{h}$ $\mathrm{i}$ $\sigma=a+\cdots+i$

0.5 11.5 11.5 1.5 1.5 2.5 213
0.5 11.5 123 1.5 3 3.5 17
0.5 11.5 1.5 0.5 221.5 1.5 12
0.5 11.5 1.5 21.5 23 2 15
0.5 11.5 1.5 2.5 3 2 3.5 3.5 19

Adetailed study revealed -Rajeswari and Srinivasa Rao (1989)-that equations like
$\alpha 1=\beta 1$ represent Multiplicative Diophantine Equations of degree 3(since either $x4$ or
$x5$ or both have to be 1) for polynomial zeros of degree 1to occur. 24 cases arose and
of these 12 did not yield any degree 1zeros because of inherent inconsistencies and of
the remaining 12, only four (two corresponding to $XF=1$ and two to $\mathrm{Y}F=1$ ) are full
nine parameter solutions, the other eight being fewer (than nine) parameter solutions
having one of the angular momenta itself as afree parameter.

This comprehensive work on the polynomial zeros of degree 1of the 3-j, 6-j and 9-j
coefficients via Multiplicative Diophantine Equaitons revealed all the zeros and set at
rest work of Bremner (1986), Brudno $(1985, 1987)$ , Bremner and Brudo (1986), Brudno
and Louck (1985) and others which were based on fewer parameteric solutions which
giving rise to partial lists of these zeros only. For adetailed account of this problem and
its resolution, the interested reader is referred to the monograph of Srinivasa Rao and
Rajeswari (1993).

lNote: the definitions of the $\alpha$ and $\beta$ parameters of sections 5and 6are different
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7. Degree Vs. Order of the zeros of 3-j coefficients : The polynomial zeros of the
3-j coefficients were defined in terms of the number of terms of the hypergeometric series
minus one which is the degree of the coefficient. Adetailed study of the destribution of
the zeros of the 3-j coefficient with respect to the degree $n$ for $J=j_{1}+j_{2}+j_{3}\leq 240$ , by
Jacques Raynal (1985) revealed that most of the zeros of high degree had small magnetic
$(m_{i}, i=1,2,3)$ quantum numbers. This led Raynal et.al (1993) to define the order $m$

to classify the zeros of the 3-j coefficient. Changing the notation and suing $a$ , $b$ , $c$ for
$j_{1}$ , $j_{2},j_{3}$ , it is to be noted that when $J=a+b+c$ is odd,

$(\begin{array}{lll}a b c0 0 0\end{array})=0$ . $(\mathrm{P}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{y}3-j\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t})$

On the contrary if $J=a+b+c$ is even, the 3-j coefficient cannot vanish and it has the
value:

$(\begin{array}{lll}a b c0 0 0\end{array})=(-1)^{J/2}[\frac{(J-2a)!(J-2b)!(J-2c)!}{(J+1)!}]^{1/2}\frac{(J/2)!}{(J/2-a)!(J/2-b)!(J/2-c)!}$ ,

aresult which can be deduced from Dixon’s theorem for the $3F2(1)$ . From recurrence
relations for the 3-j coefficient, Raynal (1979) deduced three more sets of $3j$ coefficients
which never vanish and these are:

$(\begin{array}{lll}a b c-\frac{1}{2} 0 \frac{1}{2}\end{array})=(-1)^{J/2+1}[\frac{(J-2a)!(J-2b)!(J-2c)!}{(J+1)!(2a+1)(2c+1)}]^{1/2}$

$\cross\frac{2(J/2)!}{(J/2-a-\frac{1}{2})!(J/2-b)!(J/2-c-\frac{1}{2})!}$ ,

for even $J$ , and the following for $J$ odd:

$(\begin{array}{lll}a b c-\frac{1}{2} 0 \frac{1}{2}\end{array})=(-1)^{J/2+3/2}[\frac{(J-2a)!(J-2b)!(J-2c)!}{(J+1)!(2a+1)(2c+1)}]^{1/2}$

$\cross\frac{2(J/2+\frac{1}{2})!}{(J/2-a)!(J/\underline{9}-b-\frac{1}{2})!(J/2-c)!}$ ,

$(\begin{array}{lll}a b c0 \mathrm{l} -\mathrm{l}\end{array})=(-1)^{J/2+1/2}[\frac{(J-2a)!(J-2b)!(J-2c)!}{(J+1)!b(b+1)c(c+1)}]^{1/2}$

$\cross\frac{2(J/2)!}{(J/2-a-\frac{1}{2})!(J/2-b-\frac{1}{2})!(J/2-c-\frac{1}{2})!}$ .

These non-zero 3-j-c0efficients will be called as zeros of order 0.

Contiguous 3-j coefficients, satisfy the recurrence relations (Raynal (1979))

$-S(a, b, c, \alpha, \beta, \gamma)$ $(\begin{array}{lll}a b c\alpha \beta \gamma\end{array})$ $-T(a, b, \alpha, \beta)$ $(\begin{array}{lllll} a b c\alpha -1 \beta +1 \gamma\end{array})$

$=$ $S(a, b, c, -\alpha, -\beta, \gamma)$ $(\begin{array}{lll}a b c\alpha \sqrt \gamma\end{array})$ $+T(a, b, -\alpha, -\beta)$ $(\begin{array}{lllll} a b c\alpha +1 \beta -1 \gamma\end{array})$
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$=$ $-S(b, c, a, \beta, \gamma, \alpha)$ $(\begin{array}{lll}a b c\alpha \beta \gamma\end{array})$ $-T(b, c, \beta, \gamma)$ $(\begin{array}{lllll}a b c\alpha \beta -1 \gamma +1\end{array})$

$=$ $S(b, c, a, -\beta, -\gamma, \alpha)$ $(\begin{array}{lll}a b c\alpha \beta \gamma\end{array})$ $+\cdot T(b, c, -\beta, -\gamma)$ $(\begin{array}{lll}a b c\alpha \beta+1 \gamma-1\end{array})$

$=$ $-S(c, a, b, \gamma, \alpha, \beta)$ $(\begin{array}{lll}a b c\alpha \beta \gamma\end{array})$ $-T(c, a, \gamma, \alpha)$ $(\begin{array}{lllll} a b c\alpha +1 \beta \gamma -1\end{array})$

$=$ $S(c, a, b, -\gamma, -\alpha, \beta)$ $(\begin{array}{lll}a b c\alpha \beta \gamma\end{array})$ $+T(c, a, -\gamma, -\alpha)$ $(\begin{array}{lllll} a b C_{\vee}\alpha -1 \beta \gamma +1\end{array})$ ,

where
$S(a, b, c, \alpha, \beta, \gamma)=\frac{1}{2}(a(a+1)+b(b\dashv- 1)$ – $c(c+1))+ \alpha\beta+\frac{1}{3}(\alpha-\beta)_{:}$

$T(a, b, \alpha, \beta)=((a+\alpha)(a-\alpha+1)(b-\beta)(b+\beta+1))^{1/2}$

(i) Setting ce $=\beta=\gamma=0$ in the recurrence relations and using asymmetry for the 3-j
coefficient, we get for even $J$ :

$(\begin{array}{lll}a b c0 1 -1\end{array})=\frac{a(a+1)-b(b+1)-c(c+1)}{2\{b(b+1)c(c+1)\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c0 0 0\end{array})$ ( $J$ even).

(ii) Setting $(\alpha, \beta, \gamma)=(0,1, -1)$ in the above recurrence relations and using the symme-
tries of 3-j coefficients, we get for odd values of $J$ :

$(\begin{array}{lll}a b c0 2 -2\end{array})=\frac{a(a+1)-b(b-+1)-c(c+1)+2}{\{(b-1)(b+2)(c-1)(c+2)\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c0 1 -1\end{array})$ ,

$(\begin{array}{lll}a b c1 1 -2\end{array})=\frac{(b-a)(a+b+1)}{\{a(a+1)(c-1)(c+2)\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c0 1 -\mathrm{l}\end{array})$ . $(*)$

For (’) azero can be found only for $a=b$ and it is atrivial zero, since $J$ is odd.
Setting $(\alpha, \beta, \gamma)=(0,1/2, -1/2)$ (and using symmetries and relabellings for $a$ , $b$ and $c$),
we get five new relations. They are, for $J$ even:

$(\begin{array}{lll}a b c0 \frac{3}{2} -\frac{3}{2}\end{array})$ $=$ $\frac{a(a+1)-b(b+1)-c(c+1)-(b+\frac{1}{2}\prime)(c+\frac{1}{2})+\frac{1}{2}}{\{(b-\frac{1}{2})(b+\frac{3}{2})(c-\frac{1}{2}\grave{)}(c+\frac{3}{2})\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c0 \frac{1}{2} -\frac{1}{2}\end{array})$
$i$

$(\begin{array}{lll}a b c0 \frac{3}{2} -\frac{3}{2}\end{array})$ $=$ $\frac{a(a+1)-b(b+1)-c(c+1)+(b+\frac{1}{2})(c+\frac{1}{2})+\frac{1}{2}}{\{(b-\frac{1}{2})(b+\frac{3}{2})(c-\frac{1}{2})(c+\frac{3}{2})\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c0 \frac{1}{2} -\frac{1}{2}\end{array})$ ,

( $J$ odd);

$(\begin{array}{lll}a b c\frac{1}{2} \mathrm{l} -\frac{3}{2}\end{array})$ $=$ $\frac{(a+\frac{1}{2})(a+c+1)-b(b+1)}{\{b(b+1)(c-\frac{1}{2})(c+\frac{3}{2})\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c\frac{1}{2} 0 -\frac{1}{2}\end{array})$ , ( $J$ even);

$(\begin{array}{lll}a b c\frac{1}{2} 1 -\frac{3}{2}\end{array})$ $=$ $\frac{(a+\frac{1}{2})(a-c)-b(b+1)}{\{b(b+1)(c-\frac{1}{2})(c+\frac{3}{2})\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c\frac{1}{2} 0 -\frac{1}{2}\end{array})$ ( $J$ odd);

$(\begin{array}{lll}a b c\frac{1}{2} -1 \frac{1}{2}\end{array})$ $=$ $- \frac{(c+\frac{1}{2})+(-1)^{J}(a+\frac{1}{2})}{\{b(b+1)\}^{\frac{1}{2}}}$ $(\begin{array}{lll}a b c\frac{1}{2} 0 -\frac{1}{2}\end{array})$ , ( $J$ even or odd).
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Clearly, the six equations above in section (ii), except $(^{*})$ , give the zeros of the 3j coef-
ficients of (recurrence) order 1.

The 3-j coefficients of order 2are obtained with recurrence relations involving 3-j coef-
ficients of recursion order 0and 1for the two other members. More generally, the 3-j
coefficients of order $m$ are obtained with recurrence relations involving 3-j coefficients of
order $m-2$ and $m-1$ for the two other members. In order to characterise the order $m$

in another way, consider the Regge symbol associated with a3-j symbol. In this Regge
symbol, perform atransformation bringing the two rows or two columns with minimum
absolute difference (this is the sum of the absolute values of the differences member by
member) to the last two rows. Then, one has :

$\bullet$ if $\alpha$ , $\beta$ and $\gamma$ are all integers :

$m=$ maex{l\mbox{\boldmath $\alpha$}l, $|\beta|$ , $|\gamma|$ } if $J$ is even,
$m= \max\{|\alpha|, |\beta|_{:}|\gamma|\}-1$ if $J$ is odd;

$\bullet$ if $\alpha_{\dot{J}}\beta$ and $\gamma$ are not all integers :

$m= \lfloor\max\{|\alpha|, |\beta|, |\gamma|\}\rfloor$ ,

where $\lfloor x\rfloor$ stands for the integer part of $x$ .

Note that this definition gives the order $m=-1$ for the trivial zeros. Acomplete calssi-
fication of order 2and 3has been obtained and Raynal et.al. (1993) found that there
are 12 types of zeros of order 2and 17 types of zeros of order 3. The problem of zeros
of order 1has been completely solved and the zeros of order 2and 3classified. While
the zeros of degree 1,2,3 and 4were found to be infinite in number, it is not known
whether the number of zeros of degree $n>4$ is finite or infinite, If the zeros are arranged
with $n>m$ , for increasing values of $m>4$ , it appears that there are no zeros of high
order

8. Distribution of polynomial zeros: Relating the polynomial zeros of degree 1
of 3n-j coefficients, $(n=1,2,3)$ , to the solution of homogeneous Multiplicative Dio
phantine equations by Srinivasa Rao and coworkers has solved this problem completely.
Bayer, Louck and Stein (1987) and Louck and Stein (1987) related the solutions of the
Pell’s quadratic Diophantine equation to that of the polynomial zeros of degree 2, for the
3-j and the 6-j coefficients, using transformations of quadratic forms over the integers.
In the case of the 6-j coefficient, their orbit classification of the zero’s of Pell’s equation,
unfortunately does not reveal all the zeros fo degree 2. Srinivasa Rao and Chiu (1989)
proposed, therefore, asimple algorithm to generate all the polynomial zeros of degree 2
of the 3-j and the 6-j coefficients, using the principle of factorization of an integer and
the solution to aquadratic or acubic equation.

Biedenharn and Louck (1981) pointed out that the distribution of these polynomial zeros
is anumber theoretic problem. In the field of integers and half-integers, it is possible to
count the number of polynomial zeros which occur out of the allowed (non-zero) angular
momentum coefficients. We, Raynal et.al. (1993), did asearch for the polynomial zeros

24



of degree 1to 7for polynomial zeros of the 3-j coefficient and found that the number of
zeros of degree 1and 2are infinite; though the number of zeros of degree larger than 3
decreases very quickly.

In the table below are given the number of polynomial zeros of degree 1of the 6-j
coefficient corresponding the allowed coefficients (Srinivasa Rao and Rajeswari (1993))
in the first two columns and the primenumber $\pi(x)$ in the interger field $x$ :

No. of allowed
6-j coefficients

$\mathrm{N}$

4
25
168
1229
9592
78498
664579
5761455

The comparison made in the table shows that the distribution of the number of polyn0-
mial zeros of degree 1of the 6-j coefficient, in the allowed anugular momentum field, is
much smaller than the distribution of primes in the integer field.

An extensive computer search by Raynal and Van der Jeugt (1993) for the zeros of 6-j
coefficients, similar to the one by us (Raynal et.al. 1993) for the 3-j coefficient, led
to the conclusion that the number of zeros of degree 1,2 and 3is infinite; no result-

$\mathrm{s}$ were obtained for zeros of degree 4; an indication that the degree 3zeros belonged
to afinite family (though no proof that their total number is finite); that the number

higher degree than that.

9. Open problems: The study of polynomial zeros of 3-j and 6-j coefficients, started
by Koozekanani and Biedenharn, in 1974, has been extended considerably by scores of
papers by Beyer, Louck and Stein (1986); Bremner (1986); Brudno $(1985, 1987)$ ; Brudno
and Louck (1985); De Meyer, Vanden Berghe and Van der Jeugt $(1983, 1984)$ ; Labarthe
(1986); Lindner $(1984, 1993)$ ; Rajeswari and Srinivasa Rao $(1989, 1993)$ ; Raynal (1978,
1979, 1985); Raynal et.al. (1993); Srinivasa Rao $(1978, 1985)$ ; Srinivasa Rao and Ra-
jeswari (1985, 1987, 1988, 1989, 1993); Srinivasa Rao et.al. (1975, 1977, 1988, 1992);
Van der Jeugt and Raynal (1993)
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Racah (1949) recognized that $\{\begin{array}{lll}5 5 33 3 3\end{array}\}=0$ elucidates the embedding of the excep

tional Lie algebra $G_{2}$ into the $SO_{7}$ Lie algebra. Judd (1970) related $\{\begin{array}{lll}5 5 9\sim 2 2 4\end{array}\}=0$ to

the vanishing of the fractional parentage coefficient in the atomic $g$-shell. Vanden Berghe
et.al. in aseries of papers demonstrated that tensor operator realizations of the excep-
tional Lie algebras $F_{4}$ and $E_{6}$ provide abasis to explain 12 generic or Regge inequivalent

polynomial zeros of the 6-j coefficient taking the the suggestion of Koozekanani and

Biedenharn (1974) that realizations of exceptional Lie algebras might provide bases for
explaining the polynomial zeros of the 6-j coefficient. However, Srinivasa Rao (1985)

observed that of the 12 generic entries of Vanden Berghe et.al. 11 are polynomial zeros
of degree 1and only one is apolynomial zero of degree 2. It was also pointed out by

Srinivasa Rao et.al. that simple closed form expressions can be given for all the poly-

nomial zeros of degree 1for not only 6-j, but also 3-j and 9-j coefficients, since formal
binomial expansions for these coefficients in terms of generalized powers are indeed exact
expressions for degree 1.

The problem of degree 1zeros of the 3n-j coefficients $(n=1,2,3)$ has been completely
solved via the study of homogeneous Multiplicative Diophanitine equations-initiated by
Bremner (1986), Brudno $()1985$ ,1987), Bremner and Brudno (1986), Beyer, Louck and
Stein (1986), and completed by Srinivasa Rao, Rajeswari and King 1988. The extensive
numerical studies of the zeros of 3-j coefficients, especially by Jacques Rayna1(1978,
1979, 1985), provided an opportunity to define the order of their zeros via the use of
recurrence relations satisfied by them. However, many questions remain unanswered.
We mention some of these open problems:

$\bullet$ The distribution of polynomial zeros of angular momentum coefficients is basically
anumber-theoretic problem which has not been studied completely.

$\bullet$ Degree 1zeros were related to solutions of Multiplicative Diophatine equations
and degree 2zeros to Pell’s equation and this raises the question of whether a
hierarchy of equations can be associated with integer solutions of known polynomial
expressions. Such an association will then enable one to understand the sparse
number of polynomial zeros as their degree $n$ increases and it is conjectured that
there is alimit $n$ beyond which there are no slutions to the equations and hence
no polynomial zeros. The open problem is to establish this degree $n$ , for the 3-j,
6-j and the 9-j coefficients.

$\bullet$ The Hahn and Racah polynomials are hypergeometric functions of unit argument.
The study of the zeros of these polynomials, as well as polynomial zeros of multiple
hypergeometric series is an interesting open problem.

$\bullet$ The triple hypergeometric series representation for the 9-j coefficient is the simplest
known algebraic form for this recoupling coefficient, which satisfies an orthogonal-
ity property. There is no three-term recurrence relation associated with the 9-j
coefficient. These are the clues available for the construction of an orthogonal
polynomial associated with the 9-j coefficient. (Suslov (1983) has shown that the
9-j coefficient is apolynomial in two variables but it is not established that this
result is unique!).
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$\bullet$ Apreliminary study (Srinivasa Rao, 2001) shows that the 12-j coefficient of the
second kind is related to amultiple hypergeometric series in four variables, all
four at unit argument. The results of astudy of this coefficient will be reported
elsewhere. He is also thankful to the organizers of this Conference for the invitation
to participate abd to present this summary of the research work done.
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