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1 Introduction

Let C be a field of characteristic 0 and d an integer greater than 1. We consider the
function f(z) defined by

k
ak 24

f2) =) TGP’ (1)

k>0

where H(z) € C[z] with H(0) = 1 and deg H(z) > 1, and a € C with a # 0. Then
the function f(z) satisfies the functional equation
z

af(2%) = f(2) - T | (2)

It is known that f(z) represents a rational function in the following four cases:
(i) Ifd =2,a =4, and H(z) = (1 + z)?, then

4k 22" z
6=2 (1+22)7 (1-2"

k>0

(i) f d=2,a = -2, and H(2) =1 — z + 2%, then

_ (—2)F 22 z
f(z) —; 1— 22 422" 142422

(i) If d =2,a =2, and H(z) = 1 + 2z, then
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(iv) If d = 2,a =1, and H(z) =1 — 2%, then

2k

f(2) =Zl_z22h+1 = liz'

k>0

It is natural to ask whether there exist rational functions of the form (1) other than
these four cases. The purpose of this paper is to answer this question.

Theorem 1.1. Let f(z) be the function defined by (1). Suppose that deg H < 3.
Then f(2) is a transcendental function over C(z) exzcept in the four cases stated
above.

In the case of a # 1, we can dispense with the assumption deg H < 3.

Theorem 1.2. Let f(z) be the function defined by (1). Suppose that a # 1. Then
f(2) is a transcendental function over C(z) except in the three cases stated above.

We shall apply Theorem 1.1 to establish the transcendence of new type of recip-
rocal sums of binary linear recurrences.
Let {Fy}a>0 be the sequence of the Fibonacci numbers defined by

Fo=0, =1, Fppa=Fop+ Fy (nZO),
and {Ly,}n>0 be the sequence of the Lucas numbers defined by
LO = 2) Ll = 17 Ln+2 = Ln+l + Ln (n 2> 0)'

Lucas [6] proved that

1 7-5
91=ZF21.= .

k>0 2

Erdés and Graham [5] asked for arithmetic character of the related sums

=Y b= .

k>0 k>0 Fyen

Transcendence of 8, and that of #; were proved by Bundschuh and Pethé [2] and by
Becker and Tépfer [1], respectively.

Let {R,,}n20 be a sequence of integers satisfying the binary linear recurrence
relation

Rpi2 = AiRpy1 + ARy (n20), (3)
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where A; # 0, A are integers, A = A?+4A4, > 0 is not a perfect square, and Ry, R;
are integers not both zero. We can express {R,}, ., as follows:

R, = g1a™ + g,8" (n > 0),
where g1 = (R, — BRy)/(c:— B), g2 = (aRo — R;)/(a — B), and ¢, B are the roots of
X2—A1X—A2=O.

Then we define R, for any | € Z by R, = giof + g /3.
Becker and Topfer [1] proved a more general theorem.

‘Theorem A (Becker and Tépfer [1]). Let {Ra}.>o e a sequence of integers
satisfying (3), {ax}r>0 be a periodic sequence of algebraic numbers which is not
identically zero, and d, ¢, and | be integers with d > 2 and ¢ > 1. Then the number

! ak
6 =

’
k>0 Rcd"+l

where the sum Y ', is taken over those k with cd* +1> 0 and Regey +b0#0, ts
algebraic if and only if {ax}k>o is a constant sequence, d = 2,|Ay| =1, and R, = 0.

Their result was much more improved by Nishioka, Tanaka, and Toshimitu [10].
Indeed they established the algebraic independence of the numbers
! ak

d>2,m>1leZ
i (Beard)™ ( )

even under a weaker condition on {Rn}nZO-
Duverney [3] showed that

4k (—2)* 1
ZLQIE+2_4, Zsz—l-_E. (4)

k>1 k>1

These numbers are special cases of the following reciprocal sums

’ ak

¢ = IcZZO Rcdk+l+b’ (5)

where the sum leo is taken over those k with cd* +1 > 0 and Regeyy + b # 0,

{ak}kgo is a linear recurrence of algebraic numbers which is not identically zero, and

b,c,d, and [ are integers with ¢ > 1 and d > 2. Using Theorem 1.1 and applying a

method developed in [9], we can show that these numbers are transcendental except
some few cases including the numbers given by (4).
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Theorem 1.3. Let {Rn}, 5 be a sequence of integers satisfying (3). Then the num-
ber ¢ defined by (5) is transcendental except in the following three cases:

(i) |A2) =1,d =2,b=0,R; =0, and {ac}r>o s @ constant sequence.

(i) |As| =1,d=2,A1R; = 2R, R, = b, and a; = c4* (k > 0) for some nonzero
ceQ.
(i) |Az| =1,d =2,A1R; = 2Ry41, Ry = —2b, and ax = c(—2)" (k > 0) for some

nonzero ¢ € a

Remark 1.1. Becker and Topfer’s result stated above can be deduced from Theo-
rem 1.3.

2 Proof of Theorems

2.1 Proof of Theorem 1.1

The function f(z) is transcendental over C(2) if f(z) ¢ C(z) (cf. [7]). Suppose on
the contrary that f(z) = P(z)/Q(z) with P(z),Q(z) € Clz] prime to each other.
As f(0) = 0, we have P(0) = 0 and Q(0) # 0, so that we may assume Q(0) = 1.
By (2) we have ~

aP (2%) _P(z) =
Q(z%) Q) H()

and so

aP(z")Q(2)H(2) = P(2)Q(z*)H(2) — 2Q(2)Q(2")- (6)

As P(2%)/Q(2%) is irreducible, Q(z?) divides Q(z)H (z). Therefore there exist A(z) €
C|[z] such that

A(2)Q(z") = Q(2)H(2). (7)
As P(0) = 0, we put P(z) = zR(z). We have from (6)
Q(2)* = A(2){R(2)Q(z%) — az* " R(z")Q(2)}. (8)

In what follows, let h, p, ¢, and r be the degrees of H, P,Q, and R, respectively. Then
we have by (7) and (8)

degA=h~—(d—1)g < 2g. (9)
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We shall prove
1<1+r=p<q. (10)

As P(0) =0, we have p > 1. If p > ¢, we get deg PH > deg 2@, since 1 < h (< 3)
by (2) and (7). Then (6) yield dp + ¢ + h = dq + p + h, a contradiction and (10)
follows.

The proof will be done in three cases; Case . p < ¢, Case II. p = ¢ and a # 1,
CaseIll. p=qanda=1.

Case 1. Let p < g. We have ¢ > 2 by (10) and 2¢ = deg A + r + dg by (8). This
with (10) implies degA = 0 = r, and d = 2. Hence A(z) = 1 and R(z) = 1, since
A(0) =1 by (7) and R(0) =1 by (8). Then we have by (8)

Q(2)" = Q(z) - azQ(2). (11)

Writing Q(2) = @27 + aq—s297° + -+, where a; # 0, a,—s # 0 (1 < s < q), we have
from (11)

4’22 + 2a400-52270 + - -
= @g2% + 522072 + - - — az(ag2? + g2 + -+ +).

We see that a;, = 1. First we consider the case of ¢ > 3. If 1 < s < ¢ — 2, then
29— s> 2q—2s and 2¢ — s > g+ 1, so we have a,_, = 0, which is a contradiction.
Therefore we have s = ¢ — 1 or s = ¢. Thus we have Q(z) = 27 + a;z + 1, where
a; #0if s=¢g—1, =0if s = ¢q. We have from (11)

220 4 20,2911 + 229 4+ 01222 + 20,2 + 1
=2%+a22+1—-az2(z?+ a2+ 1).

Noting that ¢ > 3 and comparing the coefficients of z? in the both sides, we have a
contradiction.
Therefore we have ¢ = 2, and so Q(z) = 22 + a;z + 1. It follows from (11) that

28+ 2012 + 222 +a1%222 + 2012+ 1
=2 +a;22 +1—az(2®2 + a12 + 1).

Comparing the coefficients of the both sides, we have
20, = —a, 2+ a;%2=a; —aa.
Hence we have (a,a;) = (4, —2) or (—2,1), and so we get
4k 2" z

f(Z) Z (1 + 2z 2" 2 1 —_ 2)2

k>0




(-2)%22* z
f(2) =Z 1—22 + 227 14z+22
k>0
which are the rational functions given in the case (i) and (ii), respectively.

Case II. Let p = ¢ and a # 1. We have from (8) 2¢ = deg A + r + dg. This
with (10) implies deg A = 0 =r,¢ = 1, and d = 2. Hence A(z) =1 and R(z) =1,
since A(0) = 1 by (7) and R(0) =1 by (8). Writing Q(z) = 1 — bz with b # 0, we
have from (8)

1 — 2bz + b%2% =1 — b2® — az(1 - b2).
Comparing the coefficients of both sides, we have
b?=—-b+ab, 2b=a.
Hence we have a = 2,b =1, and so we get

ok ,2* z
f(z)=zl+z2" “1-2z

k>0

which is the rational function given in the case (iii).
Case III. Let p = q and a = 1. From (8) we have

Q(2)’ = A(2){R(2)Q(z%) — 2 ' R(")Q(2)}. (12)
Lemma 2.1. We can express Q(z) as
Q(z) = I (1 — %7 '2)™Qu(2),

where v; (1 < i < d — 1) are the (d — 1)-th roots of unity, n; 2 1 1<i<d-1),
and Q,(z) € C[z] such that Q1(v:) # 0 for any i. Furthermore

A(z) = 5 (1 — %7 '2)™ Au(2),
where A;(2) € C[z] such that A,(y:) # 0 for any i. In paticular,
d-1<degA and d—-1<gq. (13)
Proof. Letting z = 7; in (12) we have Q(7;) = 0 for any :. We may put

Q(z) = ML (1 — %7 2)™Qu(2),
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where n; > 1 (1 < ¢ < d—1) and Q1(2) € C[z] such that Q,(y;) # 0 for any 3.
From (12) we have
LS (1= %72 Qu(2)” = AR {R(2)Qi ()T o(w ™ 2)™ — 24 R(z)Qu ()},
where ¢(z) = (1 — 2%)/(1 — 2). Letting z = ; for fixed j, we have
0 = A(%)R(v;)@u () M o(w ™ )™ — 1).

We note that (v, ™1y;) = 1if i # j and @(v;"1v;) = d if i = 5. So ¢} (1~ 1y;)™ —
1=d% —1#0. Since R(v;)Q1(7;) # 0, we obtain A(y;) = 0 for any j. Therefore
we may put

Alz) = TIEZ (1 = 771 2)™ Au (),

where A;(z) € C[z] such that A;(y;) # O for any i. The proof of the lemma is
completed. ‘

Now we return to the proof in Case III. It follows from (9) and (13) that

h h
< -1, ——}<qg< — —1.
1 < max{d 1’d+1}“q_d—1 1 (14)
In paticular, we have
2<dd-1)<h. (15)

In the case of h = 2, we have d = 2 by (15) and so ¢ =1 by (14). We have R(z) =1
by (10) and Q(2) = 1 — z by Lemma 2.1, which implies A(z) = 1 — z by (12), and
so H(z) =1 — 2% by (7). This gives the functional equation

2/:

z z
f(z)=21_z2,‘+1 “1-z

k>0

which is the rational function given in the case (iv).

If h = 3, we have d = 2 by (15), and hence ¢ = 1 or 2 by (14). Assume that q = 1.
Then we have Q(z) =1 -z, R(z) =1, and A(z) = 1 — z by (12), which contradicts
(9). If ¢ = 2, we have Q(2) = (1 — 2)(1 — bz), where b # 1, A(2) = 1 — 2, and
R(z) = 1 —cz, which implies (1 — bz)? = (1 - c2)(1 +2)(1 — b2?) — 2(1 — c2?)(1 — bz).
Letting z = 1 we have b = c since b # 1, which is impossible since P, R are coprime.
The proof of Theorem 1.1 is completed.

2.2 Proof of Theorem 1.2

The proof is the same as these of Cgse I and IT in Theorem 1.1, since the condition
deg H < 3 is not used there.
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