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Two-fold ground states of the Pauli-Fierz
Hamiltonian including spin

Fumio Hiroshima,

November 7, 2001

Abstract

The Pauli-Fierz Hamiltonian describes an interaction between a low energy
electron and photons. Existence of ground states has been established. The
purpose of this talk is to show that its ground states is ezactly two-fold in a weak
coupling region.

1 The Pauli-Fierz Hamiltonian

This is a joint work! with Herbert Spohn? . The Hamiltonian in question is the Pauli-
Fierz Hamiltonian in nonrelativisitic QED with spin, which will be denoted by H acting
on the Hilbert space

H = L*R%C?) Q F.
Here L?(R%;C?) denotes the Hilbert space for the electron with spin o, where ¢ =

(01,02, 03) denotes the Pauli spin 1/2 matrices,

01 0 —i 1 0
1=V 10) %25\ o) %=\|og -1 )

F is the symmetric Fock space for the photons given by F = @3, (L?(R® x {1, 2}))eym -

Here (- ), denotes the n-fold symmetric tensor product of (- --) with (- - om =C.
The photons live in R?® and have helicity +1. The Fock vacuum is denoted by 2.

The photon field is represented in F by the two-component Bose field a(k, j )3 =1,2,

with commutation relations

[a(k’j)’ a*(k’,jl)] = 6jj’5(k - kl))

1 12].
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[a(k, 5),a(k', )] =0, [a*(k,5),a"(K,5)] =0.
The energy of the photons is given by
=y / w(k)a*(k, )a(k, j)dk,
=12
i.e., Hy restricted to (L*(R® x {1,2}))2 ..., is the multiplication by °7_, w(k;), and the
momentum of the photons is
B= 3 [ ke (ks)alk,5)dk

i=12

Throughout units are such that i = 1, ¢ = 1. Physically w(k) = |k|. The case is

somewhat singular and we assume that w is continuous, rotation invariant, and that
(1) infreps w(k) > wo > 0, (2) w(ki) + w(ke) > w(ky + k2), (3) limpjo w(k) = 00. A

typical example is
w(k) = \/|k[? +mZ,, mp > 0.

For a recent result of the massless case see [3]. The quantized transverse vector potential
is defined through

A= [ s P es8) (@)™ + alk, )e%) d

j=12

Here e; and e, are polarization vectors which together with k = k/|k| form a standard
basis in R%. ¢ : R® — R is a form factor which ensures an ultraviolet cutoff. It is
assumed to be p(Rr) = p(z) for an arbitrary rotation R, continuous, bounded with
some decay at infinity, and normalized as [ ¢(z)dx = 1. We will work with the Fourier
transform (k) = (2m)~%/2 [ p(x)e~*=dz. It satisfies (1) G(Rk) = @(k), (2) ¢ = @ for
notational simplicity, (3) $(0) = (27)~%/2, and (4) the decay

/ (w(k) 2 +w(k)™ +1+w(k)) |B(K)Pdk < oo.

The quantized magnetic field is correspondingly

Byw)=i Y [ \/‘/’_(ﬂ)(kxe,(k))( (k, )%= = a(k, 1)e™*) d.

j=1,2

With these preparation the Pauli-Fierz Hamiltonian, including spin, is defined by
1
H=(-iV, ®1 - eA,(2))* +1® H; — 50 ® By(c). (11)

Since obvious from the context we will drop the tensor notation ®.
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2 Invariances

2.1 Total momentum
Let us define the total momentum by Pt = —iV, + P;. We see that
[Protal, H] = 0. (2.1)

(2.1) immediately implies that H has no ground state. Instead of H we consider the
Hamiltonian with a fixed total momentum as follows. By (2.1), we see that (1.1) is

decomposable with respect to the spectrum of Pioal,

@D
H= /R3 H,dp,

where .

Hy= 3 (p— P~ e, ~ SoB, + H, (2.2)
acting on C2 ® F. Here A, = A,(0) and B, = B,(0). The total momentum p € R® is
regarded as a parameter. Recently an adiabatic perturbation of the Hamiltonian (2.2)

has been studied in [16]. We define
1 2
Hyo = 5(p— F)" + Hy,
and Hy, = H, — Hyo. We have || Hyyl| < cu(@)l|(Hyo + 1)9]l, where

cu(e) = e, { le] { / (J(-;-); +w(k)> |c’p‘(k)|2dk}l/2+62 / (w(2)2 + 1) |¢3(k)|2dk}

with some constant c,. Then |e| < e, with a certain e, > 0 implies c,(e) < 1. In
particular H,, is self-adjoint on D(H;) N D(P:?) for all p € R® and bounded from below,
for |e| < e,. The ground state energy of H,, is

E(p) = info(Hp) = (%, Hptp).

inf
YED(Hy),llpl|=1 |
If E(p) is an eigenvalue, the corresponding spectral projection is denoted by F,. TtF, is
identical with the multiplicity of ground states. The bottom of the continuous spectrum

is denoted by E.(p). Under our assumptions one knows that

Eo(p) = inf (E(p — k) + w(k)).

keRr3

See [4, 5, 17]. Thus it is natural to set

A(p) = Ee(p) — E(p) = jnf (E(p - k) + w(k) — E(p)).
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2.2 Total angular momentum
Let 7 € R3 be a unit vector. It follows that, for § € R,
i(6/2)70 O,”e-i(o/z)ﬁ-o = (Ro),, p=1,2,3,

where R = (Ry)i<up<3 = R(7, 0) € SO(3) presents the rotation around 7 through an
angle 0, and (Ro), = ¥ ,-123 Ruo,. We define the field angular momentum relative
to the origin by

=3 [(sx (i)’ (k,d)a(k, )dk

j=1,2
and the helicity by

S¢ =i / E{a"(k,2)a(k,1) — a*(k, 1)a(k,2)} dk.
Let at(f, ) = [a*(k,j)f(k)dk. It holds that
 [a(f1), 80 = —ia(Rf,2), la(f,2), 5] = ia(kf, 1),
la*(£,1), 8] = —ia*(kf,2), [a"(f,2), S = ia* (kS 1).

One sees that
107 (Jr+5) er—ioﬁ-(Jf+Sf) = Hj,

07 (Ji+S5¢) pfe—if’ﬁ'(-'f+3f) = RP;,
e‘ioﬁ'(-]f"'Sf)A‘pe—ioﬁ'(Jf"'Sf) — RA(,,.
Define the total angular momentum by

Jiotal = Jg + St + %0-
It follows that
0% hownt F o e~ 107 Jiotal — % {(Ro)- (Rp— RP; — eRAw)}2 + H; = H,.
In particular E(p) = E(Rp). Moreover taking i = p = p/|p| we have
100 Jeotal Hpe-ioﬁ'Jtotal = H,.

Formally wa may say that H, has a “field angular momentum-+helicity+SU(2)” sym-
metry. It is easily seen that (5 - (J; + S¢)) = Z and o(p- o) = {-1,1}. Thus

. 1
(P Jiotal) =Z + 5
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which is independent of p. Thus €*> ® L%(R®) and H, are decomposable as

C’QF = @ H(z),

z€Z+%

and

H,= @ Hy(2).

z€Z+%

As our main result we state

Theorem 2.1 Suppose |e| < ey with some constant ey given in (3.3), and A(p) > 0.
Then H, has two orthogonal ground states, ¥y, with ¥y € H(£1/2).

We emphasize that all our estimates on the allowed ranges for p and e do not depend

on myy if we take w(k) ="y /|k|? +m2,.

3 A proof of Theorem 2.1

In what follows 1, = ( z’” ) denotes an arbitrary ground state of H,. The number
p—

operator is defined by

Ne=Y / a*(k, )a(k, )dk.

7j=1,2

The following lemma is shown in [15]

Lemma 3.1 Suppose A(p) > 0. Then

|k[?/4 + 6E(p) 2(k)|?
(E(p— k) +w(k) — E(p))* w(k)

(Y, Nethy) < 26 | k|l

We set
_ k244 6E(@)  |p(k)?
o) =2 [ (5= T ol —EGF o) "

Let Py be the projection onto {CQ}.

Lemma 3.2 Suppose that A(p) > 0 and €% < 1/0(p). Then (¥, Patby) > 0.

Proof: Since Py + Nt > 1, we have

(Wp, Pavsp) 2 [I95ll* — INE 21> > (1 — €%6(p)) 1|

Thus the lemma follows. a
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Let o, = and p_ = ( 3 ), which are the ground states of Hpy with

Q
0
p = (0,0,1) and @+ € H(x1/2). Let us denote by P the projection onto {ci¢1 +
Catp2, €1, C2 € C}.

Let {¢;} be a base of the space spanned by ground states of H, and {;} that of

the complement.

Lemma 3.3 Suppose €2 < 1/(30(p)). Then TrF, < 2.

Profs For = ( 4+ ). since (5, P4) = @)+ (@ 9-)F = (4, (1@ Fa)), we
have (v, (P +1® Ny)y) = (¥, 1 ® (Pa + Ni)¥) > ||¢||%. Hence P + Nt > 1. Then

T(RB(1-P)= > (5HKHA-P)g)= 3 (6(1-P))

oe{o:}o{v;} de{e:}
< Y (SNep)= D (8, PNep)= D (¢, P,Neg) = Tr(P,Ny).
oe{¢:} oe{o:} oe{si}o{v;}

Thus Tr(P,(1 — P)) < Tr(FP,N¢). It follows that

T(PP)= ). (¢,FBPo)= ) (¢ Bo)<2
se{o:i}o{v;} oe{o:}

Thus Tr(P,P) < 2. Moreover we have Tr(P,N;) < €20(p)TrP,, since

Te(BNt)= 3. (6FNig)= ) (4 Neg)

se{o:ilo{v;} de{¢i}
<€e*f(p) Y (¢,¢) = €0(p)TxP,.
de{d:}

Then TrP, — Tr(P,P) = TrPy(1 — P) < Tr(P,Nt) < €26(p)TrF,. Hence it follows that
(1 —€e%0(p))Tx P, < Tr(P,P) < 2. We have

0 _
TP, < ———M— < 3.
P = 1 — e26(p)

Thus the lemma follows. (]

We say that ¢ € F is real, if ¥ (ky,j1, -, kn,Jn) is a real-valued function on
L2(R3" x {1,2}") for all n > 0. The set of real 1 is denoted by Frea. We define the set
of reality-preserving operators Oea(F) as follows:

Oreat(F) = {A|A : Frea N D(A) —> Frent} .
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It is seen that Hy and P are in Opey(F). Since, for all £ € R and z € R3,

((HPO + z)kw)(n)(klvjh Tt kn,jn)

k
1 n 2 n . .
= (5 (P“ Zh) + > w(k:) +Z) ™ (ky, g1, -+ 5 bny Jn)s
i=1

i=1

(Hyo + 2)¥ is also in Orea(F). Moreover A, and iB,, are in Orear(F).

Lemma 3.4 Suppose |e| < e,. Let x € C2. Then there ezists a(t) € R independent of
x such that fort > 0

(z ® Q, e Hr—E@)y @ O)yy = a(t)(z, 2)c2. (3.1)

Proof: Note that ||Hy,(1 + Hpo)™!|| < 1 for |e] < e.. Then, by spectral theory, one has

-n
e~ t(Hp~E(®) _ nllI.Eo (1 + %(Hp - E(p)))

t -1/2 /m t —\* t -1/ "
= i i - —_— 1+ —H, .
i Jim { (1 Lh) (3 (<L) ) (14 20) |

k=0
Here
H-Ip = Elp + 10 * B,
_ -1/2 t -1/2
B= (1 + ;Hop) (iB,) (1 + ;Ho,,) ,

(up — B) (1+ L)

2
€
an = ——e(p - .Pf) . A(p + EA?,

It is seen that
—_2 ~ ~ ~ ~ o~ ~ ~ ~
Hlp = anHHp —B.-B+io- (HHpB + BHHp — BA B) =M +io- L.

Here both of M = Elpﬁnp —B-Band L = ﬁupé + ﬁﬁnp — BABarein Orear(F).
Moreover
H,’ = HuyuM — BL +io - (BM + Hy,L — B A L),

‘where both of ﬁan — BL and BM + EI,,L — B AL are also in Oreal(F). Thus,

repeating above procedure, one obtains

> (_'T;Hlp) = Gm + 10 - bm,
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where a,, and by, are in Orea(F). Hence there exist anm € Oreal(F) and bpm € Oreal(F)
such that

" ~1/2 /m £ \k + -1/2\ " '
{(1 + ;Hop) (Z (—;Hlp) ) (1 + ;HOp\) } = Qpm + 10 * bpm.

k=0

Finally
n—00 k—00

(z®Q, e H By @ Q) = lim lim (z, 2)(, anm) + i lim lim (z,0) (R, bpm$).
n— — 00

Since the left-hand side is real, the second term of the right-hand side vanishes and
a(t) = limp oo limg .00 (2, anm$?) exists, which establishes the desired result. ]

Lemma 3.5 Suppose |e| < e, and |e| <1/ \/0—(1)) Then there exists a > 0 such that
PP,P = aP.
Proof: Note that P, = s — lim;_,o e #H»=E())_ Thus by Lemma 3.4,
(z®Q,Pr®Q) = lim (z®Q, e HH—EP)y @ Q) = lim a(t)(z, z)

for all z € C2. Since by Lemma 3.2, (z®, P,z ® ) # 0 for some z € €2, lim;_ a(t)
exists and it does not vanish. For arbitrary ¢, ¢2 € H, the polarization identity leads
to (¢1, PP,P¢2) = a(¢1, Pd2). The lemma follows. O

Lemma 3.6 Suppose |e| < e, and |e| < 1/,/0(p). Then TrF, > 2.

Proof: Suppose TrP, = 1. Let P = |p4){p+| + |o-){p-| and P, = |1,)(tp|. Lemma
3.5 yields that

PP,P = (|pi){o+] + lo-Yo-) o) Wpl (|0 Yo+ ] + lo-}p-])

= |(+, ¥p) Ploos Yox | + [ (0=, o) leo-) (-]
+ (04, ¥p) (Wp, 0 )@ )= + (-, ¥p) (¥p, ) [0 ) {0+
= a(lo+){w+ + lo-){p-)). (3.2)

It follows that (¢4, %p)(¥p, o) = 0. Let us assume (2, p_) = 0. It implies in terms of

(3.2) that |(9+, %) Plos) (@4 ] = a(l0+) (4] + ko) -1). This contradicts (., ¥p) # 0
and a # 0. Thus the lemma follows. m]
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We define
eo = inf {[e| e < 1/,/30(p), le] < e*}. (3.3)
A proof of Theorem 2.1
By Lemma 3.6, TrP, > 2, and by Lemma 3.3, TrP, < 2. Hence TrF, = 2 follows.
Without loss of generalization we may assume that p = (0,0,1). Then gy € H(£1/2).
Let ¢+ be ground states of H, such that 1, € H(z) and ¢_ € H(2') with some
2,7 € Z+1/2. Since PP,P = aP we have (¢4, P,p+) = a > 0. Let Qi be the
projections to H(+1/2). Then Q4P+ # 0 and Q-F,p_ # 0. The alternative
Qi+ # 0 or Q¥_ # 0 holds, or the altenative Q_14 # 0 or Q_9_ # 0 holds. We
may set Q14 # 0. Then ¢, € H(+1/2) and ¢ € H(—1/2). The theorem follows. O

4 Confining potentials
In this section we set w(k) = |k| and
1
H = 2(=iV; — eAp(x))’ + Hi — gaB¢(x) +V.

Let V be relatively bounded with respect to —A /2 with a relative bound strictly smaller
than one. It has been established in [10, 11] that H is self-adjoint on D(—A) N D(Hs)
and bounded from below, for arbitrary e. A confining potential V' breaks the total

momentum invariance,
[Ptotah H] 7é 0. (4'1')

Existence of ground states of H is expected by (4.1). Actually by many authors it has
been established that H has ground states, e.g., [1, 6, 7, 8, 14, 13], and in a spinless
case, the ground state is unique [9)].

Let Hy = Hgy + H; and Hy = %p2 +V. We set E = info(H), Eq = inf 0(He) and
Yol = inf Oess(Hey).

We define a class of external potentials.

Definition 4.1 (1) We say V = Z + W € Vip if the following (i)-(iv) hold, (i)
Z € LL (R%), (ii) Z > —oo, (iii)) W <0, (iv) W € LP(R?) for some p > 3/2.

(2) WesayV eV(m), m>1,if (i) V € Vxp, (1i) Z(z) = 7y|x|*™, outside a compact
set for some positive constant .

(3) WesayV € V(0), m > 1, if (i) V € Vexp, (1) liminfizjoo Z(x) > inf o(H).
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We assume that V satisfies that (1) ||V f|| < all(p?/2)f]| + bl| f|| with some a < 1 and
some b > 0, (2) V € V(m) with some m > 0, (3) V(z) = V(—z), (4) Za — Ea > 0 and
the ground state ¢ of Hg is unique and real.

(1) guarantees self-adjointness of H, (2) derives a boundedness of |||z|1o]| for ground
states 1o of H, and (3) will be needed to estimate a lower bound of the multiplicity
of ground states of H. (4) ensures that H has ground states and Hy has twofold

ground states. Actually Hp has the two ground states, ¢, = ( %o ? @, ) and ¢_ =

0,
P®0 )
Let Py, denote the projection onto {C¢o}. Define

P=P,®Py, Q=PL@P,.

Furthermore P, denotes the projection onto the space spanned by ground states of H.
Let 9 be arbitrary ground state of H. It is proven in [1] that

1Nl < Ba(e)lllzll?, (4.2)

and in [2, 12] that :
lz*¥ll* < 6a(e) 1w ]I*. (4.3)
Then together with (4.2) and (4.3), we have

INE2p|| < 61(e)Ba(e) %1 (4.4)
Suppose g — E > 0. Then there exists 63(e) such that
Q¥ < 8a(e)llwll*. (4.5)
Note that lim o 6;(e) = 0.
Lemma 4.2 Suppose 6, (e)02(e) + 63(e) < 1. Then (3o, Pipo) > 0.
Proof: 1t follows from (4.4), (4.5) and P > 1 — Nf — Q. O
Lemma 4.3 Suppose 6,(e)f2(e) + 03(e) < 1/3. Then TrP. < 2.

Proof: It can be proven in the similar way as Lemma 3.3. m]
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Next we estimate TrP, from below using the realness argument used in the previous
section. Let F' denote the Fourier transformation on L?(R%).” We define the unitary
operator O on H by O = (F ® 1)e**®%. Then O maps D(—A) N D(H;) onto D(|z|?) N
D(Hy) with

H=OHO = —;—(x — B —eA(0))*+ 7 + Hi — 5o B(0).
Here V is defined by
Vi=FVFlf=Vx«f
where * denotes the convolution. By the assumption V(x) = V(—z) we see that V is
a reality preserving operator. Let

~ 1 ~
Ho=§(x—Pf)2+Hf+V.

Lemma 4.4 We have (Hp — 2)™" € Oreal(L*(R3; F)) for all z € R with z & o(H,) and
n € R.

Proof: We have
(ﬁ _ z)—n — _1_ /'°° t_1+ne—t1‘~loetzdt
0 I'(n) Jo ’

where I'(-) denotes the Gamma function. It is enough to prove e~tHo € Oreal(L2(R3; F)).
Since by the Trotter product formula,

e~tHo — ¢ lim (e—(t/n)(Pf—zP/z Flg=t/mV F)" ,

n=—00
F‘le‘st € Oreal(Lz(Rs;f))v

and
e~ B2 € O, (L (R3; F)),

it follows that e~tHo ¢ Oreat(L2(R3; F)). The lemma follows. O

From this lemma it follows that (Hy — 2)~%, (Ho — 2)~ 2 € Oreal(L2(R3;f)). We
decompose H = H-FasH= ﬁo + E, where

B =~z ~ B)AW(0) —~ SA,0)(z — B) + S A2(0) - S0B,(0) - E.

Lemma 4.5 There exists e. > 0 such that for all |e| < e., TxP, > 2.



Proof: First we prove PP.P = aP with some a > 0 in the similar way as Lemma 3.4
with H, and Hy, replaced by H and Hj, respectively. Then the lemma follows from
the proof of Lemma 3.6. O

Theorem 4.6 Suppose Lo — E > 0, || < e. and 61(e)f2(e) + O3(e) < 1/3.. Then
TrP, = 2.
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Proof: Tt follows from Lemmas 4.3 and 4.5. o

Suppose that V is rotation invariant. Let
1
Jiotal = T X (—ivz) + Jr+ Ss + 50’.

Then we have for § € R, 7i € R® with |7] =1,

10 Jrotal He—ioﬁ'Jmtal = H.

Since o (71 Jrotal) = Z+1/2 for each 7, H and H are decomposable as H = @,¢z,1 H(z),
and H = @,ez41 H (2). In the same way as the proof of Theorem 2.1 one can prove

the following corollary.

Corollary 4.7 Suppose that V is translation invariant, and Xaq — E > 0, le] < ec
and 0,(e)02(e) + 03(e) < 1/3. Then H has two orthogonal ground states, ¢+, with
Py € H(£1/2).

Acknowledgment This work is in part supported by the Graduiertenkolleg “Mathematik in ihrer

Wechselbeziehung zur Physik” of the LMU Miinchen and Grant-in-Aid 13740106 for Encouragement
of Young Scientists from the Ministry of Education, Science, Sports, and Culture.

References

[1] V. Bach, J. Frohlich, I. M. Sigal, Spectral analysis for systems of atoms and molecules coupled
to the quantized radiation field, Commun. Math. Phys. 207 (1999), 249-290.

[2] V. Betz, F. Hiroshima, J. Lorinczi, R. A. Minlos and H. Spohn, Gibbs measure associated with
particle-field system, to be published in Rev. Math. Phys.

[3] T. Chen, Operator-theoretic infrared renormalization and construction of dressed 1-particle states
in non-relativistic QED, mp-arc 01301, preprint, 2001.

[4] J. Frohlich, On the infrared problem in a model of scalar electrons and massless, scalar bosons,
Ann. Inst. Henri Poincaré 19 (1973), 1-103.

[5] J. Frohlich, Existence of dressed one electron states in a class of persistent models, Fortschritte
der Physik 22 (1974), 159-198.



