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Abstract

We construct aone-parameter family of self-repelling processes on the Sierpinski
gasket, by taking scaling limits of self-repelling walks on the pre Sierpiiki gaskets.
We prove that our model interpolates between the Brownian motion and the self-
avoiding process on the Sierpinski gasket. Namely, we prove that the process is
continuous in the parameter in the sense of convergence in law, and that the order
of Holder continuity of the sample paths is also continuous in the parameter. We
also establish alaw of the iterated logarithm for the self-repelling process. Finally
we show that this approach yields anew class of one-dimensional self-repelling
processes.

1. Our question
To illustrate our questions, first let us consider the Euclidean lattice, $\mathbb{Z}^{d}$ and arandom
walk on it. The simple random walk (RW) is awalk that jumps to one of its nearest
neighbor points with equal probability. On the other hand, aself-avoiding walk (SAW)
is awalk that is not allowed to visit any point more than once.

If you take the scaling limit, that is, the limit as the lattice spacing (bond length)
tends to 0, the RW converges to the Brownian motion (BM) in $\mathbb{P}$ .

The scaling limit of aSAW is far more difficult. It is because aSAW must remember
all the points it has once visited. In short, it lacks Markov property. For the l-dimensional
lattice, that is, aline, it is trivial –the scaling limit is aconstant speed motion to the
right or to the left. For 4or more dimensions, the scaling limit is the Brownian motion.
Since the space is large enough, the RW is not much different from the SAW. However,
for the 2and 3-dimensional lattice, the scaling limit is not known.

iFrom this viewpoint, the Sierpinski gasket is arare example of alow dimensional
space, where the scaling limit of aSAW is known. The SAW on the $\mathrm{p}\mathrm{r}\mathrm{e}- \mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gasket
converges to anon-trivial self-avoiding process, which is not astraight motion along an
edge, nor deterministic, and moreover, whose path Hausdorff dimension is greater than 1.
It implies that the path spreads in the $\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gasket, has infinitely fine creases and
is self-avoiding. Let us emphasize here that in alow-dimensional space the existence of a
non-trivial self-avoiding process itself is “something.”

On the other hand, the Brownian motion on the $\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gasket has been constructed
by Barlow, Perkins and Kusuoka as the scaling limit of the simple random walk on the
pre-Sierpinski gasket. (See [4], [5].
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Our question is :Now that we have two completely different processes on the
$\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gasket-the Brownian motion and the self-avoiding process, can we construct
afamily of processes that interpolates continuously these two?

We construct the interpolating process as the limit of aself-repelling walk. Aself-
repelling walk is something between the RW and aSAW. Visiting the same points more
than once is not prohibited, but suppressed compared with the $\mathrm{R}\mathrm{W}$ . We want to construct
aone-parameter family of self-repelling walks such that at one end of the parameter it
corresponds to the $\mathrm{R}\mathrm{W}$ , at the other end the SAW. And we take the scaling limit.

self-repelling walk
RW $\Leftrightarrow$ SAW

scaling
$\mathrm{B}\mathrm{M}\downarrow|$ $\Leftrightarrow\downarrow|$

SA
$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\downarrow|$

limit

Here we will further explain what is meant by interpolation. There is avery important
exponent that characterizes walks and their scaling limits. The most well-known scene
where it appears is the mean square displacement of the walk on an infinite lattice (graph).
For awalk starting at $\mathrm{O}$ (the origin), let us assume

$E[|X_{n}|^{2}]\sim n^{2\gamma}$ , $narrow\infty$ ,

where $X_{n}$ is the walker’s location after $\mathrm{n}$ steps, and $|X_{n}|$ denotes the Euclidean distance
from the starting point. $\gamma$ is our exponent. If you take the scaling limit, this exponent
governs the short-time behavior,

$E[|X(t)|^{2}]\sim t^{2\gamma}$ , $t\downarrow \mathrm{O}$ .

The same $\gamma$ determines also other path properties of the scaling limit such as H\"older
continuity and the law of the iterated logarithm.

For comparison, in the case of the one-dimensional integer lattice, $\mathbb{Z}$ , for the $\mathrm{R}\mathrm{W}$ , $\gamma$

is known to be 1/2 (the well-known exponent for the $\mathrm{B}\mathrm{M}$ ), and $\gamma=1$ , for the SAW,
obviously, because it is astraight motion in one direction. In general, exponents are very
resistent to changes. Bolthausen proved for amodel of self-repelling walk on $\mathbb{Z}$ , that $\gamma$ is
always 1regardless of the strength of self-repulsion. T\’oth constructed adifferent model
such that $\gamma$ varies from 1/2 to 2/3. There are afew other models, but none of them
connects 1/2 to 1. (See [6, 7, 8, 9, 10, 11].)

It is interesting enough if we can connect the BM and the self-avoiding process on the
$\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gasket continuously in the sense of weak convergence of path measures. But
can we ask for more? So, our question is rephrased as:can we construct an interpolating
family of processes that connects the exponent $\gamma$ for the $\mathrm{R}\mathrm{W}/\mathrm{B}\mathrm{M}$ continuously all the
way to $\gamma$ for the $\mathrm{S}\mathrm{A}\mathrm{W}/\mathrm{S}\mathrm{A}$ process? As we have seen above, it’s not easy even on the line
-the simplest lattice.

However, on the Sierpinski gasket, we give an affirmative answer and the same method
works also on the line, R.

2. Our Model
The $\mathrm{p}\mathrm{r}\mathrm{e}- \mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gaskets and the Sierpinski gasket are defined as follows. Let $O=$

$(0,0)$ , $a=( \frac{1}{2}, \frac{\sqrt{3}}{2})$ , $b=(1, 0)$ , and let $F_{0}’$ be the set of all the points on the vertices and
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edges of AOab. We define asequence of sets $F_{0}’$ , $F_{1}’$ , $F_{2}’$ , $\ldots$ , inductively by

$F_{n+1}’= \frac{1}{2}F_{n}’\cup\frac{1}{2}(F_{n}’+a)\cup\frac{1}{2}(F_{n}’+b)$, $n=0,1,2$, $\ldots$ ,

where $A+a=\{x+a : x\in A\}$ axsd $kA$ $=\{kx : x\in A\}$ . Let

$F_{n}=F_{n}’\cup(F_{n}’-b)$ .

We call Fn’s the (finite) pre-Sierpinski gaskets. As $n$ increases, the lattice (graph) gets
finer. If we superpose all the Fn’s and take the closure, we get the (finite) $\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$

gasket, $F$ .
$F=d(\cup F_{n})n=0\infty$ .

We denote the set of vertices in $F_{n}$ by $G_{n}$ .
Let us denote by $W_{n}$ the set of continuous functions $w:[0, \infty)arrow F_{n}$ such that there

exists $L(w)\in \mathrm{N}$ for which

$w(0)=O$ ,
$w(t)=a$, $t\geq L(w)$ ,
$w(t)$ $\not\in G_{0}\backslash \{O\}$ , $t<L(w)$ ,
$|w(i)-w(i+1)|=1$ , $i=0$ , $\cdots$ , $L(w)-1$ ,
$\overline{w(i)w(i+1)}\subset F_{n}$ , $i=0$, $\cdots$ , $L(w)-1$ ,
$w(t)=(i+1-t)w(i)+(t-i)w(i+1)$, $i\leq t<i+1$ , $i=0,1,2$, $\cdots$ .

$W_{n}$ is the set of paths on $F_{n}$ that go from $O$ to $a$ without hitting $b$ or $c$ or $d$. $L(w)$ denotes
the steps needed to get to $a$ . (Between integer times, we interpolate by constant speed
motion. W\’e ve made the path continuous just for later convenience.)

To define a“self-repelling walk,” we assign weight to each path. Our model is unique
in the way of realizing self-repulsion. In other models on $\mathbb{Z}$ , they count the numbers of
returns to the same points or bonds, and define arepulsion factor using these numbers.
But we count turns at asharp angle and $\mathrm{U}$-turns as shown below.

For $w\in W_{1}$ , let $M_{1}(w)$ be the number of returns to the starting point, $O$ . Let $N_{1}(w)$

be the number of $\mathrm{U}$-turns and sharp turns that occur at points other than $O$ . Here U-
turns and sharp turns occur when $\frac{1}{w(i-1)w(i)}\cdot$ $\overline{w(i)w(i+1)}<0$ , where $\tilde{a}\cdot\vec{b}$ denotes the
inner product of $\vec{a}$ and $\vec{b}$ in $\mathrm{R}^{2}$ .

Let $0\leq u\leq 1$ and $x>0$ be parameters. For each path in Wi, we assign the following
weight.

$P_{1}^{u}(x)[w]= \frac{x^{L(w)}u^{M_{1}(w)+N_{1}(w)}}{\Phi(x,u)}$ ,

where
$\Phi(x, u)=\sum_{w\in W_{1}}x^{L(w)}u^{M_{1}(w)+N_{1}(w)}$

.

The factor involving $u$ is the repulsion factor.
Next, we go on to define $P_{2}^{u}$ on $W_{2}$ . In defining aprobability on $W_{2}$ , we note that we

get apath in $W_{2}$ by adding finer structures to apath in $W_{1}$ . First consider apath $v$ of
$W_{1}$ . Let us add to the first step of $v$ afiner structure on $F_{2}$ that goes from $v(0)=O$ to
$v(1)$ without hitting any $F_{1}$ vertices other than $v(0)$ . The part of $F_{2}$ inside the equilateral
triangle with $v(0)$ and $v(1)$ as two of the vertices is similar to $F_{1}$ . Thus, we see that this

114



finer structure between the start and the first step of $v$ corresponds to some element of
$W_{1}$ . We give finer structures to each step of $v$ in asimilar way. This way we get apath
in $W_{2}$ , patching up small $W_{1}$ paths, $\mathrm{w}\mathrm{i}$ , $\cdots$ , $w_{L(v)}$ , on arough path $v$ . Actually, each path
in $W_{2}$ can be constructed in this way, adding finer structures. Thus, for finer structures
between each step, $M_{1}$ and $N_{1}$ are defined. We define the weight for $w\in W_{2}$ by

$P_{2}^{u}(x)[w]$ $=$ $\frac{1}{\Phi_{2}(x,u)}x^{L(w)}$ $u^{M_{1}(v)+N_{1}(v)}$ . $L \prod_{i}^{(v)}u^{M_{1}(w:)+N_{1}(w:)}$

[base path on $F_{1}$ ] [finer structures]

$=$ $\frac{1}{\Phi_{2}(x,u)}x^{L(w)}$ $u^{M_{2}(v)+N_{2}(v)}$

where $L(w)$ is the number of the steps on $F_{2}$ , and $\Phi_{2}(x, u)$ is the normalization factor

$\Phi_{2}(x, u)=\sum_{w\in W_{2}}x^{L(w)}u^{M_{2}(w)+N_{2}(w)}$
.

iFrom the fact that we constructed apath on $F_{2}$ by adding finer structures to apath
on $F_{1}$ , it is easy to see

$\Phi_{2}(x, u)=\Phi(\Phi(x, u),$ $u)$ .

We go on to define $P_{n}^{u}$ on $W_{n}$ recursively.
First, we consider apath on $F_{n-1}$ and patch up small $W_{1}$ paths on it. For general $n$ , we
have the recursion relation

$\Phi_{n}(x, u)=\Phi_{n-1}(\Phi(x, u),$ $u)$ .

This is one of the key properties of our model. We can see the meaning of the recursion
in this way. Consider aself-repelling walk on $F_{n}$ with propability $P_{n}^{u}(x)$ . Pick up all the
$F_{n-1}$ -points the walk visits. Then we get aself-repelling walk on $F_{n-1}$ with renormalized
probability $P_{n-1}^{u}(\Phi(x, u))$ .

Let us choose $x=x_{u}$ to be the unique positive solution to the equation,

$x_{u}=\Phi(x_{u}, u)$ .

This choice of $x$ makes the measure self-similar, $u=1$ corresponds to the simple random
walk with the first exit at $a$ . In this case, $\mathrm{u}$-factor is absent and $x_{u}=1/4$ . It shows the
walker chooses one of its four nearest neighbors with equal probability. For $u=0$ only
self-avoiding paths survive. (For more details of our model, see [1].)

3. Results
We study the function $\Phi(x, u)$ (this corresponds to the partition function, or the generating
function)closely and get the following results.

Let
$\lambda_{u}^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}E^{P_{1}^{u}}[L]$ .

$\lambda_{u}$ is the average steps from $\mathrm{O}$ to on $F_{1}$ . It is continuous in $u$ , and

$\lambda_{1}=5$ $(RW)$ , $\lambda_{0}=\frac{7-\sqrt{5}}{9}$ (SAW) $2<\lambda_{0}<3$ .
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Now we are going to take the continuum limit. It corresponds to the limit as $narrow\infty$ .
We defined $P_{n}^{u}$ as aprobability measure on $W_{n}$ . We can $\mathrm{r}\mathrm{e}$-consider it as aprobability

measure defined on aspace of continuous functions $C$ on the Sierpinski gasket supported
on $W_{n}$ . Thus the base space is common to all $n’ \mathrm{s}$ . Let us consider an accelerated process
by the factor of $(\lambda_{u})^{n}$ . Recall that for our path, it takes time 1to go to anearest neighbor
vertex. As the lattice gets finer, our walk gets slower. So we need aproper acceleration to
get anon-trivial limit. Let $X_{n}(\cdot)$ be aprocess that obeys $P_{n}^{u}$ , and denote the destribution
of time-scaled process, $X_{n}((\lambda_{u})^{n}\cdot$ $)$ by $\tilde{P}_{n}^{u}$ .

Our first theorem states the existence of the scaling limit.

Theorem 1 $P\sim nu$ converges weakly to a probability measure $P^{u}$ on $C$ as $narrow\infty$ .
$P^{1}$ corresponds to the Brownian motion conditioned that it hits $a$ before $b$ , $c$ , $d$, (and

is stopped at $a$). $P^{0}$ corresponds to the non-trivial self-avoiding process mentioned in
Section 1.

Remark
In $[2, 3]$ , adifferent model of self-avoiding walk on the $\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{i}\acute{\mathrm{n}}\mathrm{s}\mathrm{k}\mathrm{i}$ gasket has been

studied. In this model, for each self-avoiding path $w$ that goes from $O$ to $a$ , apositive
weight propotional to $e^{-\beta L(w)}$ is assigned, where $\beta>0$ is aparameter. It has been proved
that there exisits aunique $\beta_{c}>0$ for which the scaling limit is aself-avoiding process
with path Hausdorff dimension greater than 1almost surely. Our scaling limit process
coincides with this limit process. Our model at $u=0$ is more restricted than usual
SAW because sharp turns are prohibited as well as returning to the same points. But it
produces the same scaling limit as the ’standard SAW.’

Our second theorem shows that our limit process is continuous in u and does connect
the BM and the self-avoiding process continuously.

Theorem 2(Continuity in $u$) For all $u_{0}\in[0, 1]$ ,

$P^{u}arrow P^{u_{\mathrm{O}}}$ weakly as u $arrow u_{0}$

The following theorems concern path properties of the limit process.

Theorem 3For all $p>0$ , there exist $C_{\dot{1}}$ $=C_{\dot{l}}(p, u)>0$ , $i=1,2$ such that

$C_{1} \leq\lim_{tarrow}\inf\frac{E^{u}[|X(t)|^{p}]}{t^{\gamma_{u}\mathrm{p}}}\leq\lim_{tarrow}\sup_{0}\frac{E^{u}[|X(t)|^{p}]}{t^{\gamma_{u}p}}\leq C_{2}$,

where
$\gamma_{u}=\frac{1\mathrm{o}\mathrm{g}2}{1\mathrm{o}\mathrm{g}\lambda_{u}}$

and is continuous in $u$ .

Theorem 4(H\"older contintity)For any $M>0$ and any $0<\mathrm{Y}$ $<\gamma_{u}$ , there exist $a.s$ .
$b=b(M, \gamma’, \omega)>0$ and $H=H(M, \gamma’, \omega)>0$ such that

$|X(t+h)-X(t)|\leq b|h|^{\gamma’}$ ,

$\forall t\in[0, M]$ , $|h|\leq H$
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Theorem 5(Law of the Iterated Logarithm) There exist $C_{i}=C_{i}(p, u)>0$ , $i=3,4$ such
that

$C_{3} \leq\lim_{tarrow}\sup_{0}\frac{|X(t)|}{\psi(t)}\leq C_{4}$ , $a.s.$ ,

where
$\psi(t)=t^{\gamma_{u}}$ $( \log \log \frac{1}{t})^{1-\gamma_{u}}$ .

Thus, in our model, the exponent $\gamma$ in Section 1is given by

$\gamma_{u}=\frac{1\mathrm{o}\mathrm{g}2}{1\mathrm{o}\mathrm{g}\lambda_{u}}$

and is acontinuous function in $u$ connecting $\gamma_{1}=\frac{1\mathrm{o}\mathrm{g}2}{1\mathrm{o}\mathrm{g}5}$ for the simple random walk and

$\gamma_{0}=\frac{1\mathrm{o}\mathrm{g}2}{\log\frac{7-\sqrt{5}}{2}}$ for the self-avoiding walk.

4. Self-repelling processes on $\mathbb{R}$

We start with asequence of random walks on $\mathbb{Z}$ (instead of the pre-Sierpinski gasket).
The vertex set that we will use for our walks is $G_{n}=\{k2^{-n}$ : $k=-2^{n},$ $-2^{n}+$

$1$ , $\cdots$ , 0, 1, 2, $\cdots$ , $2^{n}$ }. $W_{n}$ is the set of continuous functions such that at integer times
it takes values in $G_{n}$ with nearest neighbor jumps from 0to 1. $N_{k}(w)$ and $M_{k}(w)$ can be
defined similarly to the case of the Sierpinski gasket.

The generating function $\Phi_{1}(x, u)$ is given by

$\Phi_{1}(x, u)=\frac{x^{2}}{1-2u^{2}x^{2}}$ .

In particular, we have $\Phi_{n}(x, 0)=x^{2^{n}}$ , which implies that when $u=0$ we have asingle
path which connects 0and $2^{n}$ by astraight line (i.e., the self-avoiding path on $\mathbb{Z}$ ), and
for $u=1$ we reproduce the generating function for the simple random walk.

We can give explicit formulas for $x_{u}>0$ and $\lambda_{u}>0$ .

$x_{u}= \frac{1}{4u^{2}}(\sqrt{1+8u^{2}}-1)$ , $\lambda_{u}=\frac{2}{x_{u}}=\sqrt{1+8u^{2}}+1$ .

Once we have established these properties of the generating function the subsequent
analysis follows quite similar lines to the Sierpinski gasket case. For example, the proba-
bility measures on the paths are defined in asimilar way to the case of Sierpinski gasket ,
and the existence of acontinuum limit (Theorem 1) and the weak continuity of the path
measure $P^{u}$ in $u\in[0,1]$ (Theorem 2) hold. The sample path properties such as Theorems

3through 5also hold with $\gamma_{u}=\frac{1\mathrm{o}\mathrm{g}2}{1\mathrm{o}\mathrm{g}\lambda_{u}}$ .
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