<table>
<thead>
<tr>
<th>Title</th>
<th>Univalence of certain integral operators (Inequalities in Univalent Function Theory and Its Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Pescar, Virgil; Owa, Shigeyoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2002年, 1276: 75-78</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42305</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Univalence of certain integral operators

Virgil Pescar and Shigeyoshi Owa

Abstract

Let \(A_n \) be the class of functions \(f(z) \) which are analytic and \(n \)-fold symmetric in the open unit disk \(U \). The integral operator \(G_\alpha(z) \) for \(f(z) \in A_n \) is considered. The object of the present paper is to derive univalence conditions of the integral operator \(G_\alpha(z) \) for \(f(z) \in A_n \).

1 Introduction

Let \(A_n \) denote the class of functions \(f(z) \) of the form

\[
 f(z) = z + \sum_{k=1}^{\infty} a_{nk+1} z^{nk+1} \quad (n \in \mathbb{N} = \{1, 2, 3, \ldots \})
\]

which are analytic and \(n \)-fold symmetric in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). We denote by \(S_n \) the subclass of \(A_n \) consisting of functions \(f(z) \) which are univalent in \(U \). Many authors studied the problem of integral operators for functions \(f(z) \) in the class \(S_1 \). In this sense, the following useful result is due to Pfaltzgraff [3].

Theorem 1.1. If \(f(z) \) is univalent in \(U \) and \(\alpha \) is complex number with \(|\alpha| \leq \frac{1}{4} \), then the integral operator \(G_\alpha(z) \) given by

\[
 G_\alpha(z) = \int_0^z (f'(t))^\alpha dt
\]

is also univalent in \(U \).

Further, Pascu and Pescar [2] gave

Theorem 1.2. If \(f(z) \in S_1 \) and \(\alpha \) is a complex number with \(|\alpha| \leq \frac{1}{4n} \), then the integral operator \(G_{\alpha,n}(z) \) given by

\[
 G_{\alpha,n}(z) = \int_0^z (f'(t))^\alpha dt
\]

is also in the class \(S_1 \) for all positive integer \(n \).

2000 Mathematics Subject Classification: Primary 30C45

Key Words and Phrases: Univalent, \(n \)-fold symmetric, integral operator.
2 Properties of integral operators

To discuss our problems for integral operators, we need to recall here the following lemma due to Becker [1].

Lemma 2.1. If \(f(z) \in A_1 \) satisfies

\[
(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \leq 1 \quad (z \in \mathbb{U}),
\]
then \(f(z) \in S_1 \).

Applying the above lemma, we derive

Theorem 2.1. If \(f(z) \in A_1 \) satisfies the inequality (2) for all \(z \in \mathbb{U} \), then the integral operator \(G_\alpha(z) \) defined by (1) belongs to the class \(S_1 \) for all \(\alpha (|\alpha| \leq 1) \).

Proof. Note that \(G_\alpha(z) \in A_1 \) for \(f(z) \in A_1 \) and that

\[
\frac{zf''(z)}{f'(z)} = \frac{1}{\alpha} \frac{zG''_\alpha(z)}{G'_\alpha(z)}.
\]

It follows that

\[
(1 - |z|^2) \left| \frac{zG''_\alpha(z)}{G'_\alpha(z)} \right| = |\alpha|(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \leq |\alpha| \leq 1
\]
for \(z \in \mathbb{U} \). Thus, using Lemma 2.1, we have \(G_\alpha(z) \in S_1 \).

Next, we prove

Corollary 2.1. If \(f(z) \in A_1 \) satisfies

\[
\left| \frac{f''(z)}{f'(z)} \right| \leq 1 \quad (z \in \mathbb{U}),
\]
then the integral operator \(G_\alpha(z) \) defined by (1) is in the class \(S_1 \) with \(|\alpha| \leq \frac{3\sqrt{3}}{2} \).

Proof. In view of the proof of Theorem 2.1, we see that

\[
(1 - |z|^2) \left| \frac{zG''_\alpha(z)}{G'_\alpha(z)} \right| \leq |\alpha|(1 - |z|^2)|z| \leq 1,
\]
because \(|\alpha| \leq \frac{3\sqrt{3}}{2} \) and

\[
\max_{|\iota| \leq 1} (1 - |z|^2)|z| = \frac{2}{3\sqrt{3}}.
\]
Thus, by Lemma 2.1, we prove that \(G_\alpha(z) \in S_1 \).

Finally, we show
Theorem 2.2. If \(f(z) \in A_n \) satisfies
\[
\left| \frac{f''(z)}{f'(z)} \right| \leq |z|^{n-1} \quad (z \in \mathbb{U}),
\]
then the integral operator \(G_\alpha(z) \) defined by (1) belongs to the class \(S_n \) with
\[
|\alpha| \leq \frac{(n+2)^{n+1}}{2n^2}.
\]

Proof. Since
\[
\frac{zf''(z)}{f'(z)} = \frac{1}{\alpha} \frac{zG''_\alpha(z)}{G'_\alpha(z)} = n(n+1)a_{n+1}z^n + \cdots,
\]
we have that
\[
(1 - |z|^2) \left| \frac{zG''_\alpha(z)}{G'_\alpha(z)} \right| = |\alpha|(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right|
\]
\[
\leq |\alpha|(1 - |z|^2)|z|^n \quad (z \in \mathbb{U}).
\]
Note that
\[
|\alpha| \leq \frac{(n+2)^{n+1}}{2n^2}
\]
and
\[
(1 - |z|^2)|z|^n \leq \frac{2n^2}{(n+2)^{n+1}} \quad (z \in \mathbb{U}).
\]
This gives us that
\[
(1 - |z|^2) \left| \frac{zG''_\alpha(z)}{G'_\alpha(z)} \right| \leq 1 \quad (z \in \mathbb{U}).
\]
Further, it is easy to see that \(G_\alpha(z) \in A_n \). This completes the proof of the theorem.

Remark. For \(n = 1 \), Theorem 2.2 becomes Theorem 2.1.

References

V. Pescar
Department of Mathematics
Transilvania University of Brasov
2200 Brasov
Romania

Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka, 577-8502
Japan