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1 Introduction

In this paper, we study various constructions of continuous functions on R which have
the prescribed cusp singularities at each point. As applications, we get a generalization
of the result given in our previous paper [7], which discuss the cusp singularities of the
classical Weierstrass functions.

Let s be a positive number, which is not an integer and let zo be a point in R".
Then a function f on R" belongs to the pointwise Holder space C*(xo), if there exists a
polynomial P of degree less than s such that

|f(z) = P(z — z0)| < Clz — zo|*

in a neighborhood of z. The pointwise Holder exponent of a function f at a point zo in
R"™ is defined as

H(f,z0) = sup{s > 0; f € C*(x0)}-

If a continuous function f does not belong to C*(xo) for every s > 0, then H(f,zo) = 0.

However the pointwise Holder exponent of a function f at a point zp in R"™ is not
stable under the pseudo-differential operators. Similarly it does not fully characterize the
oscillatory behavior on a neighborhood of zo. This implies that f € C?®(zo) cannot be
characterized by size estimates on the wavelet coefficients of f.

Here let us recall the definition of the weak scaling exponent characterizing the local
oscillatory behavior.

So(R™) denotes the closed subspace of the Schwartz‘class S(R"™) such that

/n %Y(z)dz =0



for every multi-index o in Z%. Then a tempered distribution f belongs to I'*(zy), if for
every 9 in So(R"), there exists a constant C(¢) such that

1 -
‘/ f(z)— (”” “"’) dx‘ <C(W)a®, 0<a<l.
R» a" a
The weak scaling exponent of a function f at a point zo in R" is defined as
B(f,zo) = sup {s € R; f locally belongs to I'*(z¢)}.

Since it is known that the pointwise Holder space C®(zy) is contained in local I'*(zy), it
is obvious that

H(f,20) < B(f,zo)-

Now we recall the definition of the two-microlocal spaces C2#, which characterize this
weak scaling exponent.
Let ¢ be a function in the Schwartz class S(R") such that

1
¢(§)={1 omlel<3
0 onlfé|>1

where ¢ is the Fourier transform of ¢. For every non-negative integer j, we define the
convolution operator S;(f) = f* ¢ 1 where @,(z) = ¢(Z), and the difference operator
Aj = Oj41 — Sj. Then

[o <]
I=S+) A,

=0
Let ¢ = @1 — . Then ¢ € So(R™) and
Bi(f)=f*vy.

Let s and s’ be two real numbers and ¢ a point in R®. Then a tempered distribution
f belongs to the two-microlocal spaces C;;‘" , if there exists a constant C such that

1So(N)(@)| < C(1+ | — zol) ™
and
1A,(f)(z)] < C2798(1 + 2|z — zo|)~*

for every j € Z, and z € R™.



The following remarkable theorems with respect to the two-microlocal spaces C;;f' and

['*(zo) were given in [5].

Theorem A [5, Theorem 1.8.]. Let s and ' be two real numbers and zo a point in

R” and let us assume two positive integers r and N satisfying
r+ s +inf(s’,n) >0
and
N > sup(s,s + ).

Let 1 be a function such that

C(q)

< >1

|0%(z)| <
and

/ PY(z)dr =0, |B|<N-1

If a function or a distribution f belongs to the two-microlocal spaces Cg;;‘", then we have

SCas(1+|b—_—ﬂ)—|> , 0<a<l, |b—z<L1
a

[ ) (55 ds

Theorem B [5, Theorem 1.2.]. Let s be a real number and let f be a function or a
distribution defined on a neighborhood V' of xy.
Then f locally belongs to T'*(xo) if and only if f locally belongs to the two-microlocal
spaces C’z"’f' for some §'.

Several scientists have been interested in constructing irregular functions. The well-
known example is the Weierstrass function [8]. It is an example of a nowhere differentiable
continuous function. Hardy gave better estimates of the regularities for the Weierstrass

function

o0

We(z) = Z a" cos(b"rx) ' (1)

n=0

and its sine series

Wi(z) = _ a"sin(b"rz), @
=0



where 0 < a < 1,b> 1 and ab > 1 [3]. He proved that these functions do not possess

. log( 1
finite derivatives at each point z and showed more precisely that if ab > 1 and £ = %2,

then these functions satisfy
We(z + h) = We(z) = O(Ihlf) and Wi(z + k) — Wi(z) = O(|hIF)
for each z, but satisfy neither
We(z + h) = We() = o(|h[') nor  Wi(z + k) = Wy(z) = o( k)

for any z.
Next let us recall the definition of the Takagi function [6]. Let 0* be the 1-periodic
function such that
] 1
T if0<z<-=
0*(z) = 2
1—2z2 if 3 <z<l

Then the Takagi function is defined by

T =3 T2

n=0

It is another example of a nowhere differentiable continuous function.
Using the scaling exponents, Meyer defined two types of singularities of functions as
follows [5]: a point zo in R™ is called a cusp singularity of a function f, when

H(f,20) = B(f,To) < o0,

while a point zo in R" is called an oscillating singularity of a function f, when

H(f1$0) < ﬂ(faxO)'

When a point z is a cusp singularity of a function f, the pointwise Holder exponent
can be found by computing the size estimates on the wavelet coefficients of f inside the
influence cone. Using this fact, we construct continuous functions which have a prescribed
cusp singularity at each point zy in R.

Daoudi and his team [2] studied the following problem which was raised by Lévy Véhel:

Let s be a function from [0, 1] to [0,1]. Under what conditions on s does there exist a
continuous function f from [0,1] to R such that H(f,z) = s(z) for all x in [0,1]?

They solved the problem as follows: ”For a function s from [0,1] to [0, 1], there exist a
continuous function f on [0, 1] such that H(f,z) = s(z) for all z in [0, 1] if and only if s is a
function which can be represented as a limit inferior of a sequence of continuous functions



on [0, 1].” Further, they constructed such f by various methods, - as the Weierstrass type
function, using Schauder bases and using Iterated Function System.

On the other hand, Andersson [1] proved a similar characterization for a function s
from R to [0, 00] and constructed f satisfying H(f,z) = s(z) for all z in R by a method
using orthogonal wavelets.

In the rest of the paper we study, for a given function on R, various constructions of
a function f satisfying

H(f,z) = B(f,z) = s(z), z€R,

using orthonormal wavelets in Section 2 and as the Weierstrass type function in Section
3.

2 Construction Using Orthonormal Wavelets

In this section, using orthonormal wavelets, we construct a continuous function which
has a prescribed cusp singularity at each point in R.
The following Lemma. 1 is used in the proof of Theorems 1 and 2.

Lemma 1.  Let s be a function from R to [0,00], which is the lower limit of a
sequence of real continuous functions {t;};en. Then there exists a sequence {si}icz, of
infinitely differentiable non-negative functions with compact supports such that

(i) s(z) = lilIE(ixr)xf si(z), z€R,

(ii) For each z¢ in R, there exists a positive integer ly such that

1
Sl(ZE) > — l > lo, |$ - (Eol <1l

Vit1

(ili) There exists a sequence {Ci}rez, C (0,00) such that

sup|s(?(z)| < Gy, 1€ Zy,
z€R

where sfk) is the k-th derivative of s;.

Proof. Let 5 be a non-negative infinitely differentiable function supported on [—1, 1]
satisfying n(z) = 1 if || < 1, sup,er n(z) = 1 and [R n(x)dz = 1. If we put

t(z) =7 (gl:-) min (ma.x (tl(x), ﬁ) ,l) , LeN,



it is easy to see that {f;};en satisfies

liminf £;(z) = s(z), z€R,
l—o00

and

Since each #; is uniformly continuous, we can choose a strictly increasing sequence of
positive integers {p; };en such that

. . 1
sup [ti(z) — ti(y)| < leN.

-,
—yl<l l
lz—yl<;

Under these circumstances, we define si(z) for I € Z, and z € R by

0 if0<l< j 1
31(55) = - .
Rpmn(pm(x - YNtm(¥)dy if pp <1 < ppmy1, meN.

If we put Cj = fR [n‘*)(x)| dz for k € Z,, then {si}iez, satisfies the required properties
(i), (ii) and (iii). To prove (i) we have

l51(&) — En(2)] = ‘ | B0z = 1) (@) ~ in(a) dyl

< swp [im(y) - En(e)| /R n(y) dy

—yl<-L
lz—yl< 5~

1
< — Pm <1< Pmy1.

This proves the desired result. To prove (ii) we choose mq € N such that To_ ;10- > |zo|+1
and put ly = py,. For a positive integer I > I, choose m € N such that Pm <1 < pmy1.
Then if |z — zo| < 1, we have

si(z) = /R Pt (Bm(E — ))Fm(y) dy

> inf  i,(y) /R n(y) dy

—yl<Ll
lz—yI<;,-



2 inf tm(y)
ly|<lzol+1+ &

To prove (iii) we choose m € N, for a given [ € N, such that pp, <1 < pmy1. Then we
have

159(2)] = ] [ 250 (s = )ints dy‘ -

<Pt sup in(y) /R n® ()] dy

— 1
le—ylS g

< Cympt, < ClF+L.
n
Theorem 1. Let s be a function from R to [0,00], which is the lower limit of a

sequence of continuous functions. Then there exists a sequence {si}iez, of differentiable
functions such that

s(z) = lilm inf s;(z), z€R 3)
—00
and
sup |sj(z)| < C1l?, 1€ Z,. (4)
z€R

Let 1 be an orthonormal wavelet in the Schwartz class S(R). If we define a continuous

function f by

f(=z)

Il

i f: C(la m)w(le - m)7

=2 m=0

where
c(l,m) = min(2~ (&) 27 wa),
then we have
H(f, o) = B(f,20) = s(x0)

at each point o in R.



Proof. The existence of {s;}ez, satisfying (3) and (4) follows from Lemma 1. Since

lim  sup  |s;(z) - 5(y)| < lim suplsj(a)l  sup |z -yl
j—oo j J—0 zeR i
(log 5)

lz—yl<2 Gos3)? lz—yl<2

< C, lim j22 e

Jj—oo

=0,

H(f,xzo) = s(xo) at each point zo € R (cf. [1) p.441, proof of Theorem 1.). We only need
to compute the value of 3(f, zo).

Let us assume f locally belongs to I'*(zg). Then by Theorem B, f locally belongs to
C%¢ for some s’ < 0. On the other hand, ¢ € Sy(R) (cf. [4, 2. Corollary 3.7.]). By
Theorem A, there exist two constants C' € (0,00) and 4 € (0, %) such that

[r@rs (’ - ") dz

Let jo be a positive integer such that 5,1-3 < 4. For every j > jo, there exists k; € Z such
that & < zo < %! and we define a; and b; by a; = ;& and b; = 5. Then |b; — zo| < q;

and by (5), we have

-
SCa"’(1+|—ba—$0|) , 0<a<d, |b—zo|<é (5)

|[repvm—Rya| < 25, iz ®

We estimate the left hand side of (6) as follows:

f: i c(l,m) / ¥(2'z — m)2p(Dz — k;) do

=2 m=-00

= C(j, kj) (7)

By (6) and (7), f € I'*(xo) implies

’ / ()2 9@z —F) du

—jos (% ., _ C2*
ol by) =min@ (), 285) < 2 o (8)
Observe that
lim |s; ﬁ — 8§(zo)| < lim sup |s}(z)| :vo—k—J:
j—oo |7\ 2 ? T joogeR Y
j2
< im —
=GRy

=0.



By (8), we have

L k; 1
s < hjrgglfmax (Sj (5) ’E—g?)
= liminf s; (E]-)
j—oo J 2
= liminf s;(xo) + lim (5]' (-k—J) - sj(mo))
j—oo j—oo 2
= s(xp).

Therefore B(f,zo) < s(zo) = H(f,zo). Since H(f,zo) < B(f,Zo) is trivial, we have
H(f,x0) = B(f, o) = s(z0). n.

3 Use of Weierstrass Type Functions

In this section, we construct the Weierstrass type continuous function which has a
prescribed cusp singularity at each point in R.
We begin with the following lemma.

Lemma 2. Lets € [0,00], lo € Z; and {si}icz, C R be such that

(a) liminfs; = s,
l—o00

(b) Sy Z \/l-—lﬁ’ l .>_. lO'

Suppose A > 1 and {61} icz, C R are chosen arbitrary.
(i) If m € Z, and {1}z, is a bounded sequence in R and if we define a continuous

function f by
> Oqlm
fl2)=) g sin(Nz+6), z€R,
1=0

then we have
H(fa .’170) 2 S

at each point xg in R.
(ii)) If we define a continuous function g by

(e <]

g9(x) = Z X}—s?sin()\‘a: +6), ze€R,
1=0

then we have

H(g,z0) = B(g,%0) = s
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at each point ¢ in R.

Proof. (i) By (b), f is a continuous function on R and hence we have only to show
(i) when s > 0.

Let zp € R be fixed arbitrary.

First, we consider the case 0 < s < 1. Let £ € (0,s) be arbitrary. By (a), we can
choose lp € Z, such that s; > s — £ for > I and we put fi(z) = Y70, 9)“},; sin(Alz + 6;).
To show H(f,zo) > s — ¢, it suffices to show f; € C*%(xy) since H(f — f1,T9) = o0 is
obvious. Let z be a real number such that |z — zo| < X}F and choose N € Z, such that
st < |z — %o| < 5. Then we have

00

o™ .
1) = fleoll = (37 S (sinN +8) = sin(X'zo + 6)
1=lo
N-1 1m
< ,z,: ﬁ(Sin()\l-’E +6;) — sin(N'zo + 6;))
=lo
22 all"‘ . l : l
+ —l—(sm(/\ z +6;)) —sin(A'zo + 6;))
i
= A; +A,. (9)

Observe first that there exists a constant M; € (0, 00) such that
™ < MAS, 1> I, (10)

m
A, < 22 < Jaull

To estimate A; and A, we use (10) to obtain
BT
=l A

(/\‘(x;- To) N 01) sin (/\'(1:2— xo))\
N-1

<D log|im A=)z — g
l=lo
N-1
< M, Z Al(l—s+€)|$ _ $0|
=l
M, Ao(1—s+¢) ( AMN=lo)(1—-s+e) _ 1)
- A-s+e _ 1
MIAN(1—3+5)
S N — 1 1© %l

|$ - .’Bol

M —€
< St —q17 — wol’
|a¢|l'" M(z + zo) . [ Az — z0)
A2<2Z ""'2_"'01 sin —2-——
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- Ase 1] |
The estimates for A; and A, with (9) show that there exists a constant M, € (0, oc) such
that

1
|f1(@) = fi(@o)| < Mol — 2ol*™*, | — 20| < 335

Thus H(f1, o) > s—¢ and hence H(f,zo) > s —¢. Since € > 0 is arbitrary, H(f, zo) 2 s.
Next, we consider the case n < s < n + 1 for some n € N. In this case, f is n-times
continuously differentiable on R and we have

S m
() (1) — al™ (1 nmw
fM(z) = ; O sin ()\ z+ 6+ 5 ) )

Thus H(f™, o) > s —n by an argument similar to the case where 0 < s < 1 and hence
H(f,zo) > s holds even for 1 < s < 00.

Finally, we consider the case s = co. In this case, f is obviously infinitely differentiable
at 2o and hence H(f,zg) = 00

(ii) H(g,zo) > s follows from (i), if we put ¢y = 1 for [ € Z, and m = 0 in (i).

For (g, o), let us assume g locally belongs to ['’(zo). Let 3 be a function in Sp(R)
such that $(¢) = 0 if |¢ — 1| > 25! and ¥(1) = 2. Then there exist two constants
M; € (0,00) and n € (0, 1] such that

:1:0) dz

[ st (2

Let jo be a non-negative integer such that -
By (11), we have

< Mza®, 0<a<ln. (11)

sk < n. For every j > jo, we put a; = 5;.

M3 . .
<y J > jo. (12)

} [ @ -z as

We estimate the left hand side of (12) as follows:

./g(a:))\’w()\’(x — xp)) dz

\/Z o sin(\ Iz 4+ Mo + 0)¥(z) dz
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Y(z)dx

ei(A'_jx+z\':to+01) - e—i(,\'-ix+A'zo+0,)
/ 2t

ei(z\'zo+01),¢;(_ )‘l—j) _ e-i(,\'zo+o;),/;( )‘l—j)

o0
> 2l

1=0
_ )l
T 9)\s
- 3 (13)
YD
By (12) and (13), g € I'’(zp) implies ﬁ;; < %—% for every j > jo and hence p <
liminf; . 8; = s < H(g,%0). Therefore 8(g,z0) < s < H(g,zo). Since H(g,zo) <

B(g, o) is trivial, we have H(g, o) = B(g, o) = s. [ ]

Theorem 2. Let s be a function from R to [0,00], which is the lower limit of a
sequence of continuous functions and let {s;}icz, be a sequence of continuous functions
satisfying part (i), (ii) and (iii) of Lemma 1.

Suppose A > 1 and {6i}icz, C R are chosen arbitrary. If we define a continudus
function f by

oo
1
f(z) = Z @ sin(Alz + 6)),
=0

then we have

H(fa 370) = ﬁ(f’ zO) = 8(.’1}0)
at each point zy in R.

Proof. First, we consider the case n < s(zg) < n + 1 for some n € Z,. Using the
Taylor expansion we have

1 1 \1d 1 .
M@ — Nz T ; jdad Na@ | _ (@ = zo)’
1 a1 11
* (n+ 1ldzntt Ma@)| (2 ==, (14)
=8

where § € (min(z, zo), max(z, zo)). It goes without saying that if n = 0 the second term
in the right hand side of (14) does not appear. By (14), we can write

1@) =Y s 0¥z + ) = fi(0) + fo@) + (), (15)
=0
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00
1 .
fl(x) = § : )\13‘(1;0) Sln()‘lx + 0l)7 (16)
1=0

folz) = sz|d$] )‘lsz(z)

1=0 j=1

sin(/\la: + 0,)(x — zo)? (17)

and

dn+1 1 ] n
fslz) = 1 Y sin(X'z + 6;)(z — zo)™*", (18)
(n+ 1)' < dz™t! A @) g

where § € (min(z, o), max(z, To))-
By part (ii) of Lemma 2, H(f1,zo0) = B(f1,%0) = s(xo) follows at once. f; does not
appear if n =0, and if n > 1 we have '

flz) = )
=0 j=

n ZJ:Z 1 (—log NFthay,,..i,50 0 (@0) . 5{ (z0)

)‘ls; (xo)

=1 k=1 (x);
sin(Az + ) (z — z0)?, (19)

where 2(*)j mean the summation under the condition 4y + -+ -+ 4, = j with 3, < .-+ < 4
and {@jg,..i,} are positive integers satisfying 3_,) ®ji,..i < (K + 1)J. By (19), part
(iii) of Lemma 1 and part (i) of Lemma 2, we can deduce that H(f2,zo) > s(xo) + 1. For
f3, we have

oo n+l (i1) (‘k)
_ ( log )‘ l Qni1,iy,...,06 51 ( ) . (5 )
’ f3($) - (n + 1)| ZZ Z )\lsl(&)

1=0 k=1 (¥)nt1

sin(\z + 6;)(z — zo)"*,(20)

where z(*)n+1 mean the summation under the condition 4; + -+ + i = n + 1 with ¢; <

.- < i and {@nt14,,..4, } are positive integers satisfying E(*)nﬂ Qnt1in, e < (K+ 1)+l
By (20) and part (iii) of Lemma, 1, we can deduce that H(f3, zo) = n+1. By the estimates
for fi, f2 and f3, and (15), we can conclude that H(f,zo) = B(f, zo) = s(zo).

Next, we consider the case s(zg) = oo. Let m be a positive integer and let f =
fi + f2 + fa, where fi, fo and f3 are defined by (16), (17) and (18), respectively. But
in this case, we have H(f1,z0) = H(f2,2o) = oo and H(f3,zo) > n + 1 by part (iii) of
Lemma 1 and part (i) of Lemma 2, since liminf;_,, s;(2¢) = 00. By the estimates for f;,
f2 and f3, and (15), we have H(f,zo) > n+ 1. Since n is arbitrary, we can conclude that
H(f,zo) = B(f,zo) = s(zo) even for s(zg) = oo. |
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In the case where s is a continuous function, we have the following result.
Theorem 3. Let s be a continuous function from R to (0,00) such that
s(zo) < H(s, zo)

at each point To in R. Suppose A > 1 and {61}icz, C R are chosen arbitrary. If we define
a continuous function f by

[o <]
|
f(z) = Z No@) sin(A'z + 6;),
1=0

then we have

H(f, (Eo) = ﬂ(f: 370) = 8(2;0)
at each point xo in R.

Proof. Let 7o € R be fixed arbitrary and let = be a real number such that |z —zo| < 1.
Then we have

f(z) = Z ——)‘lizo) sin(\'z + 6) + Z (/\t:(z) - /\lizo)) sin(\'z + ;)
1=0 1=0
= fi(z) + fa(z). (21)

By part (ii) of Lemma 2, H(f1,z0) = B(f1,%0) = s(zo) follows at once. Let € be a
positive number such that s(zo) +& < H(s,zo) and s(zo) + & ¢ N. Then s € C*=0)+¢(g,)
and there exist a polynomial P of degree at most [s(zg) + £], two constants C € (0, 00)
and 4 € (0,1) such that

s(z) = s(zo) + P(x — zo) + Q(z — Z0)
and
1Q(z — z0)| < Clz — 2o ™*e, |z — 3| < 6.

To estimate f,, using the mean value theorem, we write

1 1 (=logN)i(s(z) — s(xo))
_Als(z) - \is(zo) - An ?

where 7 € [min(s(z), s(2o)), max(s(z), s(zo))]. Then we have

fa(z) — ((— log A) Z )‘% sin(\'z + 01)) P(z — zo)

=0
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o0
= (log \) Z sin(Alz + 6))| |Q(z — zo)|
1=0
C(log A) Z — go|*@0)te,
=0

Hence H(f2,z0) > s(zo) + €. By the estimates for fi and f2, and (21), we can conclude
that H(f,zo) = B(f, 7o) = s(zo)- .

Corollary 1. FEach point in R is a cusp singularity of the Weierstrass functions.

Proof. Let W, and W, be the Weierstrass functions (for the definitions of W, and
W,, see (1) and (2)). If we put A = b, s(x )—%éilandel--—forlEZJr orf =0

for I € Z,, then we have HW,,z) = B(W,,z) = loligb) = H(W;,z) = B(Ws, z) at each

point z in R from Theorem 3. [ |
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