On Ideals in H^∞ Whose Closures are Intersections of Maximal Ideals

新潟大・理 泉池敬司 (Keiji Izuchi)
Faculty of Science
Niigata University

§1. Introduction

Let H^∞ be the Banach algebra of bounded analytic functions on the open unit disk D. We denote by $M(H^\infty)$ the set of non-zero multiplicative linear functionals of H^∞ endowed with the weak*-topology of the dual space of H^∞. Identifying a point in D with its point evaluation, we think as $D \subset M(H^\infty)$. For $\varphi \in M(H^\infty)$, put $\text{Ker} \varphi = \{ f \in H^\infty; \varphi(f) = 0 \}$. Then $\text{Ker} \varphi$ is a maximal ideal in H^∞, and for a maximal ideal I in H^∞ there exists $\psi \in M(H^\infty)$ such that $I = \text{Ker} \psi$. Usually $M(H^\infty)$ is called the maximal ideal space of H^∞. For $f \in H^\infty$, the function $\hat{f}(\varphi) = \varphi(f)$ on $M(H^\infty)$ is called the Gelfand transform of f. We identify f with \hat{f}, so that we think of H^∞ the closed subalgebra of continuous functions on $M(H^\infty)$. Let L^∞ be the Banach algebra of bounded measurable functions on ∂D. We denote by $M(L^\infty)$ the maximal ideal space of L^∞. We may think that $M(L^\infty) \subset M(H^\infty)$ and $M(L^\infty)$ is the Shilov boundary of H^∞, that is, the smallest closed subset of $M(H^\infty)$ on which every function in H^∞ attains its maximal modulus. A nice reference on this subject is [3].

For $f \in H^\infty$, there exists a radial limit $f(e^{i\theta})$ for almost everywhere. Let h be a bounded measurable function on ∂D such that $\int_0^{2\pi} \log |h| \, d\theta / 2\pi > -\infty$. Put

$$ f(z) = \exp \left(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log |h(e^{i\theta})| \, d\theta / 2\pi \right), \quad z \in D. $$

A function of this form is called outer, and $|f(e^{i\theta})| = |h(e^{i\theta})|$ almost everywhere. A function $u \in H^\infty$ is called inner if $|u(e^{i\theta})| = 1$ a.e. on ∂D. For a sequence $\{z_n\}_n$ in D with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, there corresponds a Blaschke product

$$ b(z) = \prod_{n=1}^{\infty} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in D. $$

A Blaschke product is called interpolating if for every bounded sequence of complex numbers $\{a_n\}_n$ there exists $h \in H^\infty$ such that $h(z_n) = a_n$ for every n. For a non-negative bounded singular measure $\mu, \mu \neq 0$, on ∂D, let

$$ \psi_\mu(z) = \exp \left(- \int_{\partial D} \frac{e^{i\theta} + z}{e^{i\theta} - z} \, d\mu \right), \quad z \in D. $$
Then ψ_μ is inner and called a singular function. It is well known that every function in H^∞ is factored as an inner function times an outer function, and an inner function is factored as a Blaschke product times a singular function.

For a subset E of $M(H^\infty)$, let $I(E) = \cap \{\text{Ker } \varphi; \varphi \in E\}$ be the intersection of maximal ideals associated with points in E. For $f \in H^\infty$, let $Z(f) = \{\varphi \in M(H^\infty); \varphi(f) = 0\}$ be the zero set of f. In this paper, we mean that an ideal is a non-zero proper ideal in H^∞. For an ideal I in H^∞, put $Z(I) = \cap \{Z(f); f \in I\}$, then $I \subset I(Z(I))$. An ideal I is called prime if for any $f, g \in H^\infty$ with $fg \in I$, then $f \in I$ or $g \in I$. There are many studies of prime ideals in H^∞, see [4, 14, 15, 16]. Recently, Gorkin and Mortini [6, Theorem 1] proved that a closed prime ideal I is an intersection of maximal ideals, that is, $I = I(Z(I))$. And they pointed out that if I is a (non-closed) prime ideal such that $Z(I) \cap M(L^\infty) = \emptyset$, then the closure of I is an intersection of maximal ideals, that is, $\overline{I} = I(Z(I))$.

Let E be a closed subset of $M(H^\infty) \setminus D$ such that $E \cap M(L^\infty) = \emptyset$. Let $J = J(E)$ be the ideal of H^∞ which consists of functions in H^∞ vanishing on some open subsets U of $M(H^\infty) \setminus D$ such that $E \subset U$. In [7, Theorem 4.2], Gorkin and Mortini also showed that $\overline{J} = I(Z(J))$. It is a very interesting problem to determine the class of ideals I satisfying $\overline{I} = I(Z(I))$. But it seems difficult to give a complete characterization of these ideals.

In Section 2, we introduce the following condition on ideals I in H^∞ to study ideals I satisfying $\overline{I} = I(Z(I))$. We prove that if an ideal I of H^∞ satisfies condition (a), then $\overline{I} = I(Z(I))$. We also give some examples of ideals I satisfying condition (a).

In Section 3, we study an ideal $I(f)$ of H^∞ which is generated by a noninvertible outer function f. There exist noninvertible outer functions f and g satisfying $\overline{I(f)} = I(Z(I(f)))$ and $\overline{I(g)} \neq I(Z(I(g)))$. As an application of the theorem given in Section 2, we characterize noninvertible outer functions f satisfying $\overline{I(f)} = I(Z(I(f)))$.

(a) For any $0 < \sigma < 1$ and a subset E of D such that $Z(I) \cap \text{cl } E = \emptyset$, there exists $h \in I$ such that $\|h\|_\infty \leq 1$ and $|h| \geq \sigma$ on E, where $\text{cl } E$ is the weak*-closure of E in $M(H^\infty)$.

2. Closure of ideals

We introduce the following condition on ideals I in H^∞.

(a) For any $0 < \sigma < 1$ and a subset E of D such that $Z(I) \cap \text{cl } E = \emptyset$, there exists $h \in I$ such that $\|h\|_\infty \leq 1$ and $|h| \geq \sigma$ on E, where $\text{cl } E$ is the weak*-closure of E in $M(H^\infty)$.

The main theorem of this paper is the following.
THEOREM 2.1. Let I be an ideal in H^∞ satisfying condition (α). Then $\overline{I} = I(Z(I))$.

Generally the converse of Theorem 2.1 does not hold, but it holds for some ideals. Let G be the set of point φ in $M(H^\infty)$ such that $\varphi(b) = 0$ for some interpolating Blaschke product b. By Hoffman's work [11], G is an open subset of $M(H^\infty)$ and for each $\varphi \in G$ there exists a continuous one to one map L_{φ} from D into $M(H^\infty)$ such that $L_{\varphi}(0) = \varphi$ and $f \circ L_{\varphi} \in H^\infty$ for every $f \in H^\infty$. Put $P(\varphi) = L_{\varphi}(D)$, and this set is called the Gleason part containing φ. Then we have

PROPOSITION 2.1. Let I be an ideal in H^∞ such that $P(\varphi) \subset Z(I)$ for every $\varphi \in Z(I) \cap G$. Then $\overline{I} = I(Z(I))$ if and only if I satisfies condition (α).

By the proof of Theorem 2.1 and Proposition 2.1, we have

COROLLARY 2.1. Let I be an ideal in H^∞ algebraically generated by countable functions. Suppose that $P(\varphi) \subset Z(I)$ for every $\varphi \in Z(I) \cap G$. Then $I(Z(I))$ is a closed ideal generated by countable functions.

Examples of ideals satisfying condition (α) are given in the following.

PROPOSITION 2.2. The following ideals I in H^∞ satisfy condition (α).

(i) I is a prime ideal in H^∞ which does not contain any interpolating Blaschke product.

(ii) Let f be a function in H^∞ which does not vanish on D. Let I be the ideal in H^∞ algebraically generated by functions $f^{1/n}, n = 1, 2, \ldots$.

(iii) Let E be a closed subset of $M(H^\infty) \setminus D$ such that $E \cap M(L^\infty) = \emptyset$. Let I be the ideal of functions in H^∞ which vanish on some open subsets U of $M(H^\infty) \setminus D$ such that $E \subset U$.

(iv) Let S be a set of non-negative bounded singular measures $\mu, \mu \neq 0$, on ∂D. Suppose that S satisfies the following conditions.

(a) For $\mu, \nu \in S$, there exists $\lambda \in S$ such that $\lambda \leq \mu \wedge \nu$, where $\mu \wedge \nu$ is the greatest lower bound of μ and ν,

(b) For every $\mu \in S$ and a positive integer n, there exists $\lambda \in S$ such that $n\lambda \leq \mu$.

Let I be the ideal algebraically generated by singular functions $\psi_{\mu}, \mu \in S$.

By Theorem 2.1 and Proposition 2.2, we have

COROLLARY 2.2. Let f be a function in H^∞ which does not vanish on D. Let I be the ideal in H^∞ algebraically generated by functions $f^{1/n}, n = 1, 2, \ldots$ Then
\[I = I(Z(I)). \]

Corollary 2.3 [7, Theorem 4.2]. Let \(E \) be a closed subset of \(M(H^\infty) \setminus D \) such that \(E \cap M(L^\infty) = \emptyset \). Let \(I \) be the ideal of functions in \(H^\infty \) which vanish on some open subsets \(U \) of \(M(H^\infty) \setminus D \) such that \(E \subset U \). Then \(\overline{I} = I(Z(I)) \).

We also have the following.

Corollary 2.4. Let \(I \) be a prime ideal in \(H^\infty \). Then \(\overline{I} = I(Z(I)) \).

In [6], to prove that \(I = I(Z(I)) \) for a closed prime ideal \(I \) Gorkin and Mortini used the following formula given by Guillory and Sarason [9, pp.177-178]. Let \(R \) be an open subset of \(D \) such that \(\partial R \cap D \) is a system of rectifiable curves. Then

\[
\int_{\partial D} \frac{F}{u} \, dz = \int_{\partial R \cap D} \frac{F}{u} \, dz
\]

(2.1)

for \(F \in H^\infty \) and an inner function \(u \) satisfying \(|u(z)| < \beta \) for \(z \in R \) and \(|u(z)| \geq \alpha \) for \(z \in D \setminus R, 0 < \alpha < \beta < 1 \). Formula (2.1) is used in several papers, see [8, 12, 13]. When \(u \) is not inner, equation (2.1) does not holds.

To prove Theorem 2.1, we need another formula similar to (2.1). The following theorem is interesting in its own right.

Theorem 2.2. Let \(f \in H^\infty, \|f\|_\infty = 1, \) and \(0 < \varepsilon < 1/2 < \sigma < 1 \). Let \(R \) be an open subset of \(D \) such that \(\partial R \cap D \) is a system of rectifiable curves satisfying

(i) \(|f(z)| < \varepsilon \) for \(z \in R \).

We assign the usual orientation on \(\partial R \). Put \(\Gamma = \partial R \cap D \). Let \(h \in H^\infty \) such that \(\|h\|_\infty = 1 \),

(ii) \(0 < 1/2 \leq |h(z)| \) for \(z \in D \setminus R \),

(iii) \(|h(e^{i\theta})| \geq \sigma \) for almost every \(e^{i\theta} \in \partial D \) with \(|f(e^{i\theta})| > \varepsilon \).

Then

\[
\left| \int_{\Gamma} \frac{F}{h} \, dz - \int_{\partial D} fF\overline{h} \, dz \right| \leq 4(\varepsilon + 1 - \sigma)\|F\|_1
\]

for every \(F \in H^\infty \), where \(\|F\|_1 = \int_0^{2\pi} |F(e^{i\theta})| \, d\theta / 2\pi \).

As an application of Theorem 2.2, we shall prove Theorem 2.1. Our theorems owe to the deep theorems due to Bourgain [2] and Suárez [18, 19].

Let \(g(z) = (1 - z)/2 \). Then \(g \) is an outer function and is not invertible in \(H^\infty \). Let \(I = gH^\infty \) be the ideal generated by \(g \). Then it is not difficult to see that for \(h \in I \),

\[
\|h - hg(\sum_{k=0}^{n-1} \left(\frac{1+z}{2}\right)^k)\|_\infty = \|h - h(1 - \left(\frac{1+z}{2}\right)^n)\|_\infty \to 0 \quad \text{as} \quad n \to \infty.
\]
Hence $I = I(Z(I))$. One might ask whether $I = I(Z(I))$ for an ideal I generated by a single outer function in H^∞ which is not invertible in H^∞. To answer this question, we need to recall Jensen's equality. For a point $\varphi \in M(H^{\infty})$, there is a probability measure μ_{φ} on $M(L^{\infty})$ such that $\int_{M(L^{\infty})} f \, d\mu_{\varphi} = \varphi(f)$ for every $f \in H^{\infty}$. We denote by $\text{supp} \mu_{\varphi}$ the closed support set of μ_{φ}. Then the following Jensen inequality holds

$$\log |\varphi(f)| \leq \int_{M(L^{\infty})} \log |f| \, d\mu_{\varphi}, \quad f \in H^{\infty}.$$

When it holds that

$$\log |\varphi(f)| = \int_{M(L^{\infty})} \log |f| \, d\mu_{\varphi},$$

we say that f satisfies Jensen's equality for $\varphi \in M(H^{\infty})$. It is well known that every invertible functions in H^∞ satisfies Jensen's equality for every point in $M(H^\infty)$, see [10, Chapter 10]. Our third theorem is

Theorem 2.3. Let f be an outer function in H^∞ which is not invertible in H^∞. Let $I = H^\infty f$ be the ideal generated by f. Then $I = I(Z(I))$ if and only if f satisfies Jensen's equality for every point m in $M(H^{\infty})$ with $m(f) \neq 0$.

Axler and Shields [1, Proposition 5] showed that a function f in H^∞ satisfying $\text{Re} f > 0$ on D satisfies Jensen's equality for every point in $M(H^\infty)$. For an inner function q, the function $q + 1$ satisfies this condition. Put $QA = H^\infty \cap H^\infty + C$, where C is the space of continuous functions on ∂D and $H^\infty + C$ is the set of complex conjugates of functions in $H^\infty + C$. In [20], Wolff proved that for every $f \in L^{\infty}$ there exists an outer function $h \in QA$ such that $hf \in H^{\infty} + C$. When $f \not\in H^{\infty} + C$, the function h is not invertible in H^{∞}. So that there are many outer functions in QA which are not invertible in H^{∞}. In [17], Sarason proved that if $f \in H^{\infty}$, then $f \in QA$ if and only if $f_{\text{supp} \mu_{\varphi}}$ is constant for every $\varphi \in M(H^{\infty}) \setminus D$. Hence QA outer functions satisfy Jensen's equality for every $\varphi \in M(H^{\infty})$. We have following corollaries as applications of Theorem 2.3.

Corollary 2.5. Let $I = fH^{\infty}$ be an ideal in H^{∞} generated by a function f which is not invertible in H^{∞} and $\text{Re} f > 0$ on D. Then $I = I(Z(I))$.

Corollary 2.6. Let $I = fH^{\infty}$ be an ideal in H^{∞} generated by an outer function in QA which is not invertible in H^{∞}. Then $I = I(Z(I))$.

References

izuchi@math.sc.niigata-u.ac.jp