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The corona type decomposition of Hardy-Orlicz spaces
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Abstract
The HP -corona type problem in several complex variables has been solved affirmatively by
Amar [1], Andersson [2], Andersson-Carlesson (3, 4], Krantz-Li [11] and so on. Especially, Andersson-
Carlsson [4] proved the HP -norm estimates of the corona solutions which are constructed by a
concrete integral representation formula. In this paper, we give some Orlicz space versions for inter-
polation theorems of Marcinkiewicz type and prove the Hg-norm estimates of the corona solutions
for ¢ € A2 N V2. Moreover we also show that the Az-condition is reasonable in a sense.

1 Introduction

In this paper, we consider a candidate of holomorphic space, in which we discuss the corona type problem.
The corona problem was conjectured by S.Kakutani as early as 1941 and was solved affirmatively by
L.Carleson in 1962. Here, the corona problem is meant to be a problem about the structure of the
maximal ideal space M of H*°(D). That is, open unit disc D is dense in M with respect to the Gelfand
topology ? This question is equivalent to the existence problem as follows. For any fi,---, frn € H®(D)
such that inf,ep Y je, |fx(2)] = 8 > 0, is there exist g1, - - -, gm € H*°(D) such that } ;7 | fe(2)gx(2) =1
? fi,--+,fm and g1, - -, gm are refered to as the corona data and the corona solutions respectively. Let
X be a holomorphic space. We consider the question whether the mapping defined by

m
Xx--xX3(grgm)— Y fege € X
k=1

is surjective. We say that X has the X-corona solution (for the corona data fi,---, fi,) if this mapping
is serjective. Then, let T : X — X, (k=1,---,m) be an operator such that

h(z) = ifk(z) -Teh(z), (heX,zeQ)
k=1

if X has the X-corona solution for the corona data fi,---, fm. In particular we refer to Tih, (k =
1,---,m) as the X-corona solution if T is bounded on X in such sense as ||Tih||x < C| k| x-

Then the corona theorem asserts that H°°(D) has the H°(D)-corona solutions for any corona data.
On the other hand, the corona problem in several complex variables has not been solved yet. In some
studies of the corona problem in several complex variables so far, the H? -corona type problem has been
solved affirmatively. That is, it is shown that HP has the HP-corona solution. (For details, see Amar [1],
Andersson [2], Andersson-Carlsson (3, 4}, Krantz-Li [11] and so on.)

Now, we are motivated by the question whether H* can be approximated by some holomorphic
spaces X having the X-corona solution. And we consider the Hardy-Orlicz space Hy(f?) , which is a
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generalization of Hardy spaces HP , as a candidate of such space. In what follows, we let @ C C™ be a
bounded strictly pseudoconvex domain with a smooth boundary of class C®.

At first, we review some convex functions. We refer to a convex function ¢ : R — R ; U{co} as a
Young function if (1) ¢(z) = ¢(—z), (2) ¢(0) = 0 and (3) lim;— ¢(z) = co. Moreover, a continuous
Young function ¢ is called an N-function if (1) ¢(z) = 0iff z = 0 and (2) lim o %") =0, limgy— oo @ =
oo. Then, we introduce two classifications for convex functions which play an important role below. A
Young function ¢ : R — R . satisfies the Agp-condition (¢ € A3) if there exists a positive constant K
such that

¢(2z) < K¢(z), (z=0).

And a Young function ¢ : R — R , satisfies the V; -condition (¢ € V) if there exists a positive
constant a > 1 such that

3(2) < 5-6(a2), (220,

Let ¢ be an N-function satisfying the A, and V;-condition. Then, the Hardy-Orlicz space Hy(R) is
defined as follows.

Hy(9) = {f € 0@ :tmsup [ o(1f)do. < oo}. |

Since f € Hy(S2) belongs to the Nevanlinna class, f has the nontangential limit f(¢) at almost every
¢ € 092 From now on, we identify H4(2) with a function space on the boundary 6.

2 Main results

We use the real variable methods such as an Orlicz space version of the interpolation theorem of
Marcinkiewicz type, Hardy-Littlewood maximal operator, nontangential maximal operator and Orlicz
space theory to characterize the Hardy-Orlicz space. Our main results are as follows.

Theorem 1 Suppose that ¢ € Ay N Vy. Then every function in Hardy-Orlicz space Hy(2) can be
approrimated by some functions holomorphic up to the boundary with respect to Luzemberg norm:

Hy(Q) = [A(0Q)]L4(09)

where we recall that A(8Q) is the restriction of C(Q) N O(Q) to the boundary 8Q and we mean
[A(09)] L, (80) as the closure of A(OQ) with respect to the Luzemberg norm.

Theorem 2 Suppose that ¢ € AaNVy. Then the image of Orlicz space Ly(0S) by the Szegé projection
S coincides with Hardy-Orlicz space Hy(Q) , that is,

SLs(8Q) = Hy(Q).

By combining the theorem above and an Orlicz space version of the interpolation theorem of Marcinkiewicz
type, we obtain an interpolation theorem for Hardy-Orlicz spaces.
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Theorem 3 Let ¢, 2 € Ay NV, be satisfying that supy :g—:\\)% < 1, where ¢ and @y are the left

derivatives of ¢ and @2 respectively. We suppose that a sublinear operator B defined on H'(Q) and
Hg, () is of weak type (1,1) and of weak type (¢2, ¢2) respectively. Then B is defined on Hy() and
the following holds:

| 8(Bfi)do < Cint { [ ollghdo : g€ Ly(oR) 5. £ = s.q} ,
o0 onN

where S is the Szego projection.

Before the corona type decomposition of Hardy-Orlicz spaces Hy(2) , we review the corona type
decomposition of Hardy spaces HP(f) as follows. Andersson-Carlsson [4] shows that an explicit integral
formula due to Berndtsson [5] provides the HP-corona solutions.

Theorem 4 (Andersson-Carlsson [4])
Let1 <p<oo. If f1,--, fm € H®() satisfies that 3";~, |fi(z)] = 6 > 0 for all z € Q, then there exist
integral operators T; : HP(Q) — HP(Q), (i = 1,---,m) such that Y .-, fi(2)T;h(2) = h(2), (z € Q) and
|T:h|l, < C|lhllp for a positive constant C.

By combining the theorems above, we can show that this integral formula due to Berndtsson [5]
admits Hy-estimates if § € A, N V,.

Corollary 1 Let ¢ € Aa NV, If fi,---,fm € H®(Q) are corona data, that is, they satzsfy that
S 1fi(2)] > 6 > 0 forall z € Q, then there exist integral operators T; : Hy(Q) — Hy(Q), i =1,---,m)
such that Y v, fi(2)Tih(z) = h(z) (z € Q). Furthermore it follows that there erists a positive constant
C such that

o(|Tih|)do < Cinf {/ &(lgl)do : g € L4(09Q) such thath = Sg} ,
Q E:1)
where S is the Szegé projection.

From the theorems above, we may say that the Hardy-Orlicz space Hy(Q2) with a moderate growth
condition (i.e. ¢ € A2NV3) has the Hy(f2) -corona solution. On the other hand, a question whether the
condition that ¢ € A, is too strong occurs. Then we investigate the relation between the boundedness
of the Szegt projection and the operators constructing the corona solutions and the gorwthness of the
N-function ¢ in order to find a reasonable condition with respect to the growthness of ¢.

Theorem 5 Let ¢ be an N-function. We suppose that S is the Szegé projection on Q. If S is of weak
type (¢, 9) :

sNoISf1 >3 <€y [ p(Cilfda, (v>0, f € Ly(o0)),
then ¢ satisfies the Ag-condition.

Theorem 6 Let fi, -, fm € H®(R) be the corona data satisfying that 3", || filloo < 1. We suppose
that T; : H®(Q) — HY(Q), (i = 1,---,m) is a linear operator such that h(z) = S, fi(2)Tik(z), (2 €
Q). If every operator T; satisfies that

sNo({IT:hl > A}) < C /a _(lhDdo, (3> 0, h € Hy(®),

then ¢ satisfies the Ag-condition.
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3 Preliminaries

Most main theorems are obtained as applications of an Orlicz space version of the interpolation theorem
of Marcinkiewicz type. At first, we give a definition of weak type inequality in L4(X) to improve the
interpolation theorem in Gallardo [7], where X is a space of homogeneous type. We denote the quasi-
distance over X by d and the Borel regular measure on X with doubling condition by u. Let us recall
that an operator T is said to be quasi-additive if |T'(f + g)| < C(|Tf| + |Tg|) for a constant C > 0. If
C =1 here, then T is called sublinear.

Definition 1 A sublinear operator T defined on an Orlicz space Ly(X) 1is of weak type (¢, ) if there
exists positive constants C1 and Cy such that .

sz e X :[Tf| > AP <Gy /X $(Calfdp,  (f € Lg(X), A>0).

Lemma 1 Let ¢, ¢1 and ¢ be three N-functions satisfying the following growth conditions:
p(N)1(A)

U s Ner () < b
P(N)p2(N)
S Ren > "

where ¢,p1 and @o are the left derivatives of ¢, ¢1 and ¢o respectively. Then, there exist positive
constants C; and Cy such that

[ 26 < Gty >0
o), - g b
o ) = Py 70

Proof: We may take a positive number r such that

pNer(N)

U se () <<

Then it follows that

ﬂ p1(A) _ 1
YEN <re(A) ¢1(/\)2 ()\) <¢1(>\)> , (A>0).

dn the other hand, for any Ag > 0, the following holds:

) o1(t) p1(0) )
%8 0] A ¢(t>dt5rAO m(t)dt“"g(qsl(xo))’ (A2 o).
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Hence we obtain that

* p(A) o) 17 * o(A) ,\ _  d(u) o(\)
u <P1(/\)d/\ [d’l(/\)]u *r u ¢1(/\)d/\_r¢1(u)+r '\ ¢1()\)d)‘ (v >0),

since 2AL < _#o) 4 (\)r-1 = Cg;(A)™~! = 0, (A — o0). Thus we conclude that

61(A) = d1(Ao)”
p(A) r_ ¢(u)
/¢( P17 hw 470

We can show the another inequality in the same way as above. [J

Using Lemma 1, we can improve the interpolation theorem in Gallardo [7] to prove the next theorem.

Theorem 7 Let ¢, ¢1 and @2 be as in the lemma above and ¢y, P2 € As. We suppose that a sublinear
operator T is of weak type (¢1,$1) and of weak type (@2, d2). Then T is bounded on the Orlzcz space
Ly(X):

[ orsdu <y [ o(Calfdn, (£ € Lo(x))
Moreover we can obtain the same conclusion if T is of type (00, 00) and of weak type (¢po, d2).
Proof. From the weak type inequality and the sublinearity in the hypothesis, we can assume that
IT(f+9) < ITfl+I|Tyl,
HOWITA >N < G [olfhdn, (=1,2).

For any f € Ly(X) and any XA > 0, we take f and f* as follows:

o= fxunsyy
= f-h
Then, since v(|Tf| > A) < v (ITfrl > 3) + v (ITf*| > 3), the following holds.

[otirsias /0 T oOW(T S| > A)dA

/:099(/\)1/ (ITf,\I > )d,\+/ oAy (ITf"|>-;‘- L.

IA

It may be noted that fA € Ly, and f* € Lg,. In fact, ¢2(z) < Cro(z), (A = R < z) and
¢1(z) < Cro(z), (z < R = 3), it follows that 2(|f2]) < Cre(lf]) and ¢1(|f*]) < Ché(If]). From the
weak type inequality, the first term in the right hand side above is less than

oo sa(lfa) 21 ()
/0 P(N)dA / %% Bdu < 0, / ol [ 25




We note that there exists K > 0 such that K q&g(%) > ¢2(A) since @2 € Ag. Then, by using Lerr

ve obtain that
2| £l 2{ £l
[ < k| o) 4
o #2(3) 0 ¢>2(>\)

, 6(21f))

< K5
,6(217)

< K5

Hence the following holds.

. \ , of) ;.
[ (izn1> 3)an < o [oumTas

CoK’ / 5(2/fl)du

IA

In a similar way as above, we can obtain that

oo A . :
[ oo (221> §) v ik [ ot
In the case that T is of type (o0, 00), we may assume that
ITfllo < Cillflloo-
HOATA >N < G [oallfhdn

For any f € Ly(X) and any A > 0, we take f) and f as follows:

o= Xuns

o= f-h
We note that v (|Tf*| > 3) = 0 since |Tf*||co < C1ll oo < Clﬁé\"f = 3. Thus we obtain that

A AL A A
v(Tfl>A) <v |Tf,\|>§ +v||Tf |>§ =v||Tf|> 5

Therefore it follows that

[otsnar = fsou)u(r:rfb»dx

/°° (A <|Tf,\| > ) dx

f¢2(|f>‘|)d#
< / 2203)

2C11f] S0()\)
o / oa(|f1)ds /0 o

IA

IA

IN
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Since g2 € Ao, there exists K > 0 such that K ¢o( -’%) > ¢2(A). Then, using Lemma 3, the following

holds.
2C)|f] 2C1| £l
& fortiian [ Ehar < ek [onthan [ Lo
< ok [ llha,

Now we should note that ¢2(|f|) < ¢2(2C1|f|) if 2C; > 1 and that ¢o(|f]) < L¢2(2Ci|f|) for an
L > 0if 2C, < 1 since ¢3 € As. Hence we obtain that

?(2C1|£1)

Ok [ e Sy

du < GoKL [ $(2C1fl)d
This completes the proof. [J

Furthermore, a small modification of the proof in Coifman-Weiss [6] leads us to the following.

Theorem 8 Let ¢ € A2NV; and ¢z be an N-function . We suppose that supy g %% < 1 and that

a sublinear operator B : Hy (X) + Ly, (X) — M(X) is of weak type (Hk,,1) and of weak type (42, $2),
where M(X) is the set of all measurable functions on X. If X is bounded, then the following holds:

/ (Bfl)du < C / (1 f)du, (f € Ly(X)).
X X
If X is unbounded , then the following holds:

IBflle) < Clliflle)s (f € Lp(X)).

4 Proofs

Proof of Theorem 1. We give a sketch of the proof here. Details are left to Imai [8]. Firstly we let
f € [A(09)]L,0)- Then we can take a sequence f, € A(OR) such that ||f — full(g) — 0, (R — o).
Using the Poisson kernel P(z,(), we define a function F by

F(z) = /a P(OfQde(0), (29,

In the same way as is shown in Imai [8], we know that F is holomorphic in 2. Moreover it follows that

IFe(O)l < CMuLf(C), (a-e.C €09Q)

in Stein [15]. Since the Hardy-Littlewood maximal operator My, is of weak type (1,1) and of type
(00,0), it follows that ¢(MpLf) is integrable from Theorem 7. And, since F.({) converges to f()
pointwisely at almost every ¢ € 99 by means of the well-known property of the Poisson integral, the
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Lebesgue dominated convergence theorem shows that [, ¢(|F|)do — [, ¢(fl)do, (€ — 0). Therefore
we have that || F. — |4y — 0, (€ — 0). (For details, see Rao-Ren [14].) This shows that [A(6()] Lyq) C
Hy ().

Conversely, we let f € Hy(Q). And we choose a finite open covering U = {Uy,- -+, Uy} of 02 and a
point p; € U; for every j =1,---,¢q. If 1 =~1 + -+ 4 7, is a partition of unity subordinate to the open
covering U = {Uy,---,U,}, we define f; by

#0) = [ 383 10m(0ao0), (ze9),
K(¢,2)

where DL is the Henkin-Ramirez reproducing kernel. Then it is trivial that f; is holomorphic in a
neighborhood of QU (89 \ U;). Moreover we may write that

K(¢,2)
| 1000 ~we g
= TfG)+ @)

Since it is proved that the operator Tj is of type (1,1) and of type (oo, oo) when T f is resticted to 92
for sufficiently small £ > 0 by Stout [18], Theorem 7 shows that

imsup [ o((Tif)ehdor <C [ (o

Hence it follows that f; € Hg(Q).
Now, for any sufficient small € > 0, we suppose that

£12¢) = fi(¢ — ewy),

where v; is the outer unit vector transversal to OS2 at the point p;. Then f(e) € O(Q) and we know that

£2(Q1 < C+ CMuLf(Q)
in the same way as is shown in Imai [8]. Since f; € L¢(6Q) Theorem 7 shows that C + CMyLf; €
Ly(09). Hence it follows that [, ¢ f(e Ndo — [5q ¢(1f;])do, (€ — 0) from the Lebesgue dominated

convergence theorem. From this convergence we have || f(s) - f3|| — 0, (E — 0). (For details, see Rao-
Ren [14].) This shows that f € [A(0Q)] L (a0) since f = f1 +--+ fg. O

do(¢) + f(2)7 (2)

Proof of Theorem 2. Since ¢ € ANV, there exist ¢; and ¢2 € A2NV2 such that supy .o f%\-)lg%(i—; <

1 and infyso g&;fg:\\; > 1. (For details, see Gallardo [7] and Rao-Ren [14].) Hence we can apply Theo-

rem 7 to the Szegd projection S in order to complete the proof. [

Proof of Theorem 3. We consider the composition operators A = Bo S of a sublinear operators B
and the Szegd projection S. Then, since A is bounded on real Hardy space H},.(09) and on an Orhcz
space Lg,(09), we can apply Theorem 8 to the operator A in order to show that

/ $(|Agl)do < C / o(lg)do, (g € Lg(69).
519 N
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Since Hy(Q2) = SLy(0N) as shown in Theorem 2, we can take any g € Ly(0S2) such that f = Sg for
f € Hy(2) to obtain that

/ $(|Bf|)do = / 6(|4gl)do < C / o(lg))do.
on on N

Since g is arbitrary function in L4(0S2) such that f = Sg, we can conclude that

[ 6o < Cint { [ #ahdo : g € Lo(@R) 5.5 = Sg} .
80 o
]

Proof of Corollary 1. Since ¢ € A2NV3, there exist ¢ and ¢2 € AaNV3 such that sup, ., g%}%% <

1 and inf)5¢ ﬁ%}%ﬁ—; > 1. (For details, see Gallardo (7] and Rao-Ren [14].) Hence we can apply Theo-
rem 7 to operators T; in Theorem 4 in order to complete the proof. (1

Before giving the proofs of Theorem 5 and 6, we show a lemma as follows.

Lemma 2 Let ¢ be an N-function. We suppose that a sublinear operator T on Ly(0Q) is of weak type
(¢,9), that is,

d(Na(ITf]1 > ) < C /an ¢(Ca|fl)do, (f € Ly(892), A > 0).
If supfy..<1 IT flloo > Ca, then ¢ satisfies the Az-condition.
Proof. From the hypothesis, there exist » > 1 and || f||cc < 1 such that
~ K=o({|Tf] > rC2}) > 0.
Then, for any A > 0, we define a function g € Ly(99Q) by

A
9(¢) = E‘f (©)-
By applying the inequality of weak type to g, we obtain that
#Ne (1Tal >N <Cs [ _p(Calgl)do,

Since {|Tg| > A} = {|Tf| > rC2}, we have that o ({|Tg| > A\}) = o ({|Tf| > rC2}) = K > 0. Therefore,
we have that

¢(A)

IA

o {Ts1>rCapCr [ o (@%anw) do
CiKo] - ¢ (2) .

IA



65

This inequality shows that ¢ satisfies the A -condition. U

Now we are ready to prove Theorem 5 and 6.
Proof of Theorem 5. Since SL>(8Q) = BMOA > H*, it follows that

sup {||Sflleo : f € L™ such that || fllc <1} = o0.

Therefore we can apply Lemma 2 to the Szegd projection S. O

Proof of Theorem 6. We suppose that sup{||Tif|lc : f € H*®such that | fllec <1} <1 for every
i=1,---,m. Now we choose a bounded holomorphic function h € H ©(Q) such that Y 1= | fillo <
llhllco < 1. Then we have that

Ihllo < D lfilloollTihlloo

<
i=1
m
< D lfilleo
i=1
< ||Afleo-
This is a contradiction. Therefore there exist a certain k € {1,---,m} such that

sup{|| Tk flloo : f € H such that Iflleo <1} > 1.

Then we can apply Lemma 2 to the operator Ty. [
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