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Abstract
The non-relativistic (scaling) limit of a Hamiltonian of a Dirac particle interact-
ing with the quantum radiation field yields a self-adjoint extension of the Pauli-Fierz
Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics.
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1 Introduction

A Hamiltonian H of a Dirac particle — a relativistic charged particle with spin 1/2 —
interacting with the quantum radiation field is called a Dirac-Mazwell operator. In this
note we report a result on the non-relativistic limit of H.

The Dirac-Maxwell operator H is of the form H = Hp + H;.q + Hy, where Hp is a
Dirac opeartor describing the Dirac particle system only, H;aq is the free Hamiltonian
of the quantum radiation field (a quantum version of the Maxwell Hamiltonian in the
Coulomb gauge) and Hj is the interaction term beween the Dirac particle and the quantum
radiation field. As for the Dirac operator Hp, the non-relativistic limit has already been
investigated and well understood ([10, Chapter 6] and references therein). We extend the
methods used in the case of the Dirac operator Hp to the case of H. This can be done
in an abstract framework with further developments of the theory of scaling limits on
strongly anticommuting self-adjoint operators [1]. The main result we report in this note
is that the non-relativistic limit of H yields a self-adjoint extension of the Pauli-Fierz
Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics.

*Supported by the Grant-in-Aid No. 13440039 for Scientific Research from the JSPS.



2 The Dirac-Maxwell Operator and The Pauli-Fierz
Hamiltonian

For a linear operator T' on a Hilbert space, we denote its domain by D(T), and its
adjoint by T* ( provided that T is densely defined). For two objects @ = (a,, a3, a3) and
b = (b, bz, b3) such that products a;b; (j = 1,2,3) and their sum can be defined, we set
a-b:=3"_,a;b;

We use the physical unit system in which c(the speed of light)=1and ki =1 (& :=
h/(27); h is the Planck constant).

2.1 The Dirac operator

Let D; (7 = 1,2,3) be the generalized partial differential operator in the variable z;, the
j-th component of & = (z,,z,,23) € R3, and V := (D, Dy, D3).

We denote the mass and the charge of the Dirac particle by m > 0 and ¢ € R\ {0}
respectively. We consider the situation where the Dirac particle is in a potential V which
is a Hermitian-matriz-valued Borel measurable function on R3. Then the Hamiltonian of
the Dirac particle is given by the Dirac operator

Hp:=a-(-itV)+mpB+V (2.1)
acting in the Hilbert space
Hp := &*L*(R?) (2.2)

with domain D(Hp) := [@*H'(R?)] N D(V) (H*(R?) is the Sobolev space of order 1),
where o; (j = 1,2,3) and  are 4 x 4 Hermitian matrices satisfying the anticommutation
relations

{a;, ax} =265, Jj.k=1,2,3, (2.3)
{a;, B} =0, F=1, j=1,23, (2.4)

{A, B} := AB + BA and §j; is the Kronecker delta. We assume the following:

Hypothesis (A)

Each matrix element of V is almost everywhere (a.e.) finite with respect to the
three-dimensional Lebesgue measure d& and the subspace N3_,[D(D;) N D(V)] is
dense in Hp.

Under this hypothesis, Hp is a symmetric operator. For detailed analyses of the Dirac
operator, see, e.g., [10].



2.2 The quantum radiation field

The Hilbert space of one-photon states in momentum representation is given by
Hon := L*(R®) ® L*(R?), (2.5)

where R® := {k = (k;, k2, k3)|k; € R, j = 1,2,3} physically means the momentum space
of photons. Then a Hilbert space for the quantum radiation field in the Coulomb gauge
is given by

Frad := ;Lo ®f Hpn, (2.6)

the Boson Fock space over Hpp, where ®2Hpn denotes the n-fold symmetric tensor product
of Hyp and ®H,p := C. For basic facts on the theory of the Boson Fock space, we refer

the reader to [8, §X.7].
We denote by a(F) (F € Hpn) the annihilation operator with test vector F on Frag;

its adjoint is given by
(a(F)" )™ = /nS,(FRU™D), n>0,¥={IM}2 e D(a(F)"),

where S, is the symmetrization operator on ®"Hp, and ¥~! := 0.

For each f € L?(R?), we define

aM(f) := a(£,0), a®(f):= a(0, f). (2.7)

The mapping : f — a(")(f*) restricted to S(R?) (the Schwartz space of rapidly decreasing
C-functions on R?®) defines an operator-valued distribution (f* denotes the complex
conjugate of f). We denote its symbolical kernel by a"(k): a(f) = [ a (k) f(k)*dk.

We take a nonnegative Borel measurable function w on R? to denote the one free
photon energy. We assume that, for a.e. k € R® with respect to the Lebesgue measure
on R3, 0 < w(k) < co. Then the function w defines uniquely a multiplication operator on
H,n which is nonnegative, self-adjoint and injective. We denote it by the same symbol w.
The free Hamiltonian of the quantum radiation field is then defined by

H,pq := dl'(w), (2.8)

the second quantization of w [7, p.302, Example 2] and [8, §X.7]. The operator Hraa
is a nonnegative self-adjoint operator. The symbolical expression of Hraa is Hraa =

2_, Jw(k)a® (k)*a®) (k)dk.

Remark 2.1 Usually w is taken to be of the form wyys(k) := |k|, k € R?, but, in this
paper, for mathematical generality, we do not restrict ourselves to this case.

There exist R3-valued Borel measurable functions e(”) (r = 1,2) on R?® such that, for
a.e. k

e(k)-e®(k)=6,,, eT(k)-k=0, rs=12 (2.9)

These vector-valued functions e(”) are called the polarization vectors of a photon.



The time-zero quantum radiation field is given by A(z) := (A;(x), Ax(x), As(x)) with
_ gk

Ail®) —2_,:/ D)

in the sense of operator-valued distribution.
Let p be a real tempered distribution on R such that

{ (r)(k)* —ik. Z a(r)(k)eik-:!} , ] = 1,2, 3, (210)

6 @
%7 - E L2(R3)a (211)

where p denotes the Fourier transform of g. The quantum radiation field
= (Af, 43, A3) (2.12)
with momentum cutoff g is defined by

()
Az) =3 [ari— (%)

O (k) e~ FT 5k 4 o (k)T
Z \/m { (k)*e™ % (k)" + ") (k) e(k)}. (2.13)

Symbolically A%(x) = [ A;(x — y)o(y)dy.

2.3 The Dirac-Maxwell operator

The Hilbert space of state vectors for the coupled system of the Dirac particle and the
quantum radiation field is taken to be

F := Hp ® Fraa. (2.14)

! R3 )

the Hilbert space of ®*F;a-valued Lebesgue square integrable functions on R3 (the con-
stant fibre direct integral with base space (R3,d) and fibre ®*Fpaq [9, §XII1.6]). We freely
use this identification. The total Hamiltonian of the coupled system — a Dirac-Mazwell
operator — is defined by

H := HD + Hrad —qo - A= - (—ZV - qu) + mﬂ +V+ Hmd. (216)

The (essential) self-adjointness of H is discussed in [2].

2.4 The Pauli-Fierz Hamiltonian with spin 1/2

A Hamiltonian which describes a quantum system of non-relativistic charged particles
interacting with the quantum radiation filed is called a Pauli-Fierz Hamiltonian [6]. Here



we consider a non-relativistic charged particle with mass m, charge ¢ and spin 1/2. Sup-
pose that the particle is in an external electromagnetic vector potential A = (A, ¢),
where A% := (A, A%, A7) : R® > R3 and ¢ : R® — R are Borel measurable and a.e.
finite with respect to de. Let

01 0 — 1 0
0'1:=(1 0), 02:=(2. OZ)’ 0'3:=(0 _1), (2.17)

the Pauli spin matrices, and set
o = (01,02,03). - (2.18)
Then the Pauli-Fierz Hamiltonian of this quantum system is defined by

_ {0 (=iV - qA® - ¢A™)}

Hpr : 5 + ¢ + Hraa (2.19)
acting in the Hilbert space
®
For := L}(R? C?) ® Frag = LA(R%; ©2Frad) = /R 6" Fuaade. (2.20)

3 Main Results

3.1 A Dirac operator coupled to the quantum radiation field

We use the following representation of «; and 3 [10, p.3]:

; I
aj:=(£j %’), ﬂ:=(02 _012), (3.1)

where I is the 2 x 2 identity matrix. Hence the eigenspaces HE of 3 with eigenvalue %1
take the forms respectively

f 0
Hp = ﬁ |f,g e I*(R% ¢, Hp= 2 lf,g € L*(R% ;. (3.2)
0 g
and we have »
Hp = Hi & Hp. (3.3)

Let Py be the orthogonal projections onto HE. Then we have
V=Vo+ Vi (3.4)

with
V=P, VP, +P VP, V=P, VP_+P VP, (3.5)



Note that
Vo,B8] =0, {W,B}=0,

where [A, B] :== AB — BA. In operator-matrix form relative to the orthogonal decompo-

sition (3.3), we have
Uy 0 0 wr
%=(0+ U_), ‘G:(W 0 )a (3'6)

where U, are 2 x 2 Hermitian matrix-valued functions on R® and W is a 2 x 2 complex

matrix-valued function on R3.

Let :
PW)=a-(—iV-qA® )+ W (3.7)
Then, recalling that A is H:‘g -bounded [2], we see that JJ(V;) is densely defined and sym-
metric with D(P(V;)) D (ﬂ?=1[D(D,-) n D(V)]) ®alg D(Hrlﬁ ), where ®,); means algebraic

tensor product.
By (3.3), we have the following orthogonal decomposition of F:

F=F,0F_, (3.8)
where
Fi = Hﬁ ® Fraa = Fpr- : (3.9)
Relative to this orthogonal decomposition, we can write
_ 0 Dw.
where
Dw = o-(—tV—-qA°)+ W, (3.11)
Dy+ = o-(—iV —qA%)+W* (3.12)

acting in Fpr.

For a closable linear operator T on a Hilbert space, we denote its closure by T unless
otherwise stated.

Note that Dy is densely defined as an operator on Fpr and (Dw)* O Dw.. Hence
(Dw)* is densely defined. Thus Dy is closable. Based on this fact, we can define

pw) = (EOW (E;V)* ) : | (3.13)

Lemma 3.1 Under Hypothesis (A), D(W) is a self-adjoint extension of pW).



3.2 A scaled Dirac-Maxwell operator

For a self-adjoint operator A, we denote the spectrum and the spectral measure of A by
o(A) and E4(-) respectively. In the case where A is bounded from below, we set

Eo(A) :=info(A4), A :=A-E&(A)=>0.

Let A : (0,00) = (0, 00) be a nondecreasing function such that A(x) — oo as k — oo
and A be a self-adjoint operator on a Hilbert space. Then, for each £ > 0, we define AK)

by
EA([0,A(k)])A'E ([0, A(5)]) + Eo(A) if A is bounded from below

and &(A) <0
Al .=
E4)(10, A(K)])AE 4([0, A(%)]) if A is nonnegative
or A is not bounded from below
(3.14)
Then A®™ is a bounded self-adjoint operator with
IA®] < A(x). (3.15)

Proposition 3.2 The following hold:
(i) For all € D(A), s - limsco A®WY = Atp, where s - lim means strong limit.
(i) For all z€ C\R, s - lime,o(A®) —2)"1 = (A—2)7".

With this preliminary, we define for £ > 0 a scaled Dirac-Maxwell operator

H(k) := kP(V}) + £*mpB — £*m + Vo . + H®), (3.16)
where "
vy o
Vor i= ( e ) . . (3.1.7)

Some remarks may be in order on this definition. The pararhetér k in H (K,) means
the speed of light concerning the Dirac particle only. The speed of light related to the
external potential V = V; + V; and the quantum radiation field A® is absorbed in them
respectively. The third term —x2?m on the right hand side of (3.16) is a subtraction of
the rest energy of the Dirac particle. Hence taking the scaling limit x — oo in H (k) in a
suitable sense corresponds in fact to a partial non-relativistic limit of the quantum system
under consideration.

If one considers the non-relativistic limit in a way similar to the usual Dirac operator
Hp, then one may define

H(k) := kP(V4) + £*mB — k*m + Vo + Hraa (3.18)

as a scaled Dirac-Maxwell operator, where no cutoffs on V5 and H:aq are rnade In this
form, however, we find that, besides the (essential) self-adjointness problem of H(x), the



methods used in the usual Dirac type operators ([10, Chapter 6] or those in [1]) seem not
to work. This is because of the existence of the operator Hyaq in H(k) which is singular
as a perturbation of Ho(x) := kP(V1) + k?mpB — k?m +V, ( if one would try to apply
the methods on sacaling limits discussed in the cited literatures, then one would have to
treat Hyaq as a perturbation of Ho(x)). To avoid this difficulty, we replace Hypq in H(x)
by a bounded self-adjoint operator which is obtained by cutting off H,.4. This is one of
the basic ideas of the present paper. We apply the same idea to Vo which also may be
singular as a perturbation of k)(V4) + k2mf — k?m. In this way we arrive at Definition
(3.16) of a scaled Dirac-Maxwell operator.

Lemma 3.3 Under Hypothesis (A), H(x) is self-adjoint with D(H(k)) = D((V})).

3.3 Self-adjoint extension of the Pauli-Fierz Hamiltonian

Essential self-adjointness of the the Pauli-Fierz Hamiltonian Hpr given by (2.19) and its
generalizations is discussed in [4, 5]. These papers show that, under additional conditions
on §,w, A™ and ¢, the Pauli-Fierz Hamiltonians are essentially self-adjoint. In this note
we define a self-adjoint extension of Hpp, which may not be known before.

We define

ﬁW *—D—W
Hpp(s; W, U,) := (—2);— +UMN+HY k>0 (3.19)

acting in Fpr.

Lemma 3.4 Under Hypotheses (A), Hpr(k; W,U,) is self-adjoint and bounded from be-

low.

A generalization of the Pauli-Fierz Hamiltonian Hp is defined by

Dw-D
—o+ Uy + Hna (3.20)

Hpr(W,Uy) == —5

acting in Fpp.
We formulate additional conditions:

Hypothesis (B)

The function U, is bounded from below. In this case we set

ug := &(Us).

Remark 3.1 Under Hypothesis (A), D(Hpr(W,U,)) is not necessarily dense in Fpr,
but, D(Dw) N D(U4) N D(H,aa) is dense in Fpp. Hence D(Dw) N D(|U,|*2) n D(HY3)



also is dense in Fpp. Therefore we can define a densely defined symmetric form spr as
follows:

D(spr) := D(Dw) N D([U4|**) N D(HY}) (form domain), (3.21)
1 - -

spr(V, @) = 5—(Dw¥, Dw®) + (¥,U4 @) + (HJV, H[j9),  (3.22)

U, ® € D(spr). (3.23)

Assume Hypothesis (B) in addition to Hypothesis (A). Then it is easy to see that spr is

closed. Let H,(,‘I,l be the self-adjoint operator associated with spr. Then H{f}! > up and

HY is a self-adjoint extension of Hpp(W,Uy).

Theorem 3.5 Under Hypotheses (A) and (B), there exists a self-adjoint extension of
Hpp(W,U,) of Hpr(W, U ) which have the following properties:

(i) Her(W,Us) > uo.
(ii) D(|Hpr(W,U4)|Y2) € D(Dw) N D(JUL[/?) N D(H,L3)
(iii) For all z € (C\ R) U {¢ € R|¢ < uo},
s - Jim (Her(ss W,Uy) = 2)7" = (Hee (W, Us) = 2)7,
where s - lim means strong limit.
(iv) For all ¢ < ug and ¥ € D(|Hpr(W, Us)|?)s
s - lim (Hpr(x; W,Uy) — 6)Y? ¥ = (Hpr(W,Uy) — £)'/20.

Remark 3.2 As for conditions for p and w for Theorem 3.5 to hold, we only need con-
dition (2.11); no additional conditions is necessary.

Remark 3.3 In the same manner as in Theorem 3.5, we can define a self-adjoint exten-
sion of the Pauli-Fierz Hamiltonian without spin.

Remark 3.4 Under Hypotheses (A), (B) and that D(Hpr(W, Uy )) is dense, Hpr(W, Uy.)

is a symmetric operator bounded from below. Hence it has the Friedrichs extension
Hpp(W,U,). But it is not clear that, in the case where Hpp(W,U,) is not essentially

self-adjoint, Hpp(W,U,) = Hpr(W,U,) or Hpp(W,U,) = ngfP)‘ (Remark 3.1) or both of
them do not hold.

3.4 Main theorems

We now state main results on the non-relativistic limit of H(x).
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Theorem 3.6 Let Hypotheses (A) and (B) be satisfied. Suppose that

2
lim 2 _ (3.24)
KR=—>00O n
Then, all z € C\ R,
Hop(W,U -
s - lim (H(x) —2)" = ( (Hex( ’0+) ~z) g ) : (3.25)

In the case where U, is not necessarily bounded from below, we have the following.

Theorem 3.7 Let Hypothesis (A) and (3.24) be satisfied. Suppose that Hpp(W,U,) is
essentially self-adjoint. Then, all z € C\ R,

s- lim(H(x)—2)" = ( (Hee (W, ’g+) —z)" g ) . (3.26)

Remark 3.5 Under additional conditions on g,w,W and U,, one can prove that
Hpp(W,U,.) is essentially self-adjoint for all values of the coupling constant ¢ [4, 5].

We now apply Theorems 3.6 and 3.7 to the case where V =V, = ¢ — ga - A, i.e.,
the case where W = —go - A®™ and Uy = ¢I,. We assume the following.

Hypothesis (C)
(C.1) The subspace N3_,[D(D;) N D(A§*) N D(¢)] is dense in L?(R?).

=1

(C.2) ¢ is bounded from below. In this case we set ¢¢ := inf o(¢).

Under Hypothesis (C), we have a self-adjoint opeartor

Hpp := EPF(—QO' - A%, 9), (3.27)
which is a self-adjoint extension of the original Pauli-Fierz Hamiltonian Hpp given by
(2.19).

Let

Hom(x) := kP(—gex - A™) + 6?mpB — K*m + ¢ + HE, (3.28)

Then Hppm(k) is the Dirac-Maxwell operator H(x) with V; = —gar- A™ and V; = 4.
Theorems 3.6 and 3.7 immediately yield the following results on the non-relativistic
limit of HDM(R).

Corollary 3.8 Let Hypothesis (C) and (3.24) be satisfied. Then, for all z € C\ R,

¢ - Jim (Hou(s) — 2)" = ( (e =2) 0 ) . (3.29)
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Corollary 3.9 Assume (C.1) and (3.24). Suppose that Hpp is essentially self-adjoint.
Then, all z€ C\ R,

s - lim (How(x) —2)7* = ( (Hee —2) " 0 ) - (3.30)

Thus a mathematically rigorous connection of relativistic QED to non-relativistic QED
is established.

Proofs of these results are given in [3]. The method used is an extension of a theory
[1] of scaling limits of strongly anticommuting self-adjoint operators.
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