Non-relativistic Limit of a Dirac particle Interacting with the Quantum Radiation Field

Asao Arai (新井朝雄)*

Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan
北海道大学大学院理学研究科数学教室
E-mail: arai@math.sci.hokudai.ac.jp

Abstract

The non-relativistic (scaling) limit of a Hamiltonian of a Dirac particle interacting with the quantum radiation field yields a self-adjoint extension of the Pauli-Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics.

Keywords: quantum electrodynamics, Dirac operator, Dirac-Maxwell operator, Pauli-Fierz Hamiltonian, non-relativistic limit, scalig limit, Fock space, strongly anticommuting self-adjoint operators

1 Introduction

A Hamiltonian H of a Dirac particle — a relativistic charged particle with spin 1/2 — interacting with the quantum radiation field is called a *Dirac-Maxwell operator*. In this note we report a result on the non-relativistic limit of H.

The Dirac-Maxwell operator H is of the form $H = H_{\rm D} + H_{\rm rad} + H_{\rm I}$, where $H_{\rm D}$ is a Dirac operator describing the Dirac particle system only, $H_{\rm rad}$ is the free Hamiltonian of the quantum radiation field (a quantum version of the Maxwell Hamiltonian in the Coulomb gauge) and $H_{\rm I}$ is the interaction term between the Dirac particle and the quantum radiation field. As for the Dirac operator $H_{\rm D}$, the non-relativistic limit has already been investigated and well understood ([10, Chapter 6] and references therein). We extend the methods used in the case of the Dirac operator $H_{\rm D}$ to the case of H. This can be done in an abstract framework with further developments of the theory of scaling limits on strongly anticommuting self-adjoint operators [1]. The main result we report in this note is that the non-relativistic limit of H yields a self-adjoint extension of the Pauli-Fierz Hamiltonian with spin 1/2 in non-relativistic quantum electrodynamics.

^{*}Supported by the Grant-in-Aid No. 13440039 for Scientific Research from the JSPS.

2 The Dirac-Maxwell Operator and The Pauli-Fierz Hamiltonian

For a linear operator T on a Hilbert space, we denote its domain by D(T), and its adjoint by T^* (provided that T is densely defined). For two objects $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$ such that products $a_j b_j$ (j = 1, 2, 3) and their sum can be defined, we set $\mathbf{a} \cdot \mathbf{b} := \sum_{j=1}^{3} a_j b_j$.

We use the physical unit system in which c(the speed of light)=1 and $\hbar=1$ ($\hbar:=h/(2\pi)$; h is the Planck constant).

2.1 The Dirac operator

Let D_j (j = 1, 2, 3) be the generalized partial differential operator in the variable x_j , the j-th component of $\mathbf{x} = (x_1, x_2, x_3) \in \mathbf{R}^3$, and $\nabla := (D_1, D_2, D_3)$.

We denote the mass and the charge of the Dirac particle by m > 0 and $q \in \mathbf{R} \setminus \{0\}$ respectively. We consider the situation where the Dirac particle is in a potential V which is a Hermitian-matrix-valued Borel measurable function on \mathbf{R}^3 . Then the Hamiltonian of the Dirac particle is given by the Dirac operator

$$H_{\rm D} := \boldsymbol{\alpha} \cdot (-i\nabla) + m\beta + V \tag{2.1}$$

acting in the Hilbert space

$$\mathcal{H}_{\mathbf{D}} := \bigoplus^{4} L^{2}(\mathbf{R}^{3}) \tag{2.2}$$

with domain $D(H_D) := [\bigoplus^4 H^1(\mathbf{R}^3)] \cap D(V)$ ($H^1(\mathbf{R}^3)$ is the Sobolev space of order 1), where α_j (j = 1, 2, 3) and β are 4×4 Hermitian matrices satisfying the anticommutation relations

$$\{\alpha_j, \alpha_k\} = 2\delta_{jk}, \quad j, k = 1, 2, 3,$$
 (2.3)

$$\{\alpha_i, \beta\} = 0, \quad \beta^2 = 1, \quad j = 1, 2, 3,$$
 (2.4)

 $\{A,B\}:=AB+BA$ and δ_{jk} is the Kronecker delta. We assume the following:

Hypothesis (A)

Each matrix element of V is almost everywhere (a.e.) finite with respect to the three-dimensional Lebesgue measure $d\boldsymbol{x}$ and the subspace $\bigcap_{j=1}^{3} [D(D_j) \cap D(V)]$ is dense in \mathcal{H}_D .

Under this hypothesis, H_D is a symmetric operator. For detailed analyses of the Dirac operator, see, e.g., [10].

2.2 The quantum radiation field

The Hilbert space of one-photon states in momentum representation is given by

$$\mathcal{H}_{\rm ph} := L^2(\mathbf{R}^3) \oplus L^2(\mathbf{R}^3), \tag{2.5}$$

where $\mathbf{R}^3 := \{ \mathbf{k} = (k_1, k_2, k_3) | k_j \in \mathbf{R}, \ j = 1, 2, 3 \}$ physically means the momentum space of photons. Then a Hilbert space for the quantum radiation field in the Coulomb gauge is given by

$$\mathcal{F}_{\rm rad} := \bigoplus_{n=0}^{\infty} \bigotimes_{\rm s}^{n} \mathcal{H}_{\rm ph}, \tag{2.6}$$

the Boson Fock space over \mathcal{H}_{ph} , where $\bigotimes_{s}^{n}\mathcal{H}_{ph}$ denotes the *n*-fold symmetric tensor product of \mathcal{H}_{ph} and $\bigotimes_{s}^{0}\mathcal{H}_{ph} := \mathbf{C}$. For basic facts on the theory of the Boson Fock space, we refer the reader to [8, §X.7].

We denote by a(F) $(F \in \mathcal{H}_{ph})$ the annihilation operator with test vector F on \mathcal{F}_{rad} ; its adjoint is given by

$$(a(F)^*\Psi)^{(n)} = \sqrt{n}S_n(F \otimes \Psi^{(n-1)}), \quad n \ge 0, \Psi = \{\Psi^{(n)}\}_{n=0}^{\infty} \in D(a(F)^*),$$

where S_n is the symmetrization operator on $\otimes^n \mathcal{H}_{ph}$ and $\Psi^{-1} := 0$.

For each $f \in L^2(\mathbf{R}^3)$, we define

$$a^{(1)}(f) := a(f,0), \quad a^{(2)}(f) := a(0,f).$$
 (2.7)

The mapping: $f \to a^{(r)}(f^*)$ restricted to $\mathcal{S}(\mathbf{R}^3)$ (the Schwartz space of rapidly decreasing C^{∞} -functions on \mathbf{R}^3) defines an operator-valued distribution (f^* denotes the complex conjugate of f). We denote its symbolical kernel by $a^{(r)}(\mathbf{k})$: $a^{(r)}(f) = \int a^{(r)}(\mathbf{k}) f(\mathbf{k})^* d\mathbf{k}$.

We take a nonnegative Borel measurable function ω on \mathbf{R}^3 to denote the one free photon energy. We assume that, for a.e. $\mathbf{k} \in \mathbf{R}^3$ with respect to the Lebesgue measure on \mathbf{R}^3 , $0 < \omega(\mathbf{k}) < \infty$. Then the function ω defines uniquely a multiplication operator on $\mathcal{H}_{\mathrm{ph}}$ which is nonnegative, self-adjoint and injective. We denote it by the same symbol ω . The free Hamiltonian of the quantum radiation field is then defined by

$$H_{\rm rad} := d\Gamma(\omega),$$
 (2.8)

the second quantization of ω [7, p.302, Example 2] and [8, §X.7]. The operator H_{rad} is a nonnegative self-adjoint operator. The symbolical expression of H_{rad} is $H_{\text{rad}} = \sum_{r=1}^{2} \int \omega(\mathbf{k}) a^{(r)}(\mathbf{k})^* a^{(r)}(\mathbf{k}) d\mathbf{k}$.

Remark 2.1 Usually ω is taken to be of the form $\omega_{\text{phys}}(\mathbf{k}) := |\mathbf{k}|, \quad \mathbf{k} \in \mathbf{R}^3$, but, in this paper, for mathematical generality, we do not restrict ourselves to this case.

There exist \mathbf{R}^3 -valued Borel measurable functions $\mathbf{e}^{(r)}$ (r=1,2) on \mathbf{R}^3 such that, for a.e. \boldsymbol{k}

$$\mathbf{e}^{(r)}(\mathbf{k}) \cdot \mathbf{e}^{(s)}(\mathbf{k}) = \delta_{rs}, \quad \mathbf{e}^{(r)}(\mathbf{k}) \cdot \mathbf{k} = 0, \quad r, s = 1, 2.$$
 (2.9)

These vector-valued functions $e^{(r)}$ are called the polarization vectors of a photon.

The time-zero quantum radiation field is given by $\boldsymbol{A}(\boldsymbol{x}) := (A_1(\boldsymbol{x}), A_2(\boldsymbol{x}), A_3(\boldsymbol{x}))$ with

$$A_{j}(\boldsymbol{x}) := \sum_{r=1}^{2} \int d\boldsymbol{k} \frac{e_{j}^{(r)}(\boldsymbol{k})}{\sqrt{2(2\pi)^{3}\omega(\boldsymbol{k})}} \left\{ a^{(r)}(\boldsymbol{k})^{*}e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} + a^{(r)}(\boldsymbol{k})e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \right\}, \quad j = 1, 2, 3, \quad (2.10)$$

in the sense of operator-valued distribution.

Let ϱ be a real tempered distribution on \mathbb{R}^3 such that

$$\frac{\hat{\varrho}}{\sqrt{\omega}}, \quad \frac{\hat{\varrho}}{\omega} \in L^2(\mathbf{R}^3),$$
 (2.11)

where $\hat{\rho}$ denotes the Fourier transform of ρ . The quantum radiation field

$$\mathbf{A}^{\varrho} := (A_1^{\varrho}, A_2^{\varrho}, A_3^{\varrho}) \tag{2.12}$$

with momentum cutoff $\hat{\varrho}$ is defined by

$$A_j^{\varrho}(\boldsymbol{x}) := \sum_{r=1}^2 \int d\boldsymbol{k} \frac{e_j^{(r)}(\boldsymbol{k})}{\sqrt{2\omega(\boldsymbol{k})}} \left\{ a^{(r)}(\boldsymbol{k})^* e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \hat{\varrho}(\boldsymbol{k})^* + a^{(r)}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \hat{\varrho}(\boldsymbol{k}) \right\}. \tag{2.13}$$

Symbolically $A_j^{\varrho}(\boldsymbol{x}) = \int A_j(\boldsymbol{x} - \boldsymbol{y})\varrho(\boldsymbol{y})d\boldsymbol{y}$.

2.3 The Dirac-Maxwell operator

The Hilbert space of state vectors for the coupled system of the Dirac particle and the quantum radiation field is taken to be

$$\mathcal{F} := \mathcal{H}_{D} \otimes \mathcal{F}_{rad}. \tag{2.14}$$

This Hilbert space can be identified as

$$\mathcal{F} = L^{2}(\mathbf{R}^{3}; \oplus^{4} \mathcal{F}_{rad}) = \int_{\mathbf{R}^{3}}^{\oplus} \oplus^{4} \mathcal{F}_{rad} d\boldsymbol{x}$$
 (2.15)

the Hilbert space of $\oplus^4 \mathcal{F}_{rad}$ -valued Lebesgue square integrable functions on \mathbf{R}^3 (the constant fibre direct integral with base space ($\mathbf{R}^3, d\mathbf{x}$) and fibre $\oplus^4 \mathcal{F}_{rad}$ [9, §XIII.6]). We freely use this identification. The total Hamiltonian of the coupled system — a *Dirac-Maxwell operator* — is defined by

$$H := H_{\rm D} + H_{\rm rad} - q\boldsymbol{\alpha} \cdot \boldsymbol{A}^{\varrho} = \boldsymbol{\alpha} \cdot (-i\nabla - q\boldsymbol{A}^{\varrho}) + m\beta + V + H_{\rm rad}. \tag{2.16}$$

The (essential) self-adjointness of H is discussed in [2].

2.4 The Pauli-Fierz Hamiltonian with spin 1/2

A Hamiltonian which describes a quantum system of non-relativistic charged particles interacting with the quantum radiation filed is called a Pauli-Fierz Hamiltonian [6]. Here

we consider a non-relativistic charged particle with mass m, charge q and spin 1/2. Suppose that the particle is in an external electromagnetic vector potential $A^{\text{ex}} = (\mathbf{A}^{\text{ex}}, \phi)$, where $\mathbf{A}^{\text{ex}} := (A_1^{\text{ex}}, A_2^{\text{ex}}, A_3^{\text{ex}}) : \mathbf{R}^3 \to \mathbf{R}^3$ and $\phi : \mathbf{R}^3 \to \mathbf{R}$ are Borel measurable and a.e. finite with respect to $d\mathbf{x}$. Let

$$\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$(2.17)$$

the Pauli spin matrices, and set

$$\boldsymbol{\sigma} := (\sigma_1, \sigma_2, \sigma_3). \tag{2.18}$$

Then the Pauli-Fierz Hamiltonian of this quantum system is defined by

$$H_{\text{PF}} := \frac{\{\boldsymbol{\sigma} \cdot (-i\nabla - q\boldsymbol{A}^{\varrho} - q\boldsymbol{A}^{\text{ex}})\}^{2}}{2m} + \phi + H_{\text{rad}}$$
 (2.19)

acting in the Hilbert space

$$\mathcal{F}_{PF} := L^{2}(\mathbf{R}^{3}; \mathbf{C}^{2}) \otimes \mathcal{F}_{rad} = L^{2}(\mathbf{R}^{3}; \oplus^{2} \mathcal{F}_{rad}) = \int_{\mathbf{R}^{3}}^{\oplus} \oplus^{2} \mathcal{F}_{rad} d\boldsymbol{x}.$$
 (2.20)

3 Main Results

3.1 A Dirac operator coupled to the quantum radiation field

We use the following representation of α_j and β [10, p.3]:

$$\alpha_j := \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \quad \beta := \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix},$$
(3.1)

where I_2 is the 2×2 identity matrix. Hence the eigenspaces \mathcal{H}_D^{\pm} of β with eigenvalue ± 1 take the forms respectively

$$\mathcal{H}_{D}^{+} = \left\{ \begin{pmatrix} f \\ g \\ 0 \\ 0 \end{pmatrix} \middle| f, g \in L^{2}(\mathbf{R}^{3}) \right\}, \quad \mathcal{H}_{D}^{-} = \left\{ \begin{pmatrix} 0 \\ 0 \\ f \\ g \end{pmatrix} \middle| f, g \in L^{2}(\mathbf{R}^{3}) \right\}.$$
 (3.2)

and we have

$$\mathcal{H}_{D} = \mathcal{H}_{D}^{+} \oplus \mathcal{H}_{D}^{-}. \tag{3.3}$$

Let P_{\pm} be the orthogonal projections onto $\mathcal{H}_{\mathrm{D}}^{\pm}$. Then we have

$$V = V_0 + V_1 (3.4)$$

with

$$V_0 = P_+ V P_+ + P_- V P_-, \quad V_1 = P_+ V P_- + P_- V P_+.$$
 (3.5)

Note that

$$[V_0,\beta]=0, \quad \{V_1,\beta\}=0,$$

where [A, B] := AB - BA. In operator-matrix form relative to the orthogonal decomposition (3.3), we have

$$V_0 = \begin{pmatrix} U_+ & 0 \\ 0 & U_- \end{pmatrix}, \quad V_1 = \begin{pmatrix} 0 & W^* \\ W & 0 \end{pmatrix}, \tag{3.6}$$

where U_{\pm} are 2×2 Hermitian matrix-valued functions on \mathbb{R}^3 and W is a 2×2 complex matrix-valued function on \mathbb{R}^3 .

Let

$$\mathcal{D}(V_1) := \boldsymbol{\alpha} \cdot (-i\nabla - q\boldsymbol{A}^{\varrho}) + V_1 \tag{3.7}$$

Then, recalling that A_j^{ϱ} is $H_{\rm rad}^{1/2}$ -bounded [2], we see that $\mathcal{D}(V_1)$ is densely defined and symmetric with $D(\mathcal{D}(V_1)) \supset \left(\bigcap_{j=1}^3 [D(D_j) \cap D(V)]\right) \otimes_{\rm alg} D(H_{\rm rad}^{1/2})$, where $\otimes_{\rm alg}$ means algebraic tensor product.

By (3.3), we have the following orthogonal decomposition of \mathcal{F} :

$$\mathcal{F} = \mathcal{F}_{+} \oplus \mathcal{F}_{-},\tag{3.8}$$

where

$$\mathcal{F}_{\pm} := \mathcal{H}_{D}^{\pm} \otimes \mathcal{F}_{rad} \cong \mathcal{F}_{PF}. \tag{3.9}$$

Relative to this orthogonal decomposition, we can write

$$\mathcal{D}(V_1) = \begin{pmatrix} 0 & D_{W^*} \\ D_W & 0 \end{pmatrix}, \tag{3.10}$$

where

$$D_{W} := \boldsymbol{\sigma} \cdot (-i\nabla - q\boldsymbol{A}^{\varrho}) + W, \tag{3.11}$$

$$D_{W^*} := \boldsymbol{\sigma} \cdot (-i\nabla - q\boldsymbol{A}^{\varrho}) + W^* \tag{3.12}$$

acting in \mathcal{F}_{PF} .

For a closable linear operator T on a Hilbert space, we denote its closure by \bar{T} unless otherwise stated.

Note that D_W is densely defined as an operator on \mathcal{F}_{PF} and $(D_W)^* \supset D_{W^*}$. Hence $(D_W)^*$ is densely defined. Thus D_W is closable. Based on this fact, we can define

$$\widetilde{\mathcal{D}}(V_1) := \begin{pmatrix} 0 & \left(\overline{D}_{\boldsymbol{W}}\right)^* \\ \overline{D}_{\boldsymbol{W}} & 0 \end{pmatrix}. \tag{3.13}$$

Lemma 3.1 Under Hypothesis (A), $\widetilde{\mathbb{D}}(V_1)$ is a self-adjoint extension of $\mathbb{D}(V_1)$.

3.2 A scaled Dirac-Maxwell operator

For a self-adjoint operator A, we denote the spectrum and the spectral measure of A by $\sigma(A)$ and $E_A(\cdot)$ respectively. In the case where A is bounded from below, we set

$$\mathcal{E}_0(A) := \inf \sigma(A), \quad A' := A - \mathcal{E}_0(A) \ge 0.$$

Let $\Lambda:(0,\infty)\to(0,\infty)$ be a nondecreasing function such that $\Lambda(\kappa)\to\infty$ as $\kappa\to\infty$ and A be a self-adjoint operator on a Hilbert space. Then, for each $\kappa>0$, we define $A^{(\kappa)}$ by

$$A^{(\kappa)} := \begin{cases} E_{A'}([0,\Lambda(\kappa)])A'E_{A'}([0,\Lambda(\kappa)]) + \mathcal{E}_0(A) & \text{if A is bounded from below} \\ & \text{and $\mathcal{E}_0(A) < 0$} \end{cases}$$

$$E_{|A|}([0,\Lambda(\kappa)])AE_{|A|}([0,\Lambda(\kappa)]) & \text{if A is nonnegative} \\ & \text{or A is not bounded from below} \end{cases}$$

$$(3.14)$$

Then $A^{(\kappa)}$ is a bounded self-adjoint operator with

$$||A^{(\kappa)}|| \le \Lambda(\kappa). \tag{3.15}$$

Proposition 3.2 The following hold:

(i) For all $\psi \in D(A)$, s - $\lim_{\kappa \to \infty} A^{(\kappa)} \psi = A \psi$, where s - $\lim_{\kappa \to \infty} A^{(\kappa)} \psi = A \psi$.

(ii) For all
$$z \in \mathbb{C} \setminus \mathbb{R}$$
, s - $\lim_{\kappa \to \infty} (A^{(\kappa)} - z)^{-1} = (A - z)^{-1}$.

With this preliminary, we define for $\kappa > 0$ a scaled Dirac-Maxwell operator

$$H(\kappa) := \kappa \tilde{\mathbb{D}}(V_1) + \kappa^2 m \beta - \kappa^2 m + V_{0,\kappa} + H_{rad}^{(\kappa)}, \tag{3.16}$$

where

$$V_{0,\kappa} := \begin{pmatrix} U_+^{(\kappa)} & 0\\ 0 & U_-^{(\kappa)} \end{pmatrix}. \tag{3.17}$$

Some remarks may be in order on this definition. The parameter κ in $H(\kappa)$ means the speed of light concerning the Dirac particle only. The speed of light related to the external potential $V = V_0 + V_1$ and the quantum radiation field \mathbf{A}^{ϱ} is absorbed in them respectively. The third term $-\kappa^2 m$ on the right hand side of (3.16) is a subtraction of the rest energy of the Dirac particle. Hence taking the scaling limit $\kappa \to \infty$ in $H(\kappa)$ in a suitable sense corresponds in fact to a partial non-relativistic limit of the quantum system under consideration.

If one considers the non-relativistic limit in a way similar to the usual Dirac operator $H_{\rm D}$, then one may define

$$\widehat{H}(\kappa) := \kappa \widetilde{\mathcal{D}}(V_1) + \kappa^2 m \beta - \kappa^2 m + V_0 + H_{\text{rad}}$$
(3.18)

as a scaled Dirac-Maxwell operator, where no cutoffs on V_0 and $H_{\rm rad}$ are made. In this form, however, we find that, besides the (essential) self-adjointness problem of $\widehat{H}(\kappa)$, the

methods used in the usual Dirac type operators ([10, Chapter 6] or those in [1]) seem not to work. This is because of the existence of the operator $H_{\rm rad}$ in $\widehat{H}(\kappa)$ which is singular as a perturbation of $H_0(\kappa) := \kappa \widetilde{D}(V_1) + \kappa^2 m \beta - \kappa^2 m + V_0$ (if one would try to apply the methods on sacaling limits discussed in the cited literatures, then one would have to treat $H_{\rm rad}$ as a perturbation of $H_0(\kappa)$). To avoid this difficulty, we replace $H_{\rm rad}$ in $\widehat{H}(\kappa)$ by a bounded self-adjoint operator which is obtained by cutting off $H_{\rm rad}$. This is one of the basic ideas of the present paper. We apply the same idea to V_0 which also may be singular as a perturbation of $\kappa \widetilde{D}(V_1) + \kappa^2 m \beta - \kappa^2 m$. In this way we arrive at Definition (3.16) of a scaled Dirac-Maxwell operator.

Lemma 3.3 Under Hypothesis (A), $H(\kappa)$ is self-adjoint with $D(H(\kappa)) = D(\widetilde{D}(V_1))$.

3.3 Self-adjoint extension of the Pauli-Fierz Hamiltonian

Essential self-adjointness of the Pauli-Fierz Hamiltonian H_{PF} given by (2.19) and its generalizations is discussed in [4, 5]. These papers show that, under additional conditions on $\hat{\varrho}, \omega, \mathbf{A}^{\text{ex}}$ and ϕ , the Pauli-Fierz Hamiltonians are essentially self-adjoint. In this note we define a self-adjoint extension of H_{PF} , which may not be known before.

We define

$$H_{\mathrm{PF}}(\kappa; W, U_{+}) := \frac{\left(\overline{D}_{W}\right)^{*} \overline{D}_{W}}{2m} + U_{+}^{(\kappa)} + H_{\mathrm{rad}}^{(\kappa)}, \quad \kappa > 0$$
(3.19)

acting in \mathcal{F}_{PF} .

Lemma 3.4 Under Hypotheses (A), $H_{PF}(\kappa; W, U_+)$ is self-adjoint and bounded from below.

A generalization of the Pauli-Fierz Hamiltonian H_{PF} is defined by

$$H_{\rm PF}(W, U_{+}) := \frac{D_{W^{\bullet}} D_{W}}{2m} + U_{+} + H_{\rm rad}$$
 (3.20)

acting in \mathcal{F}_{PF} .

We formulate additional conditions:

Hypothesis (B)

The function U_+ is bounded from below. In this case we set

$$u_0 := \mathcal{E}_0(U_+).$$

Remark 3.1 Under Hypothesis (A), $D(H_{PF}(W, U_+))$ is not necessarily dense in \mathcal{F}_{PF} , but, $D(\bar{D}_W) \cap D(U_+) \cap D(H_{rad})$ is dense in \mathcal{F}_{PF} . Hence $D(\bar{D}_W) \cap D(|U_+|^{1/2}) \cap D(H_{rad}^{1/2})$

also is dense in \mathcal{F}_{PF} . Therefore we can define a densely defined symmetric form \mathbf{s}_{PF} as follows:

$$D(\mathbf{s}_{PF}) := D(\bar{D}_W) \cap D(|U_+|^{1/2}) \cap D(H_{rad}^{1/2}) \text{ (form domain)}, \tag{3.21}$$

$$\mathsf{s}_{\mathrm{PF}}(\Psi,\Phi) := \frac{1}{2m} (\bar{D}_W \Psi, \bar{D}_W \Phi) + (\Psi, U_+ \Phi) + (H_{\mathrm{rad}}^{1/2} \Psi, H_{\mathrm{rad}}^{1/2} \Phi), \tag{3.22}$$

$$\Psi, \Phi \in D(\mathsf{s}_{\mathrm{PF}}). \tag{3.23}$$

Assume Hypothesis (B) in addition to Hypothesis (A). Then it is easy to see that s_{PF} is closed. Let $H_{PF}^{(f)}$ be the self-adjoint operator associated with s_{PF} . Then $H_{PF}^{(f)} \geq u_0$ and $H_{PF}^{(f)}$ is a self-adjoint extension of $H_{PF}(W, U_+)$.

Theorem 3.5 Under Hypotheses (A) and (B), there exists a self-adjoint extension of $\widetilde{H}_{PF}(W, U_+)$ of $H_{PF}(W, U_+)$ which have the following properties:

- (i) $\widetilde{H}_{PF}(W, U_+) \geq u_0$.
- (ii) $D(|\widetilde{H}_{PF}(W, U_+)|^{1/2}) \subset D(\overline{D}_W) \cap D(|U_+|^{1/2}) \cap D(H_{rad}^{1/2})$
- (iii) For all $z \in (\mathbf{C} \setminus \mathbf{R}) \cup \{\xi \in \mathbf{R} | \xi < u_0\}$,

s -
$$\lim_{\kappa \to \infty} (H_{PF}(\kappa; W, U_+) - z)^{-1} = (\widetilde{H}_{PF}(W, U_+) - z)^{-1},$$

where s - lim means strong limit.

(iv) For all
$$\xi < u_0$$
 and $\Psi \in D(|\widetilde{H}_{PF}(W, U_+)|^{1/2})$;

s -
$$\lim_{\kappa \to \infty} (H_{PF}(\kappa; W, U_+) - \xi)^{1/2} \Psi = (\widetilde{H}_{PF}(W, U_+) - \xi)^{1/2} \Psi.$$

Remark 3.2 As for conditions for $\hat{\rho}$ and ω for Theorem 3.5 to hold, we only need condition (2.11); no additional conditions is necessary.

Remark 3.3 In the same manner as in Theorem 3.5, we can define a self-adjoint extension of the Pauli-Fierz Hamiltonian without spin.

Remark 3.4 Under Hypotheses (A), (B) and that $D(H_{PF}(W, U_+))$ is dense, $H_{PF}(W, U_+)$ is a symmetric operator bounded from below. Hence it has the Friedrichs extension $\widehat{H}_{PF}(W, U_+)$. But it is not clear that, in the case where $H_{PF}(W, U_+)$ is not essentially self-adjoint, $\widetilde{H}_{PF}(W, U_+) = \widehat{H}_{PF}(W, U_+)$ or $\widetilde{H}_{PF}(W, U_+) = H_{PF}^{(f)}$ (Remark 3.1) or both of them do not hold.

3.4 Main theorems

We now state main results on the non-relativistic limit of $H(\kappa)$.

Theorem 3.6 Let Hypotheses (A) and (B) be satisfied. Suppose that

$$\lim_{\kappa \to \infty} \frac{\Lambda(\kappa)^2}{\kappa} = 0. \tag{3.24}$$

Then, all $z \in \mathbf{C} \setminus \mathbf{R}$,

s -
$$\lim_{\kappa \to \infty} (H(\kappa) - z)^{-1} = \begin{pmatrix} (\widetilde{H}_{PF}(W, U_+) - z)^{-1} & 0 \\ 0 & 0 \end{pmatrix}$$
. (3.25)

In the case where U_{+} is not necessarily bounded from below, we have the following.

Theorem 3.7 Let Hypothesis (A) and (3.24) be satisfied. Suppose that $H_{PF}(W, U_+)$ is essentially self-adjoint. Then, all $z \in \mathbb{C} \setminus \mathbb{R}$,

$$s - \lim_{\kappa \to \infty} (H(\kappa) - z)^{-1} = \begin{pmatrix} \left(\overline{H_{PF}(W, U_+)} - z \right)^{-1} & 0 \\ 0 & 0 \end{pmatrix}.$$
 (3.26)

Remark 3.5 Under additional conditions on ϱ, ω, W and U_+ , one can prove that $H_{PF}(W, U_+)$ is essentially self-adjoint for all values of the coupling constant q [4, 5].

We now apply Theorems 3.6 and 3.7 to the case where $V = V_{em} = \phi - q\alpha \cdot A^{ex}$, i.e., the case where $W = -q\sigma \cdot A^{ex}$ and $U_{\pm} = \phi I_2$. We assume the following.

Hypothesis (C)

- (C.1) The subspace $\bigcap_{j=1}^{3} [D(D_j) \cap D(A_j^{ex}) \cap D(\phi)]$ is dense in $L^2(\mathbf{R}^3)$.
- (C.2) ϕ is bounded from below. In this case we set $\phi_0 := \inf \sigma(\phi)$.

Under Hypothesis (C), we have a self-adjoint opeartor

$$\widetilde{H}_{\mathrm{PF}} := \widetilde{H}_{\mathrm{PF}}(-q\boldsymbol{\sigma}\cdot\boldsymbol{A}^{\mathrm{ex}},\phi),$$
 (3.27)

which is a self-adjoint extension of the original Pauli-Fierz Hamiltonian H_{PF} given by (2.19).

Let

$$H_{\rm DM}(\kappa) := \kappa \mathcal{D}(-q\boldsymbol{\alpha} \cdot \boldsymbol{A}^{\rm ex}) + \kappa^2 m\beta - \kappa^2 m + \phi^{(\kappa)} + H_{\rm rad}^{(\kappa)}, \tag{3.28}$$

Then $H_{\rm DM}(\kappa)$ is the Dirac-Maxwell operator $H(\kappa)$ with $V_1 = -q\alpha \cdot \mathbf{A}^{\rm ex}$ and $V_0 = \phi$.

Theorems 3.6 and 3.7 immediately yield the following results on the non-relativistic limit of $H_{\rm DM}(\kappa)$.

Corollary 3.8 Let Hypothesis (C) and (3.24) be satisfied. Then, for all $z \in \mathbb{C} \setminus \mathbb{R}$,

s -
$$\lim_{\kappa \to \infty} (H_{\rm DM}(\kappa) - z)^{-1} = \begin{pmatrix} (\widetilde{H}_{\rm PF} - z)^{-1} & 0 \\ 0 & 0 \end{pmatrix}$$
. (3.29)

Corollary 3.9 Assume (C.1) and (3.24). Suppose that H_{PF} is essentially self-adjoint. Then, all $z \in \mathbb{C} \setminus \mathbb{R}$,

s -
$$\lim_{\kappa \to \infty} (H_{\rm DM}(\kappa) - z)^{-1} = \begin{pmatrix} (\overline{H}_{\rm PF} - z)^{-1} & 0 \\ 0 & 0 \end{pmatrix}$$
. (3.30)

Thus a mathematically rigorous connection of relativistic QED to non-relativistic QED is established.

Proofs of these results are given in [3]. The method used is an extension of a theory [1] of scaling limits of strongly anticommuting self-adjoint operators.

References

- [1] A. Arai, Scaling limit of anticommuting self-adjoint operators and applications to Dirac operators, *Integr. Equat. Oper. Th.* **21** (1995), 139-173.
- [2] A. Arai, A particle-field Hamiltonian in relativistic quantum electrodynamics, J. Math. Phys. 41 (2000), 4271-4283.
- [3] A. Arai, Non-relativistic limit of a Dirac-Maxwell operator in relativistic quantum electrodynamics, Hokkaido University Preprint Series in Mathematics #544, 2001.
- [4] F. Hiroshima, Essential self-adjointness of translation-invariant quantum field models for arbitrary coupling constants, Commun. Math. Phys. 211 (2000), 585-613.
- [5] F. Hiroshima, Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary coupling constants, preprint, 2001.
- [6] W. Pauli and M. Fierz, Zur Theorie der Emission langwelliger Lichtquanten, *Nuovo Cimento* 15 (1938), 167–188.
- [7] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, New York, 1972.
- [8] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, Academic Press, New York, 1975.
- [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, 1978.
- [10] B. Thaller, The Dirac Equation, Springer-Verlag, Berlin, Heidelberg, 1992.