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In this paper, we study positive definite functions on a countable discrete
group, especially on the infinite symmetric group &.,. We further study their
relations to the topology in the space of unitary representations of G.

Let G be such a group and K be a finite group acting on G in such a way
that, for every k € K, G 3 g — k(g) € G is an automorphism. Then, for a
function f on G, we put

0 =g S fka) (g€ )
keK
and call it a centralization of f with respect to K. Here we treat mainly the case
where K is a subgroup of G and its action is through the inner automorphism.

Take an increasing sequence of finite subgroups G, /G (n=1,2,...). For
a positive definite function f on G we consider a series of centralized functions
fa = fC on G. If this series converges pointwise to a function on G, then
lim,, _, 00 fr is a positive definite invariant function (or class function). Relations
of positive definite invariant functions to factor representations of G is given
in [Th1].

Our problems treated here for the group G = &, are the following.

(1) For special interesting positive definite functions f given in [Bo], [BS],
determine lim,, ;o fr-

(2) For irreducible unitary representations given in [Th2], and also for non-
irreducible induced representations of &,, take some of their matrix elements
f and calculate the limits lim, o, f, Which heavily depend on the choice of
increasing sequences of finite subgroups G,, ' G.

(3) Translate the results in (1) and (2) into certain results in the weak con-
tainment topology of the space of unitary representations.

(4) Analyse relations of the results in (2) to the problem of determining
Thoma characters in [Th2], and also to the problem of irreducible decomposi-
tions of factor representations in [Ob2].
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1 Centralizations of positive definite functions

The infinite symmetric group consists of all finite permutations on the set
of natural numbers N, and is denoted by G,. The symmetric group &y is
imbedded in it as the permutation group of the set Iy :={1,2,... ,N} CN.

A function F(g) on G = G is called centralif F(cgo™") = F(g) (9,0 € G).
'For a function f on G and a finite subgroup G' C G, we define a centralization
of f on G’ as

) = Z floga™). o

a'GG’

Taking an increasing sequence of finite subgroups Gy * G, we consider a
series fON of centralizations of f on Gy and study its pointwise convergence
limit.

In particular, when we take a series Gy * G = G, we put

fn(e) i= 1¥(g) —IGIZfogal. e
ceSy . )

Note that for N’ > N, we have fy» = (fn)n’, but usually

fwls, # g,
Consider special kinds of positive definite functions on G = G given as
flg) = rl (-1<r<1,9€0), (3)
fig) = "l (0<g<1,g€Q), (4)
f'(g) = sen(g)-dl (0<¢<1,9€Q), (5)

where |g| denotes the usual length of a permutation of g, and ||g|| denotes
the block length of g, which is by definition the number of different simple
permutations appearing in a reduced expression of g ( cf. [Bo] for (3), and [BS]
for (4)). '

Problem (M. Bozejko): Let ms, mp and msm be cyclic unitary representa-
tions of G = G corresponding to the positive definite functions in (3), (4),
and (5) by GNS construction. Then, are ms, Tp and wg irreducible ¢ If not,
give irreducible decompositions of them.

We give here a partial answer to this question as follows.
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Theorem 1. Let |r| < 1. Then for the positive definite function f in (3) its
centralization fy converges pointwise to the delta function 6, on G = G, as
N tends to oo:

fu(e)=1; fn(g) >0 for g#e (N — ), (6)

where e denotes the neutral element of G.

Theorem 2. Let 0 < g < 1. Then, for the positive definite function f' in
(4) and f" in (5), their centralizations f'y and f'y converge pointwise to the
delta function 6, on G = G, as N tends to oo: for F = f' or f”,

Fy(e)=1;, Fn(g) =0 for g#e (N — ). (7

The delta function J. is a positive definite function associated to the regular
representation Ag of G which corresponds to a cyclic vector vy = . € L2(G) :
de(9) = (Ac(g)vo, v0), and also is the character of this representation which is
known to be a factor representation of type II,.

Concerning to the definition of weak containment of unitary representations,
we refer [Di, §18]. Then, we get the following theorem as a direct consequence
of Theorems 1 and 2.

Theorem 3. Each of the representations ms, Tp and 7 contains weakly
the regular representation Ag of G.

2 Lengths of permutations, sums of power se-
ries

Take g # e from G, and decompose it into a product of mutually disjoint
cycles (= cyclic permutations) as

g=q0192'""9m, G;= (ijl ijz ijt,-)- (8)

We call ¢; the length of the cycle g;, and put n.(g) = |{ Ji = €}| the number
of cycles g; with length £. For o € G, put h = 0go~!, then

h=0go™' =hihy - hm, hj=(0(in) (i) ... o(ijy)). 9)

Thus we should evaluate the length |h| from below to get an evaluation of r!*
from above.
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To do so, let us introduce some notations. Take an element h € G,h # e,
and express it in a product of mutually disjoint cycles as

h=hihy+ hm. (10)

Let us denote by supp(h) the set of numbers ¢ for which h(7) # i, then

supp(h) = U7 supp(h;). Assume acycle h; is given as h; = (aj1 aja ... ajy).

Then, supp(h;) = {aj1,a52,... , a5, }. Put

- +
a; := min a a; := max a 11
J 1<k<Y; 7ks J 1<k<t; k> (11)

and define an mterval [hj] C Iy as [hj] := [aj,a]] and denote by |[hy]] its

width aj , which is different from |supp(h;)| = £;, the order of the set
supp(h;). Note that the number of different possible cycles h; with the same
supp(h;) is equal to (¢; — 1)!.

Lemma 4. (i) For an element h € G = G, h # €, let h = hihg - hy, in
(10) be its decomposition into disjoint cycles. Then,

bl > Y 2][hy)| - (2m — 1/2) [supp(h)]. (12)
1<j<m
(ii) For g € G,g # e, let g = g1g2-* - gm in (8) be its decomposition into
disjoint cycles. Then, for o € G, we have k

logo™| > ) 2|logjo”]| - (2m — 1/2) Isupp(g)|. (13)

1<j<m

Lemma 5. Let p be a real number such that 0 < p < 1. Then, for a fized
non-negative integer s > 0,

p __ 7
Z (S) pP= (]__lp)a+1' (14)

s<p<o©

We omit the proofs of these lemmas.

3 Proof of Theorem 1

It is enough to consider f(g) = |f(g)| = |r|'¥l. Put p = |r|?, then,

fN(g) = % Z f(aga‘l) = % Z |,n||<rya'll

cEGN " o0eGy
~(2m~—1/2)|supp(g)|
< |r| Z H plleio™" 1l (by Lemma 4).

ceGN 1<j<m

51



Fix two numbers 1 < b]T < bj < N, and consider possible cycles h; of length
¢; for which
[h)=B;,  Bj:=[b7,b}] C In. (15)

17

Then, the number of such cycles is equal to (¢; —1)! x {the number of different

choices of (¢; — 2) integers from the interval (b, b}) }:

b} —b; — 1
1) i Y
(6 —1)!'x ( g2 ) . (16)
Let S((g;, Bj)i1<j<m) be the subset of Sy of all such o that satisfies
[hJ] = Bj for hj = agja—l (1 <j< m), (17)

and put 5( (95, Bj)1<j<m) = |S((9j, Bj)1<j<m)|- Then,

% Z H p”o'yja‘lll — _]%Zs( (gj,Bj)lstm) H plB,-|, (18)

" 0€6N 1<j<m 1<j<m

where the summation runs over all systems of m intervals { B; ;1 < j <m }
in Iy. Since the family of m subsets supp(ogjo~!) of Iy are mutually dis-
joint, a possible system { B; } should satisfy certain conditions, for exam-
ple, their extremities are all different. For any non possible one, we put
s( (9> Bj)igj<m) = 0.

We want to evaluate from above the number s( (gj, Bj)i<j<m). We note the
following fact. Assume N sufficiently large so that A := supp(g) C In. Let
G 4 be the full permutation group acting on A, and consider the commutant

Calg) ={s5€6G,; 895 =g}

Let ny(g), £ > 2, be the number of cycles g; such that £; = [supp(g;)| = £. Then,
the order |Ca(g)| is equal to [],, ne(g)! - £%¢(9). However, since we consider
independently for each j the cycle ogjo~!, the first factor [],5, ne(g)! does not
appear in the next discussion. B

Let g; = (ij1,%52,--- ,1;), then h; = ogjo~! is given by (9). This means
that the cycle h; determines the integers o (i;1), o (i;2), - - . , 0(ij;) modulo cyclic
permutations. On the other hand, for integers p € Iy \ supp(g), o(p)’s can be
given arbitrariry from Iy \o-supp(g). Thus, taking into account the evaluation

(16) and [],5, €749 = [1,;<m &i» We get

1

s((9i Bihici<m) < [ 4! (Izjl_—;) X (N — |supp(g)|)!-

1<i<m
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This evaluation is necessarily from above because the evaluation (16) is given
not counting any restriction coming from other ogyo~" for j' # j.

Fix the width k; = |B;| > ¢;. Then, the number of such intervals in Iy is
(N —k;+1) < N. Therefore the left hand side of (18) is evaluated from above
by

o . N"- (N ISUPP 218> (’Z :;) k;

1<i<m ¢ <k; <N

N™. (N — |supp(g)|)! plupp(o)l

= C- N! ' (1- p)lsupp(g)|-m

(by Lemma 5),

where C denotes a constant independent of N and k;’s.

The above last term tends to 0 as N — oo. ‘This proves that, for the
positive definite function f in the theorem, its centralization fy tends to the
delta function &, pointwise on &,. This proves our assertion. o

4 Comments to Proof of Theorem 2

To prove Theorem 2, we need an evaluation of the block length ||A]| from
below for h € Sy, similar to (12) for the length |h| but a little more finer.

Let h = hyhy - - hy, be as in §2 a cycle decomposition of h € &y. Consider
intervals [h;],1 < j < m, as before. If [h;] and [h;] have a non-empty intersec-
tion, we join them to get a bigger interval. In this way, we devide the union
Uicj<m|h;] into connected components. Let M be the number of such connected
components. Then we have a partition of the index set I, = {1,2,... ,m}
into M subsets J,,1 < p < M, such that Cp := Ujey,[h;] are these connected
components.

Lemma 6. For an element h € Gy, let the notations be as above. Let the
connnected components Cp = Ujes,[h;] be [c;,¢f] for 1 < p < M. Then the
block length of h is given as

Bl = > (GI-1)= > (g - (19)

1<p<M 1<p<M

We omit the proof of the lemma.
Using Lemma 6, we can prove Theorem 2 similarly as Theorem 1. Here we
omit the details.
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5 Closures in Rep(G,) of unitary representa-
tions

In this section, we state a rather astonishing property of unitary representa-
tions of the infinite symmetric group G-

For a locally compact group G, a topology is introduced in the set Rep(G)
of its unitary representations by means of ’'weak containment’, for which we
refer [Di, §18]. In consequence, a topology is introduced in the dual G of G.

For the infinite symmetric group G = &, any irreducible unitary represen-
tation (= IUR) known until now can be realized as an induced representation
Ind¢7 from a wreath product type subgroup H and its irreducible unitary
representation , as is proved in [Hi2].

Theorem 7. For any irreducible unitary representation of the infinite sym-
metric group G = Gy, given in [Hi2], its closure in Rep(G), with respect to the
topology of weak containment, contains at least one of the trivial representation
1, the sign representation sgng and the regular representation )\g.

Method of Proof. Take an IUR p given as an induced representation
Ind§m. Take a positive definite function f, associated to 7 which is given as
its matrix element. Then, a positive definite function F' associated to p is given
as an induced up of f,: F = Ind$ f,, which is defined as an extension of f, to
G by putting 0 outside of H (see the next section).

Using explicit form of a wreath product subgroup H, we can work as in the
previous sections. In more detail, chosing an appropriate increasing sequence
of subgroups Gy * G (N — ), Gy = &,, with Jy 7 N, we calculate
the centralization

Fo(g) = g1 3 Flogr™) (966 =6u) (20)

c€GN

on Gy of F, and prove that F°¥(g) converges respectively to the constant
function 1, the sign sgn(g) or the delta function §(g) pointwise, as N — oo.

The key points are

(i) a kind of reduction from F to f,, and

(ii) an estimation of the order of {o € Gn; cho™! € H} for an element
he H, #e.

According to the result in Theorem 7, we can propose certain conjectures.
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Conjecture 1 (a weaker form): For the infinite symmetric group G =
Go, every infinite-dimensional IUR is not closed in the dual space G as a one
point set, with respect to the weak containment topology.

Recall that this topology can be defined in two different ways. The one is
by means of the so-called hull-kernel topology according to the containment
relation among kernels of representations, and the other is by means of the
convergence of positive definite functions associated with representations, cf.
for instance, [Di, §3, §18].

Recall further the following fact [Di, §4, §9, §18]. Let G’ be a locally compact,
unimodular and separable group. Assume that G’ is of type I. Then, for an IUR
7 of G', the one point set { [7] } in G’ is closed if and only if the representation
7 is CCR, or equivalently, 7(L1(G")) C C(H.) (cf. [Di, §13]). Here, C(Hx)
denotes the algebra of all compact operators on the representation space Hr
of 7.

In our present case, the group G = &, is not of type I. Here again, if an
IUR 7 is CCR, then the one point set {[r]} is closed. However the converse is
not known to be true. Furthermore, since G is discrete, an IUR 7 of G is CCR
if and only if 7(g) is compact for any g € G, and so dim 7 is finite.

Thus the above Conjecture 1 makes sense, and we propose further the fol-
lowing more exact one.

Conjecture 2: For the infinite symmetric group G = Go, every infinite-
dimensional IUR contains in its closure in Rep(G) at least one of the trivial
representation lg, the sign representation sgng and the regular representation

Ag-

6 Inducing up of positive definite functions

In a general setting, let G be a discrete group, and H its subgroup. Take a
unitary representation m of H on a Hilbert space V,, and consider an induced
representation p = Ind$.

The representation space H, of p is given as follows. For a vector v € Vi)
and a representative go of a right coset Hgo € H\G, put

Eug(9) = {w(()h)v ((gg:;g(;o};_e i (21)

Let  be a linear span of these V,-valued functions on G, and define an inner
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product on it as

(m(h)v,v')  if hgo =g} (3h € H),

(Ev,yo’Ev’,ya) N { 0 if Hgo # Hgg. (22)

The space H,, is nothing but the completion of .
The representation p is given as

p(91)E(9) = E(991) (91,9 € G,E€H,). (23)

Now take a non-zero vector v € V, and put E = E,. € H,. Consider a
positive definite function on H associated to 7 as

fx(h) = (m(h)v,v)  (h € H), (24)
and also such a one on G associated to p as

F(9)=(o(9)E,E) (9€@). (25)

Then, we can easily prove the following lemma.

Lemma 8. The positive definite function F on G associatet to p = Indfﬂr is
equal to the inducing up of the positive definite function f, on H associated to
7: F = Ind$, f,, which is, by definition, equal to f; on H and to zero outside

of H.

7 Case of characters 1 and sgng

Firstly we treat the case where the closure of an induced representation
p= Indfﬂr contains characters 1¢ or sgn,;.

Let H be a subgroup of G = G, of the product form H = H;H,, where
H, = 6y and H; C &, with an infinite subset I C N and J = N\ I. Denote
by x1 a character 1, or sgng, of the group &; = &, and by 7, a unitary
representation (= UR) of H,. Take a UR 7 = x; ® w3 of H;H, and induce it
up to G to get p = Ind$r.

Theorem 9. Let a unitary representation # = x; ® 7o of H = H,H, be as
above. Then the closure of its induced representation p = Ind;Gﬂr of G = G
contains the character xg = 1g or sgng corresponding to x, = ls, or sgng,.

Proof. Let Jy C N be a series of increasing subsets such that |Jy| = N,
Jv /' N, and that the ratio [INJx|/|Jn| = 1 as N — oo, so that |JNJy|/N —
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0. Then, Gy := &, /* G = G4 and we consider the centralizations of
a positive definite function F associated to p along the series of increasing
subgroups Gy: for g € G, ‘

1 1
G — -1y _ -1 .
FON(g) := e > F(ogo™) = i > F(ogo™). ~(26)
c€GN oc€GN
Take a unit vector v from the representation space H,, and put a positive
definite function f, associated to m as

fr(hihe) = x1(hy) - (m2(h2)v, v) (hy € Hy,hy € Hy). (27)

Then F = Indg fr is such a one associated to p = Ind¢7, by Lemma 8.
Now take an arbitrary g € G. Since Jy ~ N, if N is sufficiently large, there
exists a 0y € Gy such that ¢’ = gogoy ' € H1 NGy = Gpagy Or

S :=supp(¢) CcINJIn. (28)

Then we have FCN(g) = FO~(¢').

Fix ¢’ € G&;, and consider the asymptotic behavior of the value FGn(g') as
N = oo. In the formula (26) for ¢, instead of g, we devide the sum over
o € Gy = G, into three parts as follows.

Case 1: o such that og'o~! € &; N Gy or equivalently oS’ C I N Jy;

Case 2: ¢ such that og’'c™! € H = H, H,, but not in Case 1;

Case 3: o such that og'c™! ¢ H.

In Case 1, F(og'o™!) = fr(0g'07!) = xe(¢') = xc(g). The number of such
o € Gy =6y, is equal to

1IN Jnl [N Jn|!
(0 Jdn| = 15"))! (N Jn| = k)
with k = |S'| = |supp(g)|- Therefore, since |I N Jy|/N — 1, the partial sum
for Case 1 in (26) is evaluated as follows when N tends to oo:
1

x |Jxy \ S|l = x (N — k)! (29)

Gl Z F(ogo™") = Cn-xc(9)s (30)
N c€GpN: Case 1l
1 |InJy)! L YT NN -
= . . - k) = 1. (31
O = N1 TR T =B (N — k) ,,I=Io Noy (31)

In Case 2, we have |F(cg'c™!)| < 1 and the evaluation in Case 1 shows us
that the partial sum for this case tends to zero as N — oo. (This follows
directly from limy_o Cy = 1.) In Case 3, we have F(og'c™1) = 0 and there
is no contribution to the sum in (26).

Altogether we get finally FO¥(g9) — xe(9) (9 € G). This proves our
assertion. 0O
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8 A reduction to a subgroup 6; 2 &, I C N

To treat the case where the closure of p = Indfﬂr contains the regular rep-
resentation Ag, it is better to prepare a preliminary step.

We take a subgroup H C G = S, of the product form H = H,H,, where
H, C 61 = G and H; C G; with an infinite subset ] C N and J = N\ I.
Take also an infinite-dimensional UR m; of H; and a UR my of H,. Then we
take a UR 7 = m ® mp of H = H,H, and its induced one p = Indfﬂr of G.

For j = 1,2, take a unit vector v; from the representation space Hr; and put
a positive definite function f, associated to m as

fa(hahg) = fay(h1) - fry(h2),  fx;(Bs) = (mj(hj)vj,v5)  (hs € Hj).

Then F = Ind$, f, is a positive definite function associated to p = Ind§n.
Let Jy C N be a series of increasing subsets with the same property as in
the proof of Theorem 9, so that putting J), = I N Jy, we have

Iy /A1 and |Jy|/|In| = |Iy|/N =1 (N = o0).

For our later use, we put G’ := &; D H;, which is naturally isomorphic to
S, and put F' := Ind,G,'l fr- Then, F' is a positive definite function on G’
associated to Indg,'"1 .

We have Gy := 6, /' G = 64 and G := Sp, =G NGy /G'. We
compair centralizations F¥ in (26) of a positive definite function F' = Ind$ f,
with those (F')C~ of F' = Indg'1 fm, concerning their limits as N — oo..

Take an arbitrary ¢ € G. Then, if N is sufficiently large, there exists a
0o € Gy such that ¢’ = gpgoy ' € 6; NGy = Sy, with Jy = I'NJy (in
another notation, ¢’ € Gy C G'), or equivalently S’ := supp(¢g’) C J4. Then,
FOn(g) = FGn (g).

Fix ¢ € 6; = G', and devide the sum over 0 € Gy = &, in (26) for
F®%(g') into three parts according to Cases 1, 2 and 3 for o as in the proof of
Theorem 9.

CASE 1: In Case 1, since ¢’ € Gy C G', and ag'0™! € Gy, there exists a
o' € G'y such that 0g'o~! = o’g'0’ . Since G'NH = H;, we have F(ogo™) =
F(o.lgla.l—l) — Fl(a.lglo,l—l).

Note that (og'c™')(i) = i for ¢ & o(S') := {o(j);j € S'}, then we see
that the restriction o|S’ of o determines the element og’c~! completely. So
we count the number of 0 € Gn = &y (resp. GNN G = &, = GYy)
in Case 1 that have the same restriction o|S’ on S’ C I. They are equal to
|Jv \ S'|! = (N — k)! and (|Jy| — k)! respectively, with k = |S’| = |supp(g)|.
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1 _ 1 ,
m E F(O'g’o‘ 1) CNX IJ’ |' E F(O’gg 1)
oc€Gy: Case l N UeGNnGI:GJ;V
. [N ]! (N —k)!
h = . .
wit Cwn N 17 = k) —1 (N> o0)

Since Gy N & = G, = G, the right hand side of the above equality,
except the constant factor Cl, is nothing but the centralization, with respect
to Gy of positive definite function F' on G":

(F"\CN (g") = G ’I Y Floga™). ' (32)
g€GYy
CASES 2 AND 3: In Case 2, the partial sum over o € G in this case tends
to zero as N — oo similarly as in the proof of Theorem 9. In Case 3, we have
no contribution to the sum in (26). ; '
Altogether we get the following lemma.

Lemma 10. Let the notations be as above, in particular, H= HlHQ,Hl
&1, Hy C G with |I| = 00,J = N\1I, and 7 = m ® mp with a UR ; ofH,,
and take f,.-(hlhz) = fr, (1) fry(h2) (h; € Hj). Put F = Ind Hfr for G = G,
and F’—IndHlf,,l for G' = 61 = G

For an increasing sequence of subsets Jv /AN, put Gy = GJN,GN =
G'NGy =&y, with Jy =INJy. Foranyg € G = B, there exists a g' € G’
conjugate to g in G. If the sequence Jy satisfies |IN1/ 1IN | - 1(N — 00),
then,

lim F(g) = lim (F ’)GN(g) (33)

N-ooo

9 Case of the regular representation Ag

We follow the notations in the previous section. For a subgroup H = H1Hy C
G = Gy, we take as H; a so-called wreath product type subgroup imbedded
into @' = 6; & &, in a saturated way, and Hy C &;,J = N\ 1. Let us
explain for H; in more detail.

Take any finite group 7' and a countable infinite index set Y. Put T}, = T for
any 7 € Y, and take a restricted direct product Dy (T) := H:’€Y T,. Denote by
Gy the group of all finite permutations on Y, then it acts naturally on Dy (T)
by permuting components of

d = (tn)ney € Dy(T).
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The semidirect product group Dy (T) x Gy is called a wreath product of T
with Gy and is denoted by Gy (T), where, for 0 € Gy and d € Dy(T),
o-d-o7l= (t;') with t;, = tg-1(y) (ney).

We imbed Gy (T) into &; as follows. Take a faithful permutation represen-
tation of T into a finite symmetric group &, and identify T' with its image
in &,. On the other hand, an ordered set J = (p1,p2,...,pn) of different n
integers p; € N is called an ordered n-set and denote by J := {py,ps, ..., Pn }
its underlying subset of N. We decompose I into infinite number of or-
dered n-sets J,,,n € Y: I = UyeyJ,. For each n, denote by ¢, the order-
preserving correspondence p; — j (1 < j < n) from J, = (p1,ps, ... ,Ps) onto
I,={1,2,...,n}. Then 4, gives us an imbedding

<p,,:T,,=TC(‘5nBav—)cn'l-a-b,,GGT"CGI. (34)

This fixes imbeddings of Dy(T) and Sy, and the one & of Sy (T) into &y,
which depends on a partition Z = { J, }yey of I into ordered n-sets.

We take H, = ®(Sy(T)) C Sy, which is denoted also by H(Z,T). In case T
is trivial and imbedded into &; = {e},n =1, we have H(Z,T) = S;. Except
this trivial case, we call such a subgroup as H(Z,T) properly of wreath product
type.

We take URs 7; of H; for j = 1,2, and then a tensor product representation
m = m @ w2 of H = HyH,, and induced it up to G: p = Indfﬂr. To get an
irreducible UR of G by this method, we should choose as m; an IUR coming
from an infinite tensor product (with respect to a reference vector) of a fixed
irreducible finite-dimensional representation of T, and of course similar kinds
of restrictions are necessary for H, and m;. Further details are given in [Hil]
and [Hi2], and are summarized in §12 below. For our later use, we define for
T = (Jp)ney and T C &, the folowing

supp(H(Z,T)) = supp(Z) := Upey Jy C N.

Theorem 11. Let a subgroup H C G = &, be given as H = H,H,, with
a proper wreath product type subgroup Hy = H(Z,T) of G' = &; = G, and
H, C &;,J =N\1I. Let m; be an infinite-dimensional UR of H, and 75 a UR
of H,. Take a tensor product representation m = m, ® o of H = HyH,. Then
the closure of its induced representation p = Ind$7 of G contains the regular
representation Ag.

Proof. By Lemma 10, we may and do assume that H = H, = H(Z,T), that
is, I = N. The finite group T is contained in &, with n > 2. For 7 = m
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and f.(h) = (r(h)v,v),v € Hy,||v]| = 1, we have |F(h)] < 1for F = Ind$, £,
Therefore, taking Gy = &,,,J v /N, we have the following evaluation for
geG

1

|FS¥(g)] < Gl > |F(ogo™)| <
N 0€GN

Dn(g; H) _ Dn(g; H)
|G| |In|!

(35)

with Dy (g; H) := |{o € Gn; 0go™! € H}|.
We evaluate the number Dy (g; H) from above. Replacing T C &, by Gy,
we consider a bigger subgroup H D H = H(Z,T) = ®(&y(T)), that is,

H=H(Z,G,) = 3(6y(Gn)).

Then, naturally Dy(g; H) < Dn(g; H ), and thus we evaluate the latter.
Recall that these subgroups are defined by means of a partition of I = N
into ordered n-sets as I = Ll,,ey?;. We introduce a linear order 7;,7s,... in
Y, and put Jy := Uh<i<n Ty Then, |[Jy| =nN and Jy /' N.
Take an arbitrary g € G, # e, and decompose it into disjoint cycles as in (8):

9=0192" " 9m, 9i= (1 2 ... i), (36)

then, supp(g) = Ui<j<msupp(g;), with supp(g;) = {1,952, 8¢ }. For
0 € G, put h=0go™! and h; = 0g;jo™!, then,

h= UgO'—l = h1h2 oo hm, hj = (O'(ijl) O'(’l:jz) . O’(ij(j) ) (37)

We treat the case where Dy(g; H) > 0 for sufficiently large N. Take a
o € Gy such that h =ogo™! € H. Then, we have the following two cases:

Cask I: For a certain 5,1 < j < m, supp(h;) = osupp(g;) C Jn, for some
1<i<N.

Cask II: For any j,1 < j < m, supp(h;) = osupp(g;) ¢ Jn, for any
1<i:<N.

Denote by D% (g; H) (resp. DX (g; H)) the number of 0 € Gy with h =
ogo~! € H which is in Case I (resp. Case II). Then we have the following
evaluations from above.

Lemma 12.
Di(g;H) < m-N-nn-1)-(N'-2), N =nN,

DY H) < (Z%{—l)ﬂsupp(gn)-N-n(n-l)-(N'—z)!.

i=1

61



Assume this lemma be granted, then

Dn(g;H) _ Dn(9;H) _ Dj(g: H) + Dii(g; H)
Gl = Inl S N

This has to be proved for Theorem 11. a

0. (38)

Here we omit the proof of the lemma.

10 Indecomposable positive definite class func-
tions

For the infinite symmetric group G = G, all the indecomposable (or ex-
tremal) positive definite class-functions, which are also called characters or
Thoma characters, are classified and are given explicitly in [Th2).

After Satz 3 in [Th2], they are written as follows. Let a = (a3, a,...),8 =
(B1, Bz, - .. ) be decreasing sequences of non-negative real numbers such that

D 1<keoo %k Dickeoo B X 1, (39)

and put 7 = 1— (llefl +[18ll) = 0, with [la|| :== 3ok, Bl =
21<k<oo By S0 that [lafl +[|B]] + 7 = 1.

Take a g € G and let g = g,92 - - - g be a cycle decomposition in (36), where
the length of cycle g; is denoted by ¢;. For v > 2, let n,(g) = |{j; ¢ = v}|
the number of g; with length v. Then the character f,s determined by the
parameter (a, () is given by ‘

‘ ”V(g)
fap(g) = ( D e+ (-t Y ﬂ:) : (40)

1<k<oo 1<k<oo

The case where a; = 1 (resp. £, = 1 and 7, = 1) corresponds to the identity
representation 1g (resp. the sign representation sgng, and the regular repre-
sentation Ag). Except the cases of 1-dimensional representations 1¢ and sgng,
such a character corresponds to the center of a II; type factor representation
of G [Thl]. These factor representations can be decomposed into irreducible
representations, but explicit decompositions are known only in the case where
Yo = 0, in [Ob2].

Now let us rewrite the formula (40) in another form. Put

X(Gk) = 1g, X(G_k) = sghg, a_x = B
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fork=1,2,.... Then, when ¢; = v, we have (—1)u+1 = (—1)£j+1 = sgng(g;) =
Xg_k) (gj). Therefore the formula (40) is written as

fasle) = ]I (Z gl + 3 xE0 () (@) )

1<j<m \1<k<oo 1<k<oo
(k) ¢ : * _
= H (Z Xa (95)a ) with Z*=2Z\{0}. (41)
1<j<m \k€Z*

We expand this product into a sum of monomial products as follows. Let
K, = max{k ; o4 > 0},K_ = min{k ; ax > 0}, and let Z, 4 be the
intersection of the interval [K_, K] C Z with Z*. Then the sum over k € Z*
in (41) is actually over k € Zy 3. Thus we get

fas(g) = 3 IT x5 (a5) (o), (42)

(k1,k2,... ,km)E(za,ﬂ)m 1<j<m

where g = g1g2- - - gm is a cycle decomposition and £; is the length of cycle g;.
As is shown later, this expression of f, s has its own intrinsic meaning in rela-
tion to the centralization of matrix elements of certain induced representations

of G containing all irreducible unitary representations (= TURs) constructed
in [Hi2].

11 TIURs of G = 64 as induced répresentations

Take a subgroup H of G of the form
H = HyHpHg, Hp= HpGP H,, Hg= quQ H,, (43)

where Hy = Sp with a finite subset B C N, H, = &, with an infinite
subset I, C N, and H, = H(Z,,T,) properly of wreath product type subgroup
with T, C S,,,ng > 1, and an infinite partition Z, = (Jp,)neey, of Iy :=
supp(H(Z,, T,)) into ordered ng-sets Jy,. Thus H is determined by the data

¢:= (B, (Ip)PEPa (Iq,Tq)qu)

and is denoted also by H¢. We assume that H is “saturated” in G in the sense
that

N = B U (Uperlp) U (Ugeqly) (44)

is a partition of N. We admit the cases where some of B, P and ) are empty.
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As an IUR of H, we take
T=m & (®peP Xp) ® (®:€Q ’qu) ’ (45)

where 7 is an IUR of Hy = &3, X, is a character of H, = G, (and so trivial one
or sign), and 7, is an IUR of H, = H(Z,,T,), and the tensor product ®P o™y
is taken with respect to a reference vector b = (by)4eq, by € V(m,), |Ibgll = 1, if
dimm, > 1 for infinitely many q € Q. Here V(m,) denotes the representation
space of m,.

As an TUR m, of the group H, = H(Z,,T,) = &y, (T,) := Dy, (T,) x Sy,, we
take the following one. Take an IUR pr, of the finite group Ty, and consider it
as an IUR p,, of each component T, = Ty of Dy,(T;) = [T, cy, Ty, Making
their tensor product, we get an IUR 7 of the restricted direct product Dy, (Tp).
Here, in case dim p7, > 1, the tensor product is taken with respect to a reference
vector :
ag = (ap,)pev, With an, € V(py,), [lag |l =1.

For a 0 € Gy,, put for ®,,cy,wy, € ®::eyq V(pn,)

W;(O’) (®’7q€qu"q) = XYQ (a)(®'lqequ:7q)’ w;lq = w”_l(’h)’

where xy, is a character of Gy,. Then, 7}(d- o) := mg(d)my (o) gives an IUR of
Gy, (T,). Pulling 7, back to H, = H(Z,,T,) through an isomorphism similar
to @ in §9, we get an IUR w, of H,,.

Thus the IUR 7 of H = H® is determined by the data (c, d) with

0:= (7T0, (XP)PGPa (b; (qu’XYq’ G’Q)QEQ))7

and is denoted also by =(c, ).
We know in [Hi2] that, under the saturation condition (44), the induced
representation
p(c,0) = Ind§m(c,0)

is irreducible, and equivalence relations among these IURs are also clarified
there. As far as I know, this big family of IURs of G = S, contains all IURs
known until now.

12 Centralization of matrix elements of IURs

For an IUR given as p(c,0) = Ind$7(c, ), we take one of its matrix elements
as a positive definite function on G and study limits of its centralizations. So,
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take a unit vector vp € V(m) and vg € ®Pc,V(m,), and consider a matrix
element f, of m = n(c,0) given according to (45) as

Fr(h) = (mo(ho)vo, vo) * (RperXp) (hp) - {(®Leomq) (h)vg, vq), (46)

where h = hohphg € H = HyHpHg is a decomposition according to (43).
Then F = Ind$f, is a matrix element of p(c,d) = Ind$7. Let us study
the centralizations F6¥ of F for certain increasing sequences Gy ,* G of
subgroups.

Take Gy = &,y /' N, as follows. We demand an asymptotic condition

LNnJ I,NJ
10 Ty — X (p€P), l—g—]-v—'—wq (g € Q), (47)
IJNI |JN|
then there holds
ZpGP Ap + quQ pq = 1. (48)

Put for the family { H, =&, ; p€ P},

P.={peP;x,=1g,}, P-={peP; x,=sgng, }, (49)

then we have the following inequality similar as (39)

> pep, At D pep Ap S 1 (50) -

At this stage, first let us give our results in the following theorem and the
succeeding corollaries, and then give the proof of the theorem in the next
section.

From a technical reason for proving the convergence of sequences FCV as
N — oo, we assume in the following an additional condition on the way of
growing up of Jy’s, in such a form that, for each ¢q € Q,

I,NJy is a union of subsets Jy , ng € Yy (N >>0). (51)

Theorem 13. Let H = HyHpHg be a subgroup of G = G, and 7 be its
irreducible unitary representation given above in (43)—(44) and in (45) respec-
tively. For a positive definite function f, given in (46) as a matriz element of
w, put F = Indg fx. Then it is a positive definite function associated to the
induced representation p = Ind$r.

According to an increasing sequence Gy = Sy, G of subgroups, the
centralizations FCN of F converges pointwisely to a Thoma character fugp
if Jv 2 N satisfies the asymptotic condition (47). Here the parameters
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a=(ay,ar,...) and B = (f1, B, ...) are determined from (Ap)pePys (Ap)pep_,
respectively by rearranging A,’s as decreasing sequences.
The inequality (50) corresponds ezactly to (39), and vo = 3 o Kq-

Put p, = |P;|,p— = |P-|. Then the lengths of a and 3 are limitted by p,
and p_ in such a sense that ax =0 (k > p,), 8, =0 (k > p_).

Corollary 14. (i) In the case of Q = 0, as limits of centralizations of
F = Ind$ f., there appear all fap with a = (04,09,...) limited by p, and

B = (B, Pz, - ..) limited by p_ satisfying the equality

o+ 181 = 3 e+ 3 =1 (52)
1<k<oo 1<k<o0
(ii) In the case of Q # 0, as limits of centralizations of F = Ind$ f,, there
appear all fo 5 with a = (o, o, ... ) limited by py and 8 = (B, Bo, ... ) limited
by p— satisfying the inequality (39): ||a||+||8|| < 1, and in particular, foo = 6.
witha==0=(0,0,...) and v = 1.

The invariant positive definite function f, g is a matrix element of a II, factor
representation of G, associated to its cyclic vector. Therefore, in terms of the
weak containment topology in the space Rep(G) of representations [Di, §18],
we can translate the above corollary as follows.

Corollary 15. (i) In the case of Q = 0, the closure in Rep(G) of one point
set { p} of irreducible unitary representation p = Indfﬂr contains all IT; factor
representations corresponding to fo g with o limited by p, and B limited by p_
satisfying the equality (52).

(ii) In the case of Q # 0, the closure in Rep(G) of one point set { p} contains
all I1; factor representations corresponding to fo 5 with o limited by p, and 8
limited by p_ satisfying the inequality (39), and in particular, it contains the
reqular representation \q.

Notation 12.1. For an IUR p = Ind§n, p = p(c,d), 7 = n(c,?), denote by
TC(p) the set of all Thoma characters obtained here as limits of centralizations
of the matrix element F = Ind$, f,. Then,

TC(p) := { fa; @, 3 coming from (’\p)peP+’ ()‘p)peP—
satisfying Condition (TC) },

{ Soepdo=1 fQ=0;

ConbITION (TC): Y oA <1 ifQ#0
pEP 7P = )
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13 Proof of Theorem 13

13.1. Case of @ = 0.
Let us first consider a case where Q = (). Take a g € G and let

9=9192"""gm, (53)

be its cycle decomposition. The centralization of F' = Ind§ afr over Gy =Gy,
is

1
Fo¥(g) == Y Flogo™) === D falogo™). (54)
|GN| UGGN ' aeCiN
ocgo ‘€H

Here, H = HoHp = H, HpGP , and fr(h) = (mo(ho)vo,vo) - [I,ep Xp(hp) for
h=ho[l,epho € Ho HpePH

Suppose N is sufficiently large so that Jy D Ui<j<mK; with K; := supp(g;)-
Recall that Hy = 6p,H, = 6;, (p € P), and supp(ogjo') = 0Kj, then we
see that the condition ogo~! € H is equivalent to that each 0K;,1<j<m,
is contained in some of B, I, (p € P). Put

S(g) = {O'EGN=6JN; O'QO'_IEH},
Sp(g) = {o€S(g); o907 € Hp}, (55)
SB(g) := {o€8S(g9); ogo™" has non-trivial

component in Hy = &p }.

Then, S(g) = Sp(g) U SB(g), and moreover Sp(g) is decomposed into disjoint
sum of its subsets as follows. Let § = {J, ; p € P} be a partition indexed
by P of the set I,, = {1,2,...,m} of indices of g}s (J, = 0 except for finite
number of p), and put

Ss(g9) :=={0€S(g); oK; C I, or ogjot €&, =H,(j € J,,p€ P)}

Then Sp(g) = ng;epmS‘;(g), where P,, denotes the set of all partitions of I,
indexed by P. Thus we get '

S(g) := SB(g) U (User.. S5(9))- (56)

The right hand side of (57) below is a sum over o € S(g), decomposed into
partial sums according to the above decomposition of S(g),

FCr(g) = | Z frlogo™) + Z | Z fr(ogo™). | (57)

! aGSB(g) 0€Pm ' aeSs(y)
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We study the second term. Put h; = ogjo™!, then o0go~! = hyhy - - hy,. For
6={Jp; p€E P} € Pn, hj € Hp and x,(hy) = 1 or = sgn(g;) = (—1)%~! with

¢; = £(g;). Denote this value by x,(g;), then fr(cgo™") = 1 cp [1;cy, Xp(95)-
Hence we have

T 2= froee™) =11 11 (e 'S“(")' (58)

' a€S5(9) PEP jEJ,p

The number of elements |S5(g)| is given from the condition oK; C I, N
v (j € Jp). Since |K;| = £;, we can choose for Llje, aK freely > ies, b
number of elements from I, N Jy. Noting that 3, p 3., £ =D ic; 45, we
get

1S5(9) = HIIanN'(IIanNI_l)”'(IIanN|"ZjeJ,,eJ’+1)

peEP
x (19n] = Sger, )" (59)

When Jy grows up to N under the condition |I, N Jy|/|Jn| = A, (p € P),
we have

> pepdp =1 (60)

Furthermore, deviding the both sides of (59) by |Jx|!, and taking limits as
N — o0, we obtain

|S5(9)| =T] I xsle) A% with ¢ = e(g;).

1
N—'°° |In ! peP je,

Thus the limit of the second term of (57) gives us

m
Z H H Xp(gj)(’\p)t(gj) = H (Z Xp(gj)’\pt(gj)) . (61)
8€Pm pEP jEJp j=1 \peP

On the other hand, for the first term of (57), an evaluation similar to that of
|S5(g)| proves that its limit as N — oo is equal to zero (see, 13.2 below). Or
this fact follows also from (60) through the theory of positive definite functions.

Compairing the above formula (61) with the formula (41) or (42), we see
that the proof of Theroem 13 in the case @Q = @ is now complete.

13.2. Case of Q # 0.
Here we study the general case of Q # 0. Let S(g) = {0 € Gy =
Syy ; 0go~! € H} and SB(g), Sp(g) be as in 13.1, and in addition put

59(g) := {0 € S(g) ; go™" has non-trivial component in Hy }. (62)
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Then, S(g) = (SB(g) U S9(g)) U Sp(g), and accordingly the formula (57) is
rewritten as

FG”(g)=ﬁ > falogeH+ D ﬁ > falogo™). (63)

o€SB(g)uS?(g) $€Pm " 0€Ss(9)

Denote by X;(g; N) and Zj;(g; N) the first term and the second term in the
right hand side. We want to prove that X;(g; N) — 0 as N — oo, under the
condition .

v IIpﬂJNl |IqﬂJN|
|Jw] |In|

If this is done, the proof of Theorem 13 will be completed, because the limit
of the second term X;;(g; N) can be obtained just as in 13.1.

Now let & = { Jo,J, (p € P),J, (g € Q) } be a partition of I, for which at
least one of Jy, J; (¢ € Q) is non-empty. For o € S(g), put h = ogo~ h; =
0g;o ! (j € In), then h = hihg - - - hp,. Define

— Xy (p € P), -ty (1€Q). (64)

Ss(g) := {o€8S(g); hj =0gjo™" (j € I,) satisfy Condition (SQ) }
h; € Hy=6p or oK; C B (j € Ju),
CONDITION (SQ): hj € Hy=6, oroK; CI, (j € Jp,p € P),
hj € Hy= H(Z,,T,) (j € Jp,q € Q).

Denote by P! the set of all possible such partitions §’. Noting that | fr(ogo™")| <

1, we get the evaluation
S [
RYPRITED SIS (65)

So we should evaluate the number |Sy (g)|.

For a subset J C I,, and a subgroup H' of H, we denote by DF(J, H') the
number of possible ways for choosing integers o(k) € Jy (k € UjesK;) under
Condition (SQ) in such a way that o([[;c;9;)0™" = [l;e,hs € H'. (DF =
degree of freedom). Similarly, for K = Jy \ supp(g) = Jn \Ujer,. K, denote by
DF'(K, H) the number of possible ways for choosing integers o(k) € Jy (k €
K) under Condition (SQ) in such a way that ogo™' = h € H (after choosing
all of o(k), k € supp(g)). Then,

1S#(9)] = DF(Jo, Ho) - HpeP DF(Jp,Hp)
X quQ DF(JQ?HQ) X DF,(JN\UjEIij’H)a (66)

where K; = supp(9;), Ujer,, K; = supp(g).
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In 13.1, we calculated DF(J,, H, = 6;,) as given below, noting that the
condition (SQ) for this term is equivalent to o(K;) C I,(j € Jp) and that

| Ujes, Kl = 2jes,
DF(Jy, Hy) = |, 0 Inl (I 0 Inl = 1) -+ (1 N Il = Sgey, 45 +1).

Similarly DF(Jo, Hy = Gp) is given as follows if N is sufficiently large so
that B C Jy:

DF (Jo, Ho) = |BI(1B| =1) -+ (1Bl = Ljesn & +1) (67)

After taking all of o(k),k € supp(9) = Ujer,, Kj, other elements o(i),i €
Jn \ supp(g) can be chosen freely, and so

DF'(Jn \Ujer, K3, H) = (1] = Tyer,, )" (68)

Note that, as N — oo, the factor 1/|Jx|! in (63) can be replaced by a simpler
one if we note

—_1 .

[Tnl >~ ('JN| = Yjeln e,-)! x [T Unl% —1 (N = o).

Then we see that the contribution to the limit from a partial sum for ¢ is
majorized by

' - Bl-Y. . .0+1
lim |95 (9)] = lim ﬂ . W_l ..... |B| Z]EJO J
Nooo |Jy|! Nooo |Jy|  |JIN] ||
% lim |IPnJN|.]IanN|'—1 ..... IIanNl_zjerej'f'l
pep N | Iw] |In| |In|
AT tim 2EC ) )

20 N-o00 H:iEJq IJNllj . |

Therefore, if Jo # @ in &, or if the first factor (containing |B|) actually exists
in the right hand side of (69), then it is equal to zero and so the left hand side
(contribution to the limit) is also zero.

13.3. Calculation for wreath product subgroup H, = H(Z,,T,).
Now assume Jy = @ in §’. Then it is enough for us to prove that the ratio

DF(qu Hq)/HjeJq |JN|tj (70)
tends to zero as N — oo for J, # 0. Recall that

Hq = H(Iq,Tq) = qu (Tq) = qu (Tq) A qu,
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with a subgroup T, C Sn,,n, > 1, and an infinite partition Z, = (Jp)ney, of
I, = supp(H(Z,,T,)) into ordered n,-sets J,. Replasing Ty C Gy, by G, , we

~

get a bigger group H, = H(Z,, Sy, ), so that H, C H, C &y,. Since DF(J,, H')
is defined by the condition [],., h; € H' for h; = og;o™", there holds

DF(J,, H,) < DF(J,, H,) < DF(J,,&1,).

Here the last term is given by a formula similar to that for DF(J,, Hp) by
means of Ujes K; and I,. Evaluating the middle term, we get the desired
result. Here we omit the details.

By 13.2-13.3, the proof of Theorem 13 in the case of @ # ( is now complete.

14 Case of non-irreducible unitary representa-
tions

We keep to the notation in §11. Assume Q # 0 in (43), and consider a
subgroup H' = HoHp omitting Hg (or replacing Hg by Hp = {e}), and also
a subgroup H" = Hp in place of H = HoHpHg. These subgroups are small
and far from saturated in G. Take an IUR 7’ of H', and such a one " of H"
given as ‘ ‘

T=m® (®p€P Xp) ) T = QpeP Xp > (71)
and consider induced representations of G as
p, = Indg/ﬂ", p” - Indgnﬂ-”,

which are very far from to be irreducible. Let f and fr» be positiire definite
functions given as matrix elements of 7' and 7" as

F () = (mo(BsYoo, o) - (TTyep o) (),
for") = (Tlper o) (Bp),

for h' = hyhl, € H' = HoHp, and a unit vector vy € V(mg), and h" = hp €
H" = Hp respectively. Put

F'=IndS fr,  F"=1Indg.fe,

then F' and F” are positive definite functions on G, or matrix elements asso-
ciated to the induced representations g/ = Ind%n' and p" = Ind$, 7" respec-
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Taking limits of centralizations of F' or F”, similarly as for F = Ind?} fr in
(46) with H = HyHpHg in (43) and 7 in (45), we get exactly the same family
of Thoma characters f, g, extremal invariant positive definite functions on G.

In more detail, repeating the discussions in §13 (essentially those in 13.1),
we obtain the following result, rather astonishing.

Theorem 16. Let Gy = G, be an incresing sequence of subgroups going
up to G = G,. Assume that for every p € P,

IIanNI/lJNl —)Ap (N—-—)OO)

Then, the centralizations of F' and F" over Gy tend respectively to a Thoma
character f, g pointwisely, where the decreasing sequences of non-negative in-
tegers o = (on,Qy,...) and B = (B1, P, ...) are reorderings of { A, ; p € Py }
and { Ay ; p € P_} respectively. |

These convergences are quite similar as for F' = Ind$ f,, and are proved
word for word as for the second term in (63) (cf. 13.1).

15 Remarks and comments

15.1. Irreducible decompositions of factor representations.
Here we treat two extreme cases of Thoma character f, s, where 79 = 0 or
%o =1, with [la]| + [|8]| + 7 = 1.

Case of v =0 or |laf| + |8 = 1.

An irreducible decomposition of a factor representation 7 (of type II,) as-
sociated to f = f, g is given in [Ob2].

His result says the following. Let i, and i_ be natural numbers such that

o, >a;,11=0 and Bi_ >p_41=0.

Then, the factor representation 7 is decomposed as an integral of IURs p(¢,?) =
Ind§n(c,d) with infinite multiplicity, where ¢ = (I,)pep, @ = (Xp)pep, satisfying
the condition

P+ = |P+| = i+, p- = IP_l =1_. (72)

Here H = HLGP &1, a restricted direct product of &;, = Gy, and 7(c,0) =
®pepXp a character of H, and P,, P_ are defined in (49).
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From this result, we can define supp(7y) C G the dual space of G for f = fop
by ‘

supp(ms) = {p(c,0) = Indg(®per Xp) ; ¢ = (p)pep,
0= (Xp)pepr H = [[ep O, |Py| = iy, |P-| =i }.

We can characterize supp(7s) from the view point of the topology in Rep(G),
or more exactly from the set 7C(p) in Notation 12.1 of Thoma characters
obtained as limits of centralizations of matrix element F' = Ind§ f. of an IUR
p = Ind§m.

Fix f = fas and consider an IUR p = Ind§m such that 7C(p) D fap-
Let p = p(c,0), 7 = 7(c,0), and ¢ = (B, (Ip)pep, (Zg: Tg)qeq)- We say that p
can attain f, 5 (or that 7C(p) contains fos) without redundancy if B = 0,
|P;| = i4,|P-| =i, and in addition @ = 0 in case ||| + ||B]| = 1 (or 7 = 0).
The meaning of this terminology is that B # 0 has no effect to the set TC(p),
and that, if |P,| > i, for exmple, we put A\, = 0 for some p € P, (in other
words, kill the role of p) to get fo 5. Put

TUR(fap) = { p=Ind§m ; TC(p) 3 fa,p, without redundancy }

Proposition 17. Assume ||a|| + ||8]| = 1. For the indecomposable positive
-definite class function f = f, g, the support supp(my) of I, factor representa-
tion 7y is characterized as follows:

Supp(’le) = IuR(f)a f = fap- (73)

Remark 15.1. The expression given in (42) of f, s plays an important role
for our calculation in §13. It has also an intimate relation to Obata’s method
in [Ob2] of giving irreducible decompositions of 7¢, f = fa,s-

Case of 7 = 1 or o = 3 = 0 (regular representation).

The regular representation )¢ is a factor representation associated to fo,0 =
J,. When we extend the above situation in the case of the factor representation
7y associated to f = fo,s With o = 0 to the case of fo,o with 7o = 1, we can
make a speculation about the support of A¢ (or support of Plancherel measure
for G). Note that, for an IUR p = Ind§m, “TC(p) contains foo without
redundancy” means that B = P = { for p. Then, in this case, TC(p) = { foo }-
We may take our speculation as

First working hypothesis:
supp(A\¢) is equal to or is contained in the set ZUR(fo,0)-
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15.2. Classification of indecomposable positive definite functions.

Aiming to apply our method of “taking limits of centralizations” of positive
definite functions to other types of infinite discrete groups, we analyse relations
of our present results to Thoma’s results in [Th2].

Main important points in [Th2] can be considered as the following.

(1) Criterion for indecomposability of positive definite class functions;

(2) Sufficient condition for positive definiteness;

(3) Necessary condition for positive definiteness.

In that paper, after establishing a simple criterion for (1), the author studied
(2) and (3) at the same time by applying a deep theory of analytic functions
defined on discs.

Here in this paper, we established the second part (2) by the method of
‘taking limits of centralizations’, a proof quite different from that in [Th2]
and much simpler one.
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