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Abstract

Let I'o(Hc) be a weighted Fock space over a complex Hilbert space Hc with
weighted sequence a. In this paper we define S,-transform of vectors in the weighted
Fock space and then the vectors in I'o(Hc) and operators on the weighted Fock
space are characterized on the basis of Bargmann-Segal space. As an application
we discuss a regular property of solutions of normal-ordered differential equations.

1 Introduction

The white noise calculus initiated by Hida [12] has developed into an infinite dimensional
analogue of Schwartz type distribution theory with wide applications ([13], [14], [23], [27],
etc). The S-transforms ([1], [8], [9], [21] [33]) and the operator symbols ([3], [4], [19], [20],
[26]) in white noise calculus are characterized as entire functions on an infinite dimensional
vector space having particular growth rates. Since those characterizations depend heavily
on the nuclearity of the space of test white noise functionals, elements in the (Boson) Fock
space or bounded operators on the Fock space have not been characterized in a similar
manner. Some partial results are found in [7].

Recently, in [10], the S-transforms of vectors in different Fock spaces are characterized
by means of the Bargmann-Segal space ([24], [34], see also [2], [11]). The idea used in
[10] was naturally extended to characterize the symbols of operators in several classes
of operators on Fock space in [18], and the characterizations have been widely applied
to study expansion theorems ([4], [27]) and (nonlinear white noise) differential equation
which is a generalization of normal-ordered differential equations ([5], [6], [7], [16], [30],
[31]) involving the quantum stochastic differential equation of Ité type formulated in [17]
(see also [25], [32]). For white noise approach to quantum stochastic calculus we refer to
[15], [28], [29].

Main purpose of this paper is to characterize vectors in weighted Fock spaces and the
operators on the weighted Fock spaces on the basis of Bargmann—Segal space. This paper
is organized as follows: In Section 2 we introduce the Bargmann—Segal space after [10].
In Section 3 we review the basic construction of riggings of Fock space (see [8], [21], [22]).
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In Section 4 we define S,-transform as a unitary isomorphism between the weighted Fock
space and the Fock space, and characterize vectors in the weighted Fock space by means
of S,-transform. In Section 5 we define a-symbol of operators on weighted Fock space
and its characterizations are investigated. In Section 6 we study Wick exponentials of
operators on weighted Fock space. In Section 7 as an application we discuss a regular
property of solutions of normal-ordered differential equations.

Acknowledgments The author is most grateful to Professor N. Obata for the kind
invitation to RIMS Workshop (November 20-22, 2001) and the warm hospitality during
his visit. This work was supported by KOSEF, 2002. ‘

2 Bargmann—Segal Space

Let K be a selfadjoint operator on H = L?(R,dt) such that the Schwartz space S(R)
is densely and continuously imbedded in Dom(K?) for any p > 0 and is kept invariant
under K. We assume that K > 1.

For p € R we put :
1€k, = | KPEly, €€ H,
where |- |o is the norm on H generated by the usual inner product (-, -). Then, for p > 0,
the set D, = {€ € H;| €|, < oo} becomes a Hilbert space with norm |- |k, While, for
p <0, D_, denotes the completion of H with respect to the norm |-|g _,. Note that D,
and D_, are dual each other. Then we have

D =projlimD, C HC D* 2 indlim D_p,
p—oo p—roo

where 2 stands a topological isomorphism. In particular, by using the harmonic oscillator
A = —d?/dt® + t* + 1, we construct the Gelfand triple:

S(R) C HcC S'(R), (2.1)

where S'(R) the space of tempered distributions. From now on, for simple notation, we
use E = S(R) and E* = S'(R). The canonical bilinear form on E* x E is denoted by the
symbol (-, -) again.

By the Bochner-Minlos theorem, there exists a probability measure f;/2 on E* such
that whose characteristic function is given by

o {-16 0} = [ ceOmpn), cer

For a topological space ¥, ¥c denotes the complexification of X. Define a probability
measure v on E§ = E* + (E* in such a way that

v(dz) = p1ja(dz) X mpa(dy), z=z+iy, =z,y€E"

Following Hida [13] the probability space (Eg,v) is called the complez Gaussian space
associated with (2.1).
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The Bargmann-Segal space [10], denoted by £2(v), is by definition the space of entire
functions g : Hc — C such that

9l = sup [ lo(P)Pu(dz) < o,
PepP Eg

where P is the set of all finite rank projections on H with range contained in E. Note
that P € P is naturally extended to a continuous operator from Eg into Hc¢ (in fact into
Ec), which is denoted by the same symbol. The Bargmann—Segal space £2(v) is a Hilbert
space with norm || - ||, Let I'(Hc) be the (Boson) Fock space over the complex Hilbert
space Hc (see §3). For ¢ = (fn)32, € I'(Hc) define

oo

J(€) =) (" fn), &€ Hg,

n=0

where the right hand side converges uniformly on each bounded subset of Hc. Hence J¢
becomes an entire function on Hc. Moreover, it is known (e.g., [10], [11], [18]) that J
becomes a unitary isomorphism from I'(Hc) onto £2(v) and is called the duality transform.

3 Riggings of Fock Space

Let H be a Hilbert space with norm |-|. For n > 0 let H®" be the n-fold symmetric
tensor power of H and their norms are denoted by the common symbol |-|. Given a
positive sequence a = {a(n)}32, we put

To(H) = {¢ = (fa)ioi fu € HE 1915 = D nla(n) | fal” < oo} .

n=0

Then I'y(H) becomes a Hilbert space and is called a weighted Fock space with weighted
sequence a. The Boson Fock space I'(H) is the special case of a(n) = 1.
For a weight sequence a = {a(n)} we consider the following four conditions:

(A1) a(0) =1 and ix;f(; a(n)o™ > 0 for some o > 1;

(A2) lim (M) . = 0;

n—oo0
(A3) «a is equivalent to a positive sequence + such that {y(n)/n!} is log-concave;

(A4) a is equivalent to another positive sequence 7 such that {(n!y(n))~'} is log-concave.

The generating function of {a(n)} is defined by

- 3220

n=0
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By conditions (A1) and (A2), G4(t) is entire. Put

Galt) = in!f:n) {i’iﬁg%}tn'

n=0

Then it is known [1] that (A3) is necessary and sufficient condition for G4(t) to have
positive radius of convergence R, > 0.

From now on we always assume that a weight sequence o = {a(n)} satisfies conditions
(A1)-(A4).

Lemma 1 [1] For a weight sequence a = {a(n)}, we have
(1) There exists a constant C1q > 0 such that

a(n)a(m) < Cp™a(n + m), n,m=0,1,2,---.

(2) There exists a constant Cyq > 0 such that

a(n +m) < Cx™a(n)a(m), n,m=0,1,2---.

(3) There ezists a constant C3q > 0 such that

a(m) < Cya(n), m < n.

Now, we construct a chain of weighted Fock spaces over the rigged Hilbert spaces. For
simplicity we set
‘rDQaP = PG(DP,C)v p2 0.

For p > 0, by definition, the norm of D, is given by

1150 =S nla(n) | fulk,, ¢=(fa) fn€ DS

n=0

Then for any 0 < p < ¢ we naturally come to

DaEprOjlimea,pC“'C@a,qC"'Cga,pC”'

p—0

o+ CT(Hg) C " CD1/a,—p C*** C D1/a,—q C **+ C D,

where for p > 0, D1/a,—p = '/a(D_p,c). In particular, by using the harmonic oscillator
A, we construct the following:

Wo C Wap C T'(He) C Wija,-p C W, p>0

which is referred to as the Cochran-Kuo-Sengupta space with weight sequence o =
{a(n)}. The one corresponding to a(n) = B(n) = (n))%, 0 < B < 1, is called the
Kondratiev-Streit space [21] and is denoted by

W;=(E)s, Bln)=@m)’, 0<B<1L
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The canonical complex bilinear form on 207, x 2, is denoted by (-, -)). Then

(@, ) =) nl(Fn, o), @=(F)eW: ¢=/(fa) €W,

n=0

and it holds that
I «@, ¢» I < ” 4 ”A,—p,— II ¢ ||A,p,+ ’

[e o)

”A—p, Z ) l nIA-pa (p:(Fn)

=0

where

Now, we define a linear operator I', from the weighted Fock space I'y(Hc) into the
Fock space I'(H¢) by

Fa(¢) = (\/a-_nfn), o= (fn) € Fa(HC)'

Then it is obvious that I', is a unitary isomorphism between I',(Hc) and I'(Hg). In fact,
for any ¢ = (fn), ¥ = (gn) € T'a(Hc) we have

(R ) WSS DTN S B O S

4 S,-transform

For any positive sequence o = {a(n)} and for each ¢ € Ec, we put

¢,,£_(\r—a<o ) ame, VIO F()f)

Then for any £ € Ec we have

"d’a,e"o—z ' |€lo— Ga(l&lo),

n=0

where || - ||o is the norm on I'(H¢), and for any p > 0

2 I€1%
I|¢l/a£"K:Py+ Z n. a(n) '2a(n) IE' Kp—E€ Kp,

n=0

Therefore, for any £ € Ec, ¢a¢ € I'(Hc) and ¢1/0¢ € Da. Moreover, it can be shown that
{#ae; € € Ec} and {@1/a,; € € Ec} span dense subspaces of I'(Hc) and D, respectively.
For & € T'(Hc), the C-valued function S,® defined by

Sa®(§) = (@, dagd), €€ Ec
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is called the S,-transform of ®. Similarly, for ¥ € D}, the S)/o-transform of ¥ is defined
by

Sl/a\p(g) = <<\Ila ¢1/a,£>>, f € Ec.
Then ® € I'(Hc) and ¥ € D}, are uniquely specified by the S,-transform and S/o-
transform, respectively. Let p > 0. Then for each ® = ()32 € Dap and ¥ = (g5)52, €
D1/a,~p) Sa® and Sy, ¥ can be extended to D_, ¢ and D, c, respectively. Moreover, we

have -
= Z \% a(n) <z®n’ fn)a z € D—p,C

n=0

and

Sl/a\p(Z) Z \/— <Z ’ gn> ’ z € DP’C’

n=0
where the right hand sides converge uniformly on each bounded subset of D_,c and
D, c, respectively. Therefore, S,® and S/, ¥ become entire functions on D_,c and
Dy,c, respectively. Moreover, it is easily checked by definition that S,®(K?-) € E(v)
and S1/o¥(K?:) € E2(v). _ ,

Proposition 2 The S,-transform is a unitary zsomorphzsm between To(Hc) and E*(v).
" Proof. It is easily show that
Sy =JoT, : To(He) — I'(He) — EX(v).
Since ', and J are unitary isomorphisms, the proof follows. =

Theorem 3 Let p > 0 and g be a C-valued function defined on Ec. Then

(1) g is the S,-transform of some ® € D,, if and only if g can be extended to a
continuous function on D_,c and go K? € E2(v).

(2) g is the Sija-transform of some ® € D14, if and only if g can be extended to a
continuous function on D,c and go K7 € E2(v).

Proof. Since the proof of (2) is similar to the proof of (1), we only prove (1) by
simply modified arguments used in [18]. Let g be a C-valued continuous function defined
on D_, ¢ such that g o K? € £2(v). In fact, g is entire on D_, c since K? is an isometry
from Hc onto D_,c. By the duality transform there exists (f,) € ['(Hc) such that

gOKp(Z)=Z<Z®n, fn>, z € He.

Then, changing variables, we have

9(6) =) _((K?)®"f,, &), £€Dpc.
n=0
Define ® = (1/y/a(n)(K~?)®"f,). Then by definition ® € D, and S, B(£) = g(§) for
€ € Eg, i.e., g is the S,-transform of ® € D, ,. The converse assertion is obvious. ®
During the above proof we have established the following



102

Proposition 4 Let p > 0 and let ® € D,p, ¥ € Dy/o,—p. Then we have
(1) So® admits a continuous eztension to D_,c and S,® o KP € £2(v). Moreover,

@ llkps = Il Sa® o KP ||ay -

(2) S1/a¥ admits a continuous eztension to D, c and Sy;o¥ o K? € £2(v). Moreover,

“ v ”K,—p,- = ” SI/Q\I’ oK™ ”6"(1/) .

By Theorem 3, the following corollary is obvious
Corollary 5 Let g be a C-valued function defined on Ec. Then

(1) g is the S,-transform of some ® € D, if and only if for any p > 0, g can be extended
to a continuous function on D_,c and go K? € £2(v).

(2) g is the Sy/o-transform of some ® € D2 if and only if there exists p 2 0 such that
g can be eztended to a continuous function on D,c and go K~P € £2(v).

In the case of a = 1, the S,-transform is called the S-transform (see [14], [23], [27]).
For each ® € 207, the S-transform F = S® possesses the following properties:

(F1) for each &,7 € Ec, the function z — F(z€ + 7) is entire holomorphic on C;
(F2) there exist C > 0 and p > 0 such that

IF(€)]? < CGa(lE,), €€ Ec.

The converse assertion is also true. This famous characterization theorem for S-transform
was first proved for the Hida—Kubo-Takenaka space by Potthoff and Streit [33]. The
following result is due to Cochran, Kuo and Sengupta [8].

Theorem 6 Let F be a C-valued function on Ec. Then F is the S-transform of some
® € 0, if and only if F satisfies conditions (F1) and (F2). In that case, for any q > 1/2
with || A~?||4s < R, we have

12 11% -y < CGalllA™llEs).

5 Operators on Weighted Fock Space

Let £(X,92) be the space of all continuous linear operators from a locally convex space X
into another locally convex space 9. Then a continuous linear operator = € £L(20,,20%)
is called a generalized operator (or white noise operator). Note that L£(2,,20,) and
L(2W,, D, p) are subspaces of L(2W,, WL,). Moreover, by duality, L(20?,,20?) is isomorphic
to £(2Wa,, W,). A general theory for generalized operators has been extensively developed
in [4], [27), [29].
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The 1/a-symbol, which is an operator version of the Sj/o-transform, of a generalized
operator Z € L(20,,20?) is defined as a complex valued function on E¢c x Ec by

Ve (gm) = (Ede dyjan)),  &nE B,

~
=1

where ¢; = ¢1¢. In thecaseof a =1, = /e is denoted by £ which is called the symbol of
Z. Every generalized operator is uniquely determined by its symbol. By the definitions,
we have the following relations:

22 (€,1) = Si/a(Ed)(n) = S(E'b1/an)€), &1 € Ec.

As is easily verified, the symbol © = £ of a generalized operator E € £(20,,20,) possesses
the following properties:

(O1) for any &,£&;,m,m € Ec the function (2, w) — ©(2§ + &, wn +n;) is entire holomor-
phic on C x C;

(O2) there exist constant numbers C' > 0 and p > 0 such that

0 mP < CGa(1€3,)Gallnls,),  &n€ Ec.

As in the case of S-transform, the characterization theorem for symbols, which was first
proved by Obata for the Hida-Kubo-Takenaka space, is a significant consequence of white
noise theory. The characterization in the case of CKS-space was proved in [4].

Theorem 7 A function © : Ec X Ec — C is the symbol of a white noise operator
Z € L(W,, 20%,) if and only if © satisfies conditions (01) and (02). In that case

1Z6 15 —prgy < CGEULA E) I apigrs ¢ € Wa
where q¢ > 1/2 is taken as | A7 |45 < R,.

We now study the characterization theorem for a-symbols of operators on weighted
Fock spaces. For the characterization theorem for symbols of operators on Fock spaces
we refer to [18]. Let p > 0. Then it is easily shown that for each Z € L(2W,,Da,p) the

a-symbol ¢ of = is well-defined and £ is extended to an entire function on Ec X D_p,c.

Theorem 8 Let p > 0 and let © be a complez valued function defined on Ec X Ec. Then
there ezists = € L(Wq, Da,p) such that © = Z° if and only if

(i) © can be ertended to an entire function on Ec X D_pc;

(ii) there exist ¢ > 0 and C > 0 such that

16(&, KP)220) < CGallElhg), € € Ec.
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Proof. For the proof we use similar arguments used in [18]. Suppose that there exists
E € L(W,, Da,p) such that © = =*. Then condition (i) is obvious and there exists ¢ > 0
such that = € L(2W,,q,Da,p). Hence there exists C > 0 such that

IE¢llxp+ < VClIDllags, € Wag.

Therefore, we have

186, KP)Iz2) = IE8elicp,+ < Clldellags = CGalléla,)-

Conversely, suppose that conditions (i) and (ii) are satisfied. Let ¢ € Ec be fixed
and define a function F; : D_p,c — C by F¢(n) = ©(£,m), n € D_,c. Then by (ii),
F¢(KP?-) € £%(v). Hence by Theorem 3, there exists ®; € D, such that S,(®¢) = F; and

1®elikp+ = I1Fe © KPliZ2i) = 1O, KP-)|Z2() < CGall€lde)-
Now, fix ¢ € D,/4,—, and define a function G4 : Ec — C by

Go(§) = (4, ), €€ Ec.

Then we can easily show that G satisfies conditions (F1) and (F2). In fact,

1G(O)1? < 10l —p,~ el p+ < ClISlk,—p,-Garll€l%q)-
Therefore, by Theorem 6, there exists ¥, € 207, such that
S(¥p)(€) = G4(€) = (&, Be), £ € Ec.

Moreover, we have
16115 —grar— < CGalll A7 II3is)ll & I —p, (5.2)

for some ¢' > 1/2 with || A=7 |45 < R,. Define a linear operator =* : Dy/4,-, — 207, by
E*¢ = Wy, ¢ € Dy/a,—p. It then follows from (5.2) that =* € L(D1/q4,—p, W;,). Then it is
obvious that © is the a-symbol of = € L(W,, D, p) (the adjoint of =*). m

By the similar arguments used in the proof of Theorem 8, we have

Theorem 9 Letp > 0 and let © be a complez valued function defined on Ec x Ec. Then
there ezists = € L(Wy, D1/a,—p) such that © = E/* if and only if

(i) © can be ertended to an entire function on Ec x D, c;

(i) there exist ¢ > 0 and C > 0 such that

I8¢, K)||32() < CGalléa,), € € Ec.
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For each k € D8 ® (EE™)*, let
o= (neem S YO e r eneme (53
n=0

Then it is obvious that © can be extended to an entire function on Ec x D_,c.
For k € (Ec®*™)* and f € Ec®™™) the (right m-) contraction of a tensor product
is defined by :

£®m f = Z (Z J) ® e(i)) (f, e(k) ® e(i))) e(j) ® e(k),

where
e(i) =€, ®  ®e,, ()= e, @+ ®é€j, e(k) = e, ® - ® ek,

which form orthonormal bases of Hc®™, Hc®, Hc®", respectively. We need new norms
in the space of (I + m)-fold tensor products. For p,q € R, we define

| K I?(,A;l,m;p,q = z I (K’? e(j) ® e(i» I2 ‘ e(j) |3{,p le(i) |424,q ’ k€ (Ec®(l+m))*’
iJ

Note that | & |A,A;l,m;P»P

= | k|4, Moreover, for any p,q,7 € R it holds that
| & ®m i, apmigr < 16k agmiq—p | |4, 45m,mirp -
In particular, for any p € R and ¢ > 0 it holds that
|k ®m f IK,p < |kl K, a1,mip,—ql f | K, 45m,mip.0;
Lemma 10 For any p € R there exists ¢ > 0 such that
llkp < l€lag €€ Ec.

Proof. For any p € R, Ec — D, is continuous. Therefore, there exist C > 0 and
¢’ > 0 such that

l&IK,pSCIEIA,q’—Cpqql&lAq’ EEEC’ qu’,

where p = ||[A~}||op = 1/2. Hence for a sufficiently large ¢ > 0 we have | £ |, , < |€]4
E€Ec. m

Lemma 11 For each k € DS ® (EE™)*, the C-valued function © given as in (5.3)
satisfies condition (i1) in Theorem 8.
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Proof. By applying Lemma 10, we obtain that for any r > 0 with |&|k,4,mp,—r < 00
there exists p' > p V r such that

|(k ®m ™) ® €2, < |klKapmip—r IR IRy

<
S INIKA l,m,P,-r'E
< p(m+n)(q—p’ ) | £|;n+n,

|m+n

| %k, A,mip,~r

where g > p'. Therefore, by direct computation, we have

(n+1) a(n +1) _
'e(é’ l82(") < Z | |§(,A;l,m,p,—rp2(m+n)(q P')Iflg(m+n)

n=0
On the other hand, by Lemma 1, we have
(n+Dla(n+1l)  (n+])n+m)la(n+1)

n!? - n2(n + m)!
22 tHmE 2NImICEH O™ o (n + m)a(l)
- n!2(n + m)!
22m NI CRHC o (D a(n + m)
(n+m)! ’

Therefore, for some g > p' such that (4C5,)"Chi™2m p2(m+n)e-7) < 1
(mn+m), .
|e(£’ )lé’z(v) < IK’IKAl,m,p,—rl'm'(202a a(l g mlﬂ (m+n)

= Inl%(,A;l,m;p,—rl!m! (2020)la(l)G0 ( I§ Iq) .

It follows the proof. m
Since the C-valued function © given as in (5.3) satisfies conditions (i) and (ii) in
Theorem 8, there exists an operator = € L(2W,,Dq,p) such that

= (k, 1® ® £™) z a(n ) (& m

This operator is called a integral kernel operator with kernel distribution x and denoted
by Zim(x). For each t € R, the operators a; = Z¢;(d;) and a} = Z;(4;) are called the
annthilation operator and creation operator, respectively.

6 Wick Exponential

For two white noise operators =y, Z; € L£(20,,20},), by Theorem 7, there exists a unique
operator = € L(2,,20},) such that

2(&,m) = Ei(&,n)Za(E,me ™, €,n€ Eq, (6.4)
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see [7]. The operator = defined in (6.4) is called the Wick product of =, and =5, and is
denoted by = = E, o Z,. We note some simple properties:

Io=E=20I=E, (E1022) 083 =510 (E2053),
—c

(51052)*253031, 51052=52051.

Namely, equipped with the Wick product £(20,,20;,) becomes a commutative *-algebra.
As for the annihilation and creation operators we have

Qs O Gy = Qgqy, a; ¢ a; = a,ay, as © a; = a;Qs, a; ¢ a; = a;a;. (6.5)
More generally, it holds that
fow * * ) *
=Zo(a;, -+ a;a, - ay,), Z € L(20,,20;).

* *= .
asl s asz =ag, a;

m

In fact, the Wick product is a unique bilinear map from £(20,,20%) x £(20,,20}) into
L(28,,20%) which is (i) separately continuous; (ii) associative; and (iii) satisfying (6.5).

Theorem 12 [7] Let o and w be two weight sequences and assume that their generating
functions are related in such a way that

Gu(t) = exp v{Ga(t) — 1}, (6.6)

where ¥ > 0 is a certain constant. Then for any E € L(W,, W), wexp E € £(2W.,, W),
where wexp E is the Wick ezponential of = defined by

p— = lu—\Qn
wexp:=§ —Z°",

'u_'
" ni

Let k € (Eg(l‘+m‘))* and \ € (Eg(l”mﬂ)*. Then the Wick product of two integral
kernel operators Z;, s, (k) and Zi, m, () is given by

Ellsml (K:) © Elz,mz ()‘) = El1+12,m1+m2 (K' ° "‘))
where ko A € (ESHHE+mi+m))« g defined by

Ko /\(317 *t y Sh+a tl) e )tm1+m2)

=KQ® /\‘(311 ot aslutl, v ,tmla Sii+1y " sy Sli+la2y tm1+1; et :tm1+m2)-
l
Moreover, for any & € (ES¢t™)* we have
— on __ — on
Eim(6)" = Einmn(K )-

Theorem 13 Let k € D%, o ® (EE™)* and let o be a weighted sequence satisfying that

(k + In)!(mn + k)!
Ca = sup {n!Zk!“’a(k + In)a(mn + k)’ kn20p<oco

Then we have
wexp E[,m(l‘ﬁ) € L(Qna:gl/a,—p)-
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Proof. For any = € L(20,,20;,), we have

—1/a 22 1 —~1/a
o2 e ) = 55 L5 e ).

n=0
On the other hand, we have
— l/a e V1
:l,m(n)m (61 77) = :'ln,mn(non) (Ea 77)
o0

1

on ,®in ®mn k

Therefore,

—— 1/0

wexpE ' (§,n) = ;Zn.kvm

n =0

=0

( non ®mn £®mn) ® £®k’ n®(1n+k)>

Ko™ ®mn %k Qi
nlkl )( ®mn£ )®€ y >

k+ln—z

Hence

oo 2

Ivexp =" € Ky = 3 2

=0

1 on mn
z W(N Qmn &% )®§®k

k+in=i

K’_P
On the other hand, for any ¢ > 0 with ||k 4;,m;—p,—q < 00 We have
2

S 1o moe

k+in=i

K’—p

i 1
< (HH) ) AL KR At mi—p,-al€ g €1~

k+ln—t
2(mn+k
<(E+1) Z n2k |2| |KA;l,m;—p,—ql£L4(:;n )’
k+in=i n:

where ¢’ > ¢ such that |§|x,—p < |€|a,y- Therefore, we have
2

> ﬁ(n"‘ Bmn £5™) @ £2*

k+in=i

K!"p
) 1 2(mn+k
S(@E+1) Z WInl%"tA;lM;-p,—qus(mnH)KI (,m 13 ).
k+in=i =

Since there exists s > 0 such that (k + In + 1)|x|3 4, pretmnth) < 1,

M —p,—q

1 2(mn-+k)
= Z nl2k!12 |€|A,q’+s
K—p |ktin=i

2

1
> " B ) @€

k+in=i
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Therefore, we have

/\_‘l/a _ 9 k
Iwexp= ' (€, K )2y < Z Z n,%,zla,&'t’it)

k+in=i

> (mn + k)
Z I£I2(mn+k)
=0

s (mn + k)! >4+

k=
e
< Ca Z(z+1 % ()|§|A,q+s+t
i=0

Thus for any ¢ > 0 with (i +1)p* < 1 we have

—_—1

=1/ -
lwexpE " (€, K P)lI220) < CaGalléligsre)-

Thus, by Theorem 9, the prodf follows. m

7 Normal-Ordered Differential Equations

In this section, as an application of characterizations, we consider an equation of the form:

d=
— =L;0= =20)=1 7

where t — L, € L£L(20,,20%) is continuous. Equation (7.7) is generally called a normal-
ordered differential equation. Recall that the space £(20q,20}) is closed under the Wick
product. Hence, a formal solution to (7.7) is given by the Wick exponential:

v ([1) =5 ([1)" o

n=0

and our first task is to check its convergence in the sense of generalized operators.
Several studies of the convergence of Wick exponential can be fund in [31], see also
[30]. As a general result, we have the following

Theorem 14 [7] Let o and w be two weight sequences and assume that their generating
functions are related as in (6.6). If t = L, € L(2,,20;,) is continuous, the solution is
given by (7.8) and lies in L(20,,,20;,).

Assume that L, is an integral kernel operator:
L = Epm(Aim(t))- (7.9)

In that case, the map t — A m(t) € (Eg(l”"))* is continuous, and so is

t
£ Kum(t) = / Nm(s) ds € (BEH™)".
0
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Since the (formal) solution of (7.7) is given by
Et = wexp Eym(kim(t)),

see (7.8), regularity properties of Z; is described in terms of x;,(t) instead of Ay, (2).
The following theorem is straightforward from Theorem 13.

Theorem 15 Assume that L, is given by

t
Li=Eimun®),  Fim(®) = [ Mum(s)ds € (D-p0)® @ ()"
0
Let o be a weighted sequence satisfying that

~ (k +In)!(mn + k)

Then, the unique solution to (7.7) lies in L(Wa, D1/a,—p)-
Lemma 16 Letl,m > 0. Then
(1) fo<li+m<2, then C5 < 0o for any 0 < B < 1.

(2) If2<l+m, then C5< oo forany1-2/(l+m) < B < 1.

;k,nZO} < 00.

Proof. Since 3(n) =n!8,n>0,0< 8 < 1, we have

(k + In)!(mn + k)! _ (k+n)"P(mn + k)P
n12k253(k + In)B(mn + k) ni2k!2
((1 + 1)k+in(m 4 1)k+mngi2np+m) =7
- 1212

Therefore, if 0 < I+ m < 2,then 2(1-8) <2and (I+m)(1-8) <2forany 0 < § < 1.
Hence C < oo for any 0 < 8 < 1. It follows the proof of (1).

On the other hand, if 2 < I + m, then 2(1 — 8) < 2 and (I + m)(1 — B) < 2 for any
1-2/(l+m) < B. Hence Cj5 < oo for any 1 —2/(l+m) < § < 1. It follows the proof of
(2). =

By Theorem 15 and Lemma 16, the following is obvious

Proposition 17 Assume that L, is given by

L= El,m(/\l,m(t))’ nl,m(t) = ‘/: Alam(s) ds € (D—p.c)m ® (Egm)"

Then we have _
(1) If0 < I+ m < 2, the unique solution to (7.7) lies in L((E)p,D,5_,) for any
0<B<1.
(2) If)2 <ﬂl+m, the unique solution to (7.7) lies in L((E)s; D, 5,,) for any 1-2/(l +
m) < pf<1.

Now, the study of applications of the characterizations to wide class of (white noise)
differential equations is being in progress. '
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