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0. This note is a survey of our recent preprints [Mu5,Mu6].
1. The Three Independences

One of the main features of quantum probability is the diversity of noncommuta-
tive notions of stochastic independence. Various notions of independence have been
investigated by many authors from various points of views. The most famous one is
the free independence of D. V. Voiculescu [Voil, VDN, Spel). It is a very universal
notion of noncommutative independence. For many notions from classical probabil-
ity theory such as, central limit theorem, Lévy-Hin¢in formula, Brownian motion,
Lévy processes, stochastic calculus, entropy etc., their free analogues have been de-
veloped [VDN, HiP]. The free independence is deeply connected with the notion of
free product of operator algebras. Another examples of notion of independence with
a ceratin universal character are the tensor independence of R. L. Hudson [CuH,
Hud, GvW, vWa2] and the boolean independence of W. von Waldenfels [vWal,
SpW, Boz]. In [Schl], M. Schiirmann initiated the study of universal notions of
independence as “products” of algebraic probabilitry spaces. The three indepen-
dences (tensor, free, boolean) corresponds to the three products (temsor product
®, free product %, boolean product ¢). He conjectured that these three universal
independences are the only possible ones.

2. Universal Products (Speicher’s Setting)

An answer to this conjecture was given by R. Speicher [Spe2]. He formulated
the notion of universal product for algebraic probability spaces, through the require-
ments of “associativity” and of the existence of “universal calculation rule for mixed
moments.”

Let K be the class of all algebraic probability spaces (¢, A). Here an algebraic
probability space (p,.A) means a pair of an associative C-algebra A and a linear
functional ¢ over A. We do not assume the existence of units for algebras. For each
pair of algebras A;, Ay, we denote by (A; LAy, %1, 2) its coproduct in the category of
algebras and algebra homomorphisms, where %; : A; — A; U Ay, i3 : A2 = A U Ay
are the injections of the coproduct. Indeed it is nothing but the free product of
(non-unital) algebras A; U A := A; x A,. It is defined by

Aix Ay = PA,®A,® - ® A,
ecA
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where A is the set of all finite sequences ¢ = (e4,€2,--,€,) of length n > 1 from
{1,2} satisfying ; # €;11 (1 =1,2,--+,n—1).

For the definition of universal product, let us prepare some notions and no-
tations. A partition 7 of the linearly ordered set {1,2,---,n} is a collection 7 =
{V1, V4, -+, V,} of subsets (called blocks) of {1,2, - -, n} such that U}_,V; = {1,2,---,n
and V;NV; = 0 (i # j). We denote by P(n) the set of all partitions 7 of {1,2,---,n}.
For partitions 7,0 € P(n), we write o <  if for each block W in o, there exists some
block V in 7 such that W C V. It defines the partial order on P(n). We denote by
On := {{1},{2},---, {n}} the minimal element of P(n) in this partial order. Let a
partition m = {V4,V5,---,V,} € P(n) and a p-tuple of algebraic probability spaces
(o1, A), 1 =1,2,--,p, be given. Then we write

a1a2---ap € Ay

if a; € A; whenever ¢ € V;. When a partition 7 is given by some € = (g1,€2,-+-,€,) €
A as 7 = {V}, Va} with V} = {i|e; = 1} and V, = {i]e; = 2}, we also use the notation
aa; - --a, € A, to mean a;a;3---a, € A,. Given a situation a,a;3---a, € A,, then
for each 0 < 7 we put

Pol(@102---an) == ] ¢z(f[ae)

Weo 1€EW

-
where H a; denotes the product of a; in the same order as they appear in a;as - - - ay,.

The lndex [ in the RHS of the above expression denotes a unique [ satisfying W C V,.
From now on, we identify any element a € A; with its natural image i;(a) € LE_, A,
where 1, is the Ith injection of the coproduct. So we write a for short insted of 4;(a).
Under this prepartion, the notion of universal product is defined as follows.

Definition 2.1 ([Spe2]). A universal product over K is a map ((¢1, A1), (92, A2)) —
(P12, A1 U Ag) from K x K to K satisfying the following three conditions.

(UP1) associativity: Under the natural identification (A, U As) U A3 = A, U
(AU A3),

(prp2)ps = @1(paeps).

(UP2) universal calculation rule for mized moments: For eachn =1,2,3,---,
each m € P(n), and each o < , there exist constants t(m;0) such that,
for any p-tuple (o1, Ai), 1 = 1,2,---,p, of algebraic probability spaces, and
@ = P12 - - Py, we have

plaraz---an] = 3 t(m;0) po(araz- - an)

o<m

whenever a;as---a, € A, with #7 =p
(UP3) normalization:
t(Ol; 01) = t(02; 02) = 1.

Speicher proved the following.

Theorem 2.2 ([Spe2]). There ezist only three universal products, namely tensor
product ®, free product x and boolean product .



Here the definitions of these three products are given as follows.

Definition 2.3. The tensor product ®, the boolean product ¢ and the free
product x over K are associative products given by the following calculation rules
for aias - --a, € Ag, respectively.

f[ az],

(01 ® p2){ar02- - an] = ('01[ ﬁ ak] i [leV

ke

(p10@2)araz---an] = (klgf <P1[ak]) (zg@ <P2[az]>,
(p1x p2)araz - an] = re {1%---,@ (“1)n_#l+1 ((<P1 * ©2) [kI:[I ak]) (E Pey [al])'
I#{1,2,--n}

Here the calculation rule for free product x should be understood as a recurrence
_}

formula with the convention (¢; * ¢2) [H ak] = 1.
ke

3. QuaSI-Umversal Products

By the way, based on a previous work [Mul Mu2 Lu] we recently found in the
setting of C*-probability spaces an another example of independence and prod-
uct with a certain universal character: the monotonic independence [Mu3] and the
monotone product of C*-probability spaces [Mu4]. So it is natural to revisit the clas-
sification problem of universal notions of independence. For the setting of algebraic
probability spaces, the monotone product is defined as follows.

Definition 3.1. The monotone product > and the anti-monotone prod-
uct < over K are associative products given by the following calculation rules for
aias - - - an € A, respectively.

(o1 B> @2)aaz---an] = @1 Lg/ ak] (lg 902[01]),
| (1 4 @2)laraz---an] = (H Spl[ak]) 902[ﬁ az]-

ke leVvz

Let us weaken the notion of universal product of Speicher. A linearly ordered

partition (, A) of {1,2,--+,n} is a pair of a (usual) partition = and a linear ordering
A among the blocks in m. We express such a linearly ordered partition as (m,A) =
{Vi < V3 < --- < V,}. For example, (m, 1) = {{1,3} < {2}} and (m, As) =

{{2} < {1, 3}} are different linearly ordered partitions of {1,2,3}. We denote by
LP(n) the set of all linearly ordered partitions (m, A) over {1,2,---,n}. Let a linearly
ordered partition (m,\) = {V; < V2 <--- <V} € LP(n) and a p-tuple of algebraic
probability spaces (¢, 4;), I =1,2,---,p, be given. We write

a0z -+ Qan € A(,r’)‘)

if a; € A; whenever i € V;. When a linearly ordered partition (7, A) is given by some
€= (1,62, ,&n) € A as m = {V} < Vo} with V; = {ile; = 1} and V, = {ile; = 2},
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we identify (7, A) with €. For example, (7, \) = {{2,4} < {1,3}} is identified with
€ = (2121). Then we define a notion of quasi-universal product as follows.

Definition 3.2 ([Mu5]). A quasi-universal product over K is a map ((¢1, A1),
(2, A2)) — (192, A1 UA;) from K x K to K satisfying the three conditions (UP1),
(QUP3), (QUPS).

(QUP2) quasi-universal calculation rule for mized moments: For each n =
1,2,3,---, each (m,\) € LP(n), and each 0 < =, there exist constants
t(m, A;0) such that, for any p-tuple (o1, A), | = 1,2,---,p, of algebraic
probability spaces, and ¢ := 1, - - - ¢p, we have

plaraz---as] = Z t(m, A;0) po(ar1a2 - - an)

o<nx

whenever a1az -+ - an € Ay with (m,A) = {V1 <V <--- <V,}.
(QUPS8) normalization:

t(l;Ol) = t(12;02) = t(21;02) = 1.

The monotone and anti-monotone products are examples of quasi-universal prod-
ucts over K. The classification of quasi-universal products is given as follows.

Theorem 3.3 ([Mub]). There erist only five quasi-universal products over K,
namely tensor product @, free product x, boolean product o, monotone product >
and anti-monotone product .

4. Universal Products (Ben Ghorbal-Schiirmann’s Setting)

'The notion of (quasi-)universal product is defined through the existence of “(quasi
Juniversal calculation rule for mixed moments.” But there is an another formulation
of universal product which was given by A. Ben Ghorbal and M. Schiirmann [BGS].
They formulated the notion of universal product based on some commutative dia-
grams for arrows (= algebra homomorphisms). Their axioms are natural and suffi-
ciently nice so that, for each universal product, the theory of Lévy processes can be
developed on any dual group of Voiculescu [BGS, Sch2, Voi2].

Let us recall that, for each pair of algebra homomorphisms j, : B, = A, j» :
B; — A, there exists a unique morphism 7, I j : B; U By — A, U A, such that the
diagram

[}

N

B, A,
T TN
B, U B, g1 O jp AU A,

N
B,— 2 . A

is commutative, where (B; U Ba, ¢4, t2) is the coproduct of B; and B,.

126



Definition 4.1 ([BGS)). 4 universal product over K is a map ((¢1, A1), (2, Az2))
— (0102, A U Ap) from K x K to K satisfying the following four conditions.

(U1) commutativity: Under the natural identification A; U Ay & Ay U Ay,

P12 = P21.

(U2) associativity: Under the natural identification (A; U Ag) U A3 = A U
('AZ L 'A3):
(p102)p3 = p1(p2ip3).

(U3) universality: For any pair of algebra homomorphisms ji : Bi — A,
J2: Ba = A,

(prog1)(w2ode) = (prp2) o (i I ja).

(U4) normalization:

(p192) 081 = @1, (p1p2) 0z = 3, (extension)
(p102)[11(a)i2(b)] = (01602)[82(b)i1(a)] = pula] pa[b] (a € Ay, b€ Ay).
(factorization)

We remark here that the commutativity axiom (U1) is an algebraic interpretaion
of the property of classical notion of independence that if two random variables X, Y
are independent then Y, X are also independent (“independence” is not dependent
on the order). Also the universality axiom (U3) is an algebraic interpretaion of
the property of classical notion of independence that if X, Y are independent then
f(X), g(Y) are also independent for any functions f and g.

It was proved by Ben Ghorbal and Schiirmann that the two formulations of
universal product (Definition 2.1 and Definition 4.1) are equivalent. So they obtained
the following.

Theorem 4.2 ([BGS]). There exist only three universal products satisfying the four
conditions (U1), (U2), (U3) and (U4). Namely tensor product ®, free product x and
boolean product o.

5. Natural Products

Since we already know another examples of product with a certain universal
character (= monotone and anti-monotone products), it is natural to consider the
classification problem for certain “weakened” universal products in the setting of
Ben Ghorbal and Schiirmann.

Definition 5.1. A natural product over K is a map ((¢1, A1), (¢2,A2))
(@192, A1 U Ag) from K x K to K satisfying the three conditions (U2), (U3) and
(U4).

The classification theorem for natural products is as follows.

Theorem 5.2 ([Mu5]). There ezist only five natural products over K, namely ten-
sor product ®, free product x, boolean product o, monotone product > and anti-
monotone product .
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The proof of Theorem 5.2 is based on the reduction of natural products to
quasi-universal products. For that purpose we used the theory of universal families
developed in [BGS]. Also in the proof, we met with a rather complicated situation
that we must determine all the possible values for the almost one handred unkowns
in a certain sysytem of equations. But it could be solved without any problem
[Mu6].

Finally we remark that also in the case of monotonic independence (resp. anti-
monotonic independence), the theory of Lévy processes is possible on any dual
groups of Voiculescu [Fral,Fra2].
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