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THE RESOLVENT TRACE FORMULA FOR RANK ONE LIE GROUPS

HERYEYM # WA (YASURO GON), LEX¥BEI ¥4 #HEES (MASAO TSUZUKI)

1. INTRODUCTION

1.1. Introduction. Let X = G/K be a Riemannian symmetric space of non-compact
type with G a connected simple Lie group of real rank one and K a maximal compact
subgroup of G. In the paper [18], Miatello-Wallach introduced a family of bi-K-invariaint
functions @, s € C on G, which satisfies the same differential equation as the elementary
spherical function ¢, of Harish-Chandra on the open set Gt = G — K but has singularities
along K. By making the r-fold convolution of @,, they defined a function @, , on G, which
is less singular than @, itself. Then, given a cofinite lattice I" of G, they introduced the
distribution P, 4(z,y) by forming the Poincaré series

Pro(d,9) = cr(s) D Qrola™ ), & §E€T\X B¢y

~ver
with a suitable normalizing factor ¢,(s) and proved, among other things, that it is smooth
on the complement of the diagonal in (I'\X) x (I"'\ X) and satisfies the differential equation

(A + gy = 8°) Pry(s, =) = §(2) (2)
with A the Laplacian of I'\X, é(z) the Dirac delta supported at . In the classical
situation that X is the upper half plane, the distribution P, +(Z, ), the resolvent kernel
function of Laplacian for the Riemannian surface I'\ X, was intensively investigated by
several German mathematicians from the view point of real analytic automorphic forms

([3], [20]). Based on these works, J. Fischer deduced the resolvent trace formula by
computing the integral

/F ((Prale ) ~Pus(i ) di, s, f €C (3)

in two different ways ([5]).
In this paper, we show that the same type of procedure is possible for a higher dimen-
sional X by considering the integral fr\ « Prs(2,T)ds with r greater than a half of dim X

instead of (3). As a result, following Fischer, we can obtain another proof of the mero-
morphic continuation of the Selberg zeta function for I'\X and its functional equation,
which was originally proved by Selberg, Gangolli and Gangolli-Warner ([7], [8], [21]).
Although a handy formula of Q. in the ‘polar coordinate ’(Cartan decomposition) is
desirable for our purpose, it seems rather difficult to have such a formula directly from
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the definition of @, s recalled above. Our strategy is as follows. We first have an ex-
plicit formula of @, = @1, in terms of Gaussian hypergeometric series as in the classical
case, and then use the system of differential equations among Q,,’s to show that @, is
obtained from @, by applying the differential operator (;—:a“;)’ to it (Proposition 3.1.6,
Theorem 3.2.1). Thus a formula of Q,, in terms of a derivative of the hypergeometric
series becomes available, which enables us to compute the integral fr\ x Prs(Z, T)dz by di-
viding it into the local contributions for I'-conjugacy classes and by using various formulas
involving the beta function and the hypergeometric series. Consequently we can evaluate
the integral by means of the logarithmic derivative of the Selberg zeta function for I'\ X.
On the other hand, by the spectral expansion of P,,(%,—) given in [18], we compute
the same integral in terms of the eigenvalues of Laplacian on L%(I"'\X). Combining these
two expressions of fr\ x Prs(Z,)dE, we arrive at the resolvent trace formula, which was
studied in [5, Theorem 2.5.2, p.108] for G = PSLy(R), in [4] for G = PSL,(C) and in
[1] for Jacobi forms.

Finally, we would like to say a few words on the status of our results. The resolvent trace
formula (RTF for short) for a general compact locally symmetric space I'\ X with rank one
X is more or less known, because it is essentially the same as the determinant expression
of the Selberg zeta function obtained already in [16] together with its explicit gamma
factor. But we believe that our method, that is a slight extension of Fischer’s, provides a.
more direct and elementary way to have the RTF than the traditional method employed
in [21], [7] and [8], which necessitates difficult tools such as the Paley-Wiener theorem
and the Plancherel formula for X = G/K. We also believe that our Theorem 3.2.1, that
gives an expression of @, s in terms of the derivative of the hypergeometric series, is new
and is interesting itself.

2. PRELIMINARIES

In this section we introduce basic objects and fix notations.

2.1. Notations. We denote by N the set of natural numbers, i.e. N = {1,2,3,...}. Put
Ny = N U {0}. The cardinality of a finite set S is denoted by #S.

2.2. Lie groups and Lie algebras. Let G be a connected semisimple Lie group of real
rank one with finite center. Put g = Lie(G), the real Lie algebra of G. Let K be a
maximal compact subgroup of G and @ the Cartan involution of g corresponding to K,
then we have the Cartan decomposition g = €+ p with &€ = Lie(K). We fix an Iwasawa
decomposition G = NAK of G; A is a maximal split torus in G whose Lie algebra a
is orthogonal to & with respect to the Killing form B of G and N a maximal unipotent
subgroup of G normalized by A. Since dim A = 1 by assumption, there exists a unique
root a € a* such that njo = {X € g| ad(H)X =j-a(H)X, H € a} with j € Z is zero if
|7] > 2, and Lie(N) = n = ng + nyq.

Let Hy be the unique element of a such that a(Hp) = 1. Let (, ) :axa - R
be the inner product induced by B; it gives the identification a ¢ a*. The dual inner
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product of a* is also denoted by (, ). Put p = dimg n,, ¢ = dimg na,, po = 27 (p + 2q),
co = (2p+8¢)~! and m = 271 dim(G/K). Then by the classification, we have the list:

g P q Po m
su(l,1) |20—-2(1 ) l
so(l,1) | l-1|0|2°}(1-1)] 27U
sp(l,1) |4l—-4]|1 20 -1 20-1
fa(-20) 8 |7 11 8

(! is a natural number greater than one.)
Lemma 2.2.1. We have
Zm=p+q+1, <H01H0> =C(;11 (a)a> = Cp-

From now on we assume that m € N, m > 2. In other words, we exclude the case of
g = slh(R) or so(2l +1,1) with [ > 1.

2.3. Haar measures. Let dk be the Haar measure of the compact group K with total
mass one. Let dt be the standard Lebesgue measure of R; by the identification R & A =
expa, t — exp(tHy), it gives the Haar measure of the torus A. Denote by C?(N) the
space of compactly supported continuous functions on N. Since N = exp(ny + ng,) is a
unipotent Lie group we can take its Haar measure dn such that the formula

[ sman= [ [ flexp(x +¥v))axay, feciw)
N Ng v oo

holds with dX (resp. dY’) the Euclidian measure of n, (resp. ng,). (We regard nj, as a
Euclidean space by the inner product —B(Z,02).)

Then we fix the Haar measure dg of G = ANK by dg = da - dn - dk. To handle
various bi-K-invariant functions (distributions) on G, the Cartan decomposition G =
K exp([0,00)Hp) K is indispensable. We put

Gt =G — K = KATK with A* = {exp(tH,)| t > 0}.

If g € G*, and g = ki(g9)a(g)k2(g), with k1(g), k2(g) € K and a(g) € A*, then a(g) is
uniquely determined by g. We choose the Riemannian metric dz on X = G/K, induced
by the restriction B|, of B to p. We then have that the hyperbolic distance d(zK,yK) =
B(tHy,tHy)Y? =t if z,y € G and a(z~y) = exp(tHy), with ¢ > 0.

The measure dg on G is decomposed along the Cartan decomposition as follows.

Lemma 2.3.1. For any positive measurable function ¢ on G, the formula

/G o(9)dg = cq /K /0 /K Uy exp(tHo o) (t) kst (4)
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holds. Here
p(t) = (sinh t)**9(cosh t)?,
cc = 2F(m)—1(2—1c0)—m+1/27rm.

3. SPHERICAL FUNCTIONS

In the first subsection, after recalling the standard properties of zonal spherical functions
for G/K, we introduce a bi-K-invariant function ¢ on G+ with singularities along K,
which is called the secondary spherical function by T. Oda ([19]). We investigate its

properties in some detail to show that its r-times derivative with respect to s? gives the
function Qs of Miatello-Wallach ([18]).

3.1. The spherical function with singularities. For s € C, the zonal spherical func-
tion ¢, for G/K is defined by the integral

¢s(g) =/ e("+”°)°(H("9))dk, g€ea@G.
K

Here for g € G, H(g) denotes the unique vector in a such that g € Nexp(H(g))K. The
basic property of ¢, is listed below.

(a) It is bi-K-invariant C*°-function on G, i.e., ¢, € C®(K\G/K).
(b) It satisfies the differential equation

Qps(9) = (s* — pd)ds(9), gE€G

with © the Casimir element of G corresponding to coB.
(c) If Re(s) > 0, then

lim eP~*)¢,(exp(tHy)) = c(s)

t—4-00

with ¢(s) the c-function for G/K given By

o(s) = 2P°-sr(m)r(s)r‘(s +2”°>—1p (i—_f’_t)zﬂ“ﬂ) -

Put u{"(t) = ¢(exp(tHo)), t € R. Then by (a), ugl)(t) is a C*-function on R
which determines ¢, uniquely, and by (b) it satisfies the ordinary second order differential

equation
d*u p q du
D). : hathed 2 .2 —
(D)s e " (tanht + tanh(2t)) g (- s)u=0

which has the regular singularity at ¢ = 0 with characteristic exponents {0,2 — 2m}.

Change the variable by z = tanh?¢ and consider the function w(z) = (cosht)?—*u{")(¢).
Then it turns out that w is a solution of the Gaussian hypergeometric differential equation
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z(l——z)y+{c (1+a+b)2}% —gbw = 0 with a = 27 (—s+po), b= 2" (=s+po—q+1)

and ¢ = m. Thus we have

—s+pp —s+po—qg+1
2 2

We are interested in another class of solutions of (D), which admit a singularity at t =

0. Among them, the one with the fastest decay at infinity, which we now define, is of
particular importance: For s € C — {—1,-2,-3,...}, put
s+py 8= po+2m

1 .
; ;s+1;——— ], teR-—{0},
2 2 s c‘osh2t> {0}

o(s) = 1 (22 )p (L2 Y p(s 4 1)irm 1) — 2-+*mm(se(s))

u{M(t) = (cosh t)‘_”°zF1< :m ; tanh? t), teR.

u®(8) = 7(s)(cosh )+, Fy (

2 2

Proposition 3.1.1. (i) If s € C is not a pole of y(s) and y(s) # 0, then the family

{ugl),us )} gives a system of fundamental solutions of (D)s around t = 0.
(i) There exzists a unique family of functions {62 Re(s) > 0} in C(K\G*/K) such
that
(a)
Q7 (g) = (s — p)#{7(9), g€G*.
(b) |
8 (exp(tHo)) = O(e™ 1) (¢ - +o0),

(c)

2m—2 4(2)
tgrllot ¢ (exp(tHyp)) =

For a given g € G+ the function s ¢(2)( ) is holomorphic on Re(s) > 0. We have
¢ (exp(tHo)) = u(t) for t € R — {0}.
Proposition 3.1.2. Put

o1y T - (3 o) en(s329)
Then for s € C with |Re(s)| < 1, we have
802 (9) = 6 (9) + c(s)8s(9), g€ G™. (5)

The ‘bad ’behavior of the function ¢§2)(exp(tHo)) near t = 0 is controlled by a simple
function. Indeed, we have

Proposition 3.1.3. There ezists a function (s,t) — Y,(t) on C x (R — {0}) with the
following properties
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(a) We can write

Ys(t) = Z G nh t)21 + b(s) log(sinh? t)

b(s) S+ po S — po
+r(m)r(m—1){‘”( ) ++(52 )}
with polynomial functions aj(s) and b(s) such that

aj(—s) = aj(s), deg(aj(s)) <2(m-j—-1), j=0,....,m—1,
an-1(s) =1,

corTif-(-9)

Here Y(s) is the digamma function, i.e., the logarithmic derivative of the Gamma

function.
(b) There ezists a family of polynomial functions {ca(5)}n>1 and {dn(s)}n3z1 such that
S Lea(8)t® and 3°2° | du(s)t™ have positive radius of convergence and such that

8P (exp(tHy)) = Y, (t) + z ca(s)t" + log(?) Z dn(s)t"

n=1

on 0 <t < e with a smalle > 0.
We introduce a family of functions ¢}’ (Re(s) > -1, r € Nyp) as
Definition 3.1.4. For r € Ny, we put

g 1 d\"
¢¥(g) = (_2-:?%—171—);—'(—_2_3.3;) ¢P(9), 9€G*, Re(s)>-1.

The basic property of ¢l we need is as follows.

Proposition 3.1.5. Let r € Ny and s € C with Re(s) > 0.
(i) The function ¢l belongs to C°(K\G*/K).
(ii) We have
o4 (exp(tHy)) = O(e~"Rele+e0)),
ont > R with a large R > 0.
(iii) If r > m, then the function ¢£r] has a continuous eztension to all of G. We have

lim ¢['] (9)

g—e,geGt

-5t (ma) e (55 (52 )]
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(iv) Let Re(s) > po. Then we have
Q- +pg)p =g, reN,
Q- +p)gll =4

in the sense of distributions on G/K with § the Dirac delta supported at the origin
of G/K.
We have a characterization of the family {¢{"}.
Proposition 3.1.6. Let {¢,s| r € No, Re(s) > po} be a family of bi-K -invariant distri-
butions on G with the following properties. ~
(i) Forr € Ny, Re(s) > po the distribution ¢, s is represented by a C®-function on G*.
[(ii) For Re(s) > po,
: 2m-2 _
lt1_1)1r4r_10t wo,s(exp(tHy)) = 1.

(iii) For r € Ny, Re(s) > po,

©rs(exp(tHp)) = O(e 4Re(H+r0)) - ¢ 4 4o,
iv) Let Re(s) > po. If we regard ¢, ’s as distributions on , they satisfy the differ-
iv) Let R If d Qrs’ distribut G/K, th fy the diff

ential equations :
(Q—s® + p5)pra1,s = @rs, T €N,
(2 — s+ p2)po,s = 6.

Then for r € Ng and s € C, Re(s) > po we have ors(g) = y](g)‘oﬁ G/K in the sense
of distributions. .

3.2. Miatello-Wallach’s spherical functions. We recall some basic properties of the
functions Q,s, r € N which Miatello-Wallach introduced and studied in detail ([18]).
(i) For s € C, Re(s) > 0, Q1,5 € C*°(K\G*/K) ([18, Theorem 1.1 (a)]) .
(i) For a fixed g € G, the function s — Q1 +(g) is holomorphic on Re(s) > 0 and has
a meromorphic continuation to C ([18, Theorem 1.1,(b)]).
(i) |
cg'sc(s) oom |
Q1,s(exp(tHo)) ~ o1 1 , t—=+0
([18, Theorem 1.1, (d)]).
(iv) Let Re(s) > po and r € N. Then Q. is bi-K-invariant and integrable function on
G satisfying the formula

Qr+1,s = Ql,s*Qr,s-
Here x means the convolution on G with respect to the measure dg. (see [18, page
678]).
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(v) Let Re(s) > pp and r € N. Then
Qra(exp(tHy)) = O(e™* ), ¢ 5 +o0
([18, Lemma 2.4]).
(vi) Let Re(s) > po. Then the distributions @, , on G/K satisfy the differential equations
(2 = 8> + 05)Qr+1,6 = —25¢(5)Qr,s

for r € Ny with the convention that Qo = §, the Dirac delta supported at the ongm
of G/K ([18, Lemma 2.2, Lemma 2.6]).

Thus the family {(—2sc(s))~"*YQ,41,4| 7 € No, Re(s) > po} possesses all the proper-
ties (i) to (iv) in Proposition 3.1.6. Hence applying that proposition, we have the following
theorem, which is one of the main results of this article.

Theorem 3.2.1. Let Re(s) > pp and r € Ng. Then as distributions on G/ K the equality

r+1
#10) = (5m5)  Qriaalo

holds.

4. MIATELLO-WALLACH’S FUNCTION P, ; AND ITS SPECTRAL EXPANSION

4.1. The function P, ;. Let X = G/K. Let I be a neat co-finite lattice of G, that is a
discrete torsion-free subgroup of G such that I'\G has finite volume. We assume that if
is not cocompact then it satisfies the Langlands’ axiom. Here is a notational convention:
A point of the double coset space I'\ X is denoted by a letter with a dot and any one of
“the lifts of that point to G is by the same letter without a dot. For example if z € G then
the corresponding coset 'zK € I'\ X is .

Let A be the Laplacian of I'\ X corresponding to —£2.

In [18], Miatello-Wallach introduced the functions P, (r € Ny, Re(s) > po) by

P, s(%,7) = (280 S)) ZQr, (z7'vy), #, yeT\X

with @, s the spherical function which we recalled in 3.2. Among other things, they proved
that

(a) the series P, 4(Z,y) converges absolutely and defines P, ;(Z,y) holomorphic in s on
Re(s) > pp and smooth in £,y in the complement of the diagonal of (I'\X) x (T'\ X);
(b) for each z € I'\ X, as a distribution on '\ X P, (z, —) satisfies
(D& + 8% = p5) Py, —) = §(2)
with 6(z) the Dirac delta on I'\ X supported at &
([18, page 685, Theorem 3.4, [2, page 621, Theorem 3.2]).

Proposition 4.1.1. Let s € C with Re(s) > py. If r > m, then P, (%,7) has a unique
continuous extension to all of (T\X) x (T\X).
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By this proposition, we can consider the restriction of P, 4(,7) to the diagonal = y
of (N X) x (I'\X). From now on we assume that " is cocompact. Then P, ((,7) becomes
bounded on (I'\X) x (I'\X)if r > m; in particular the function P”(x %) is integrable
on I'\X. We want to evaluate the integral

/ Pri1,5(%, ) di ()
r\X

with r > m explicitly.

4.2. Spectral expansion of P, (%,7). In this subsection we compute the integral (6)
by using the spectral expansion of P,.;s(%,y). Since we assume that I’ is cocompact
the Laplacian A has no continuous spectrum on L?(I'\ X). The eigenvalues of A forms a
countable subset of non-negative reals enumerated as

0= X <A< hg...< <.

so that each eigenvalue occurs in this sequence with its multiplicity. Let {¢n}n50 be the
orthonormal basis of L2(I'\X) such that ¢, E C’°°(I‘\X ) and Dy = )\n(pn For each n
we fix a complex number s, such that A, = p2 — s2

Proposition 4.2.1. Let r € Ny and s € C be such that r > m and Re(s) > po. Then
Pr+1,s(i'a y) Z Ef;%(_)éozn_)_si%)?, d:’ y € F\X (7)
n=0 n
Here the infinite series in the right-hand side of this identity converges uniformly in
(#,9) € (M\X) x (I'\X).
By this proposition we can compute the integral (6) in terms of the eigenvalues of A.

Proposition 4.2.2. If r > m and Re(s) > py, then

Prys(3,2)de = ) Sy
./r\x +1,4(, %) d Z (52 — s2)r+1 (8)

n=0

5. COMPUTATION OF THE INTEGRAL fr\x P, (%,2)dZ AND THE RESOLVENT TRACE
FORMULA

5.1. Computation of hyperbolic term. Let I" be as in the previous section. Then an
element v € ' — {e} is G-conjugate to an element h., of A*M with A* = exp((0, +00)Hy)
and M the centralizer of A in K; h, is not uniquely determined by <, but its ambiguity
is unimportant for our purpose. We can write

hy = exp(tyHo)m,, t,>0, m, € M.
Let G be the centralizer of v in G and put I'y = I'NG,,. Then G, is reductive and I',\G,

is compact. We fix a Haar measure dg, on G, in a manner analogous to the manner in
which the Haar measure on G was fixed, following the Iwasawa decomposition of G, and
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put dg, for the invariant measure on I',\G,. The group I, is known to be isomorphic to Z.
Hence there exists a unique generator v, of I', and a positive integer j(7) (the multiplicity

of 7) such that v = 75(7). Let H(T') be the set of I'-conjugacy classes in I — {e}. We first
calculate the orbital integral of ¢[,’] associated with a hyperbolic conjugacy class.

Proposition 5.1.1. Let r € Ny and Re(s) > po. For [y] € H(T'), put
T ([4] 5 5) = vol(T4\G,) /G . ¢ (g7 vg) dg3,

where dg;, is the G-invariant measure on G,\G normalized so that dg = dg,dg;. Then the
integral JU([] ;s) converges absolutely and uniformly on Re(s) > po + € for any € > 0
and is evaluated as

y e~ (s+ro)ty }

1) 9) = 5~ ) {1 detta - AdGu) g 2

Recall the integral (6), which is expressed by eigenvalues of Laplacian in Proposition
4.2.2. Now we obtain another expression of that integral.

Proposition 5.1.2. (a) The infinite series

I_l t_ye_(s'i‘PO)t'r

Ipls) == 3 50| det(1 ~ Ad(R) I

YEH(T)

converges absolutely and uniformly on Re(s) = po + € for any € > 0.
(b) If r > m and Re(s) > po, then we have

,%)dE = v i Ir] (l([v] ;s
[ Prosstitits = va\&)(_tim ok (g))+7§r)‘] GG

where the series in the right-hand side of (9) converges absolutely and uniformly on
Re(s) = po + € for any € > 0.

The assertion is ensured by the next lemma.

Lemma 5.1.3. Suppose that T is a discrete subgroup of G such that T\G is compact.
Then the counting function

mo(T) = #{{v}r e HT)IN() =" < T}, T>0
satisfies the growth condition

mo(T) = O(T?) as T — oo.
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5.2. The resolvent trace formula. From Proposotion 4.2.2, Proposition 3.1.5 (iii) and
Proposition 5.1.2, we arrive at the formula.

Theorem 5.2.1. If r > m and Re(s) > po, then we have

(e o]

> e = a (e (30 + (s

n=0
with
—m— —m m=1/2
9-m 3/2,” ma /

L(m)

TG - ()} ((52) +o(5240)
ARV 2 ~7 2 2 !
t,ye_(s""m)t"

Jypls) = = 3 57 det(1 — Ad(h7) )|
YEH(T)

Jia(s) = vol(I'\G) (—=1)m+

6. SELBERG ZETA FUNCTION

6.1. Analytic continuation of the Selberg zeta function. We recall the definition of
the Selberg zeta function for I'\X with I" as in the previous section. Let H be a #-stable
Cartan subgroup of G containing A. Then H = AH~ with H~ = HN K. Let P be the
set of those root 8 for (hc, gc) with B(Hp) > 0, and A the set of linear forms on h¢c of
the form

A=Y "ngB, ngeN, (10)

BEP

For ) € A let my denote the number of the ways to express it in the form (10).

Let Prim(T") be the set of primitive conjugacy classes in #(T'),i.e., the set of non-trivial
I'-conjugacy class which is not a power of any other I'-conjugacy class. Then for [y] € H(T)
there exists a unique [y] € Prim(I") such that [y] = [ with j(7) the multiplicity of

v- ‘ ;
Since H~ is a Cartan subgroup of the compact group M, any element of M is M-

conjugate to an element of H~. Hence the G-conjugacy class of a [y] € H(T') contains an
element of H expressed as

h = exp(t,Ho)h7, ty >0, hy € H™.

For A € A the associated character of H is denoted by &, : H — C*. With these notations,
the Selberg zeta function for I'\ X is defined as the Euler product

ze(s)= [ T -éathye ™. (11)

[y]€Prim(T) XA
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It is easy to see that the logarithmic derivative of Zp(s) is related to the function Jyp(s)
by the formula

1d

- 2—S-Eglog Zr(s + po) = Jnyp(s) (12)

Hence by Proposition 5.1.2 (a), the infinite product (11) converges absolutely and locally
uniformly on Re(s) > 2p, defining Zr(s) holomorphic in s on that half-plane.

Corollary 6.1.1. The Selberg zeta function Zp(s), defined for Re(s) > 2po, has the an-
alytic continuation as a meromorphic function on the whole complez plane. Zp(s) has
zeros located at s = pg £ sp,n > 0. If \, # p?, the order of the zeros at s = po % s, equals
the multiplicity of the eigenvalue \,. If p? is an eigenvalue of the Laplacian A\, then the
order of the zero at s = py equals twice the multiplicity of the eigenvalue Ay = p3.

Remark. (1) For almost all n > 0, s, is purely imaginary.
(2) We can also show that there exists a meromorphic function Z;4(s) such that
1

d
~ 59 ds 108 Zia(s + po) = Jia(s)-

Since the left-hand side of the formula in Theorem 5.2.1 is invariant under s — —s, the

completed Selberg zeta function 2}(3) := Zr(s)Z;q(s) satisfy the symmetric functional
equation

Zr(2p0 — 5) = Zp(s).
The function Z;4(s) is called gamma factors (or identity factor) of Zr(s). It is known that

Z;4(s) is described by the multiple gamma functions. We refer [16], [22] and [9] for this
topic.
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