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On certain modular functions derived from modular forms of
weight 1/2
(BER120EV 25X 6HBON05H 5 R
2\ T)

Taro Horie (JB{LAHER) and Naruo Kaﬂou (hnsB )

Abstract: In this article, we study certain modular functions 7y (2) similar to the Dedekind eta function
7n(z) and report some results on them. These functions are given by infinite products of Borcherds’ type.
As in the case of 7(2), it turns out that the functions 7y (2) have good properties relating to some areas
of number-theory. Especially, we investigate their automorphic properties in detail.

Keywords: Dedekind eta function, Dirichlet characters, Borcherds products, Kronecker’s limit formulae,
twisted Dedekind sums, reciprocity formula, elliptic functions, Klein forms

1 Introduction

Let 9 be a Dirichlet character. We assume that v is even and primaitive.
In this paper we study the function

[o o]
ny(z) = g MW T - "™ (g = exp(2miz)),

n=1
where L(s, ) denotes the Dirichlet L-function attached to 1. We mainly consider the case of quadratic
characters. In this case the definition is unambiguous, and a few examples already appeared in Ramanu-
jan's Notebooks ([Be3], [Ra3]). We here take a systematic approach and show that the functions 7y (2)
have good properties similar to those of the Dedekind eta function

o0
n(z) =mz) = g% H(l -q") (1 = the trivial character).

n=1
There exists a major difference: the Dedekind eta function has weight 1/2, but the functions 7y (2) for
¥ # 1 have weight 0. We also remark that 7y (z) is not a product nor a quotient of 7(z) when ¢ # 1.

There have been various character analogues of the Dedekind eta function defined in the literature, cf.

Berndt [Bel], [Be2], Goldstein and Razar [G-R], Meyer [Me] and others. Our functions 7y (z) are also
one of such analogues, and from some points of views they seem to be a natural genera.lxzatlon of n(z)
for the congruence subgroup I'o(N) (see the notations) of SLz(Z)

Notations.
We use the notation e(x) := exp(2mix).
We denote by ‘H = {z € C|Qz > 0} the complex upper half plane. For z € H, we write

q := e(z) = exp(2niz).
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For the logarithm logw (w # 0), we choose the principal branch with -7 < argw < 7.
For a Dirichlet character v, we denote by r = r(1) the conductor of ¥ and by

r(¥)
G(¥) := Y _ d(n)e (n/r(¥))

n=1
the Gauss sum attached to .
We define the congruence subgroup of level N of SL2(Z) by

I‘o(N)={(Z Z)ESLg(Z)lcEO (modzs})}.

For each natural number ¢, we let x; be the primitive Dirichlet character associated to the quadratic
field Q(vt) (If t is a square number, we let x; := 1 be the trivial character).

2 Construction of modular functions

Let 9 be an even primitive Dirichlet character. We define the theta series twisted by :

Oy(z) =3 P(n)g™,  q=exp(2miz).
nez
We know 6y, is a modular form of weight 1/2 and character ¥ with respect to I'g(4r2), where 7 is the
conductor of ¥ ([Sh, Proposition 2.2], see also [S-S]). _
Let D > 0 be a fundamental discriminant and let xp = (£) be the associated quadratic character.
Following [Bo, Theorem 14.1], for 0,,,(2z) = }_,.cz xp(n)q"z, we define

Lift(B0)(2) = 1o (2) = g~ 44-2x0) ] 1 peel®. ®

n=1

Theorem 1 (transformation formula). Let the notations be as above. Then, for D > 1, ny,(z) is a
(quasi) modular function for I'o(D) with the transformation formula

a b

o (a: 3) = vp(M)Xb(@)xo (2" for all M = ( d) € Fo(®), @

where xp stands for xp or 1 according as D is a prime or not, and vp(M) is a root of unity.

The number vp(M) is a 5-th root of 1 if D = 5, a 2-th root of 1 if D = 8 and always equals to 1 if
D > 8, respectively (see Theorems 3, 7 and (22) for an explicit form). In particular, 1y, (2)%, 7y, (2)?
and 1y, (z) (D > 8) are modular functions for respective I'o(D, xp), where

a b
ro(Doxo)i={ (£ ;) € Tol@) xo@) =1
(which is a subgroup of index 2 in To(D)).
The function 7y, does not have zeros nor poles in the complex upper half plane H.

We emphasize that our functions have a transformation foumula for I'o(D). We also remark that there
exists a major difference between the case D =1 (weight 1/2) and D > 1 (weight 0).

Except for the determination of the root of unity, the theorem is obtained from one of
(1) Weil’s converse theorem for weight 0,
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(2) Kronecker’s limit formulae,
(3) Klein forms (This method determines the root of unity, and is discussed in detail in Sects. 4-8).

Proof. In this section, we sketch the method (1). We prepare the Weil’s converse theorem for weight 0.
This method is closely related to the work by L. J. Goldstein and M. Razar [G-R] which treats “Hecke
integrals” in a general setting.

The functions

[*(z) :==lognyp (2) = —L(—1, xp)miz — Z Z(-]27—&2)exp(21rimn:z)

m,n>1
and G _
o2) = -2 11,50) - Gx0) 3 X2 exp(emimnz) ©
mmn21 :
satisfy ,
f*(-1/Dz) = g(2), , B CY

which can be shown as in the proof of [Mi, Lemma 4.4.1]. Then, we can apply to f*(z) and g(z) the
Weil’s converse theorem for weight 0, which is a direct analogue of [Mi, Theorem 4.3.15] (weight > 0) for
the case of weight 0. Thus we obtain the statement except for the determination of the root of unity. O

We shall determine the root of unity (automorphic factor) by two different methods in Sects. 3 and 8.

Next, we mention some interesting relations between 7, ,, and the Dedekind eta function. S. Ramanujan
(see Entry 10 (iii), (viii) and Entry 11 (iii) of Chap. 19 in [Be3] or [Ra3]) discovered the formulas

1 1 oo _ oo
———— —1 -—nxS(z) = 1—/5— H(l_qn) X5(n) _1_q1/5 H(l _qn)XG(n)

_ 1 ﬁ 1-¢"/5 _ n(2/5) ®)
g5 2L 1—¢g  n(52)°

1 _{ n(2) ¢
@y T ()’ = (n(5z)) |

The first proof of these famous formulas was given by G. N. Watson. See also B. C. Berndt’s book
[Be3, pp. 265-267), where a short proof based on other formulas of Ramanujan, is given. There are
other proofs in the literature: K. G. Ramanathan [Ra2, pp. 696-697] gave another proof for (5); M. D.
Hirschhorn has given more than one proof.

In the case of other D, we have similar results:

Theorem 2. For D =13, we have

1. NECRY
@) ""”(Z)_<n(132)>'

For D = 8, we have . )
1 1(2)*n(42)
— -6+ 22 =
TR~ & Bl = p )
For D = 12, we have
__n(2)n(4)n(62)?
1(22)?n(3z)n(122)%"

()
Mx12 (2) xa2
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Proof. Both sides are modular functions for I'g(D), which is easily seen by the transformation formula
(2) (for the left-hand side) and by [C-N, pp.331-333] (for the right-hand side). We evaluate both modular
functions at the cusps, and obtain the results. ]

3 Automorphy and reciprocity
We shall carry out the determination of the root of unity vp(M) in Theorem 1. Note that for
fundamental discriminants D =1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33,... we have
1 11
24’ 5" 2’
For D =1, 5, 8, 1y, has a non-trivial multiplier system vp(M).
As a map, vp(*) is a quasi multiplier system in the sense that

—%L(—l,xp) - 1,1,2,2 3 4,3 6,... (cf. [Za Sect. 7).

Definition. We call a map vp(M) : To(D) — C! (=the unit circle) a quasi multiplier system with

b
character xp, if for any M; = (a1 l) » Mg = (a2 bz) € T'o(D),
a d c2 da

vp(My M;) = vp(M))vp(Ma)XP (),

Theorem 3. The number vp(M) in Theorem 1, where M = (Z ) € I'o(D), is explicitly given as

d
follows. For D =5, we hape

vs(M)=e (%xg;(d)bd) =e (%ab) .

ve(M) = e (-;- (9-1;’-“3 - b)) .

VD(M) =1.

For D = 8, we have

For D > 8, we have

Proof. The proof uses what is called “the method by Riemann and Dedekind”. First we find that a

certain Dedekind’s type sums S(xp;c, a) appear in the transformation formula of log 7, ,,. Next we find

b
d) €T, (D) and
prove it by induction. In the case of D = 1, 11 (M) is nothing but the multiplier system of the Dedekind

eta function 7(z) and this analysis is well-known (cf. [Ral, Chap. 9]). o

a
an explicit formula for vp(M) in terms of the components of any matrix M = (
c

From the first part of the proof of Theorem 3, we derive a remarkable formula:

Theorem 4. We define the number ¢p(M) € Q by
. a b
log Mo (M2) = Xp(d) log o (2) + 2midp(M), M = (c d) € To(D).

The map ¢p : T'o(D) — Q satisfies

¢p(M1Mz) = ¢p(M1) + xp(d1)¢pp(M2) (VM), VM; € To(D)),



b
where dy is the right lower entry of My. Then, for M = (a d) € I'o(D) with ¢ # 0, we have
c

a+xp(d)d 1
Cc

#p(M) = ~3L(~1,x0) - 55(xp3¢,0).

Here we define the “twisted Dedekind sum” by

Stosea) =aen 3 xotm) ((2)) ().

m( mod c)

where ((z)) = = — [z] — 1/2 is the (modified) fractional part of z and sgn(c) := c/|c|.'

Remark.
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(6)

(i) Many authors studied various character analogues of the logarithm of the Dedekind eta function,
cf. [Bel], [Be2], [G-R], [Me], [Na]. In each case, certain generalizations of Dedekind sums attached
to Dirichlet characters arise in the transformation formulas. In particular, Theoerem 4 was essentially
obtained in [Be2, (6.5)] by a different method. We mention that the definition of character analogues of

log n(z) in [Be2] omitted the terms involving special values of the Dirichlet L-function.

(ii) We can regard our twisted Dedekind sums S(xp;c,a) as “periods” of Eisenstein series of weight 2.

Now, we find a reciprocity formula for twisted Dedekind sums.

Theorem 5. For M = (a b
c d

- + d)d
S(XD§C,0«) + S (XD;Db, d) = _L(_I’XD)G XCD( )

’

where we define the other “twisted Dedekind sum” by

* . ._ G(xp) m am
S*(xp;c,a) = —ZED— 0¢m(zn;°d i xp(m) cot ("'Z) cot (n—z—) .

) € I'o(D) with bc # 0, the following reciprocity formula holds:

(7)

Proof. For g(z) = logny,(—1/Dz) defined by (3), in a similar way to the proof of Theorem 4 (the

method by Riemann and Dedekind), we can prove

#5(M) = =35" (xpi ¢, a).

b

Therefore, for M = (a
c d

) € I'y(D), we have

—a/Dz+b

_ . i a+ xp(d)d
log 7, (m) = xp(d) log nx,, (=1/Dz) = miL(~1, xp)—"———

(by Theotem 4) on the one hand and

—a/Dz + b)

Dbz —a
log 7rx —c/Dz+d

108 o ('55:

= logny, (-1/D7) (= 2D
- o@)=9(5522) @)

1
= xpl(a)g(z) — 27ri§S‘(xp; —Db, d)

—miS(xp;c,a)

)



106

on the other hand. By comparing these two expressions, we get the result. a

Remark.

(i) For D > 1, two twisted Dedekind sums S(xp;c,a) and S*(xp;c,a) defined by (6) and (7) do not
coincide with each other, in general.

(ii) Related results for generalized Dedekind sums attached to Dirichlet characters were obtained by
Berndt [Bel, Theorems 4, 7], [Be2, Theorem 7] and Nagasaka [Na, Theorem 2.

4 The Legendre relation

We need so-called the Legendre relation (Riemann condition, CCR=canonical commutative relation,
etc.). First, we define the notion of Eisenstein summation. For some one-variable function f(z), we
define the Eisenstein sum of f by

M
> fm)= lim 3" f(m).

m m=-M

For the case of two-variable functions, we define Ze = Ze Ze. We define the Eisenstein product by a
n

m,n m
similar way. If we write 2;, then it means that we remove m = 0 or (m,n) = (0,0) from the summation.

The infinite product of the sine function is written by

sinx=xﬁ(1—ﬂ—f%)=xni(l—%). (8)

n=1

From this formula, we deduce (for z ¢ 7Z)
sin(z —t) _ __t
sin(z) l;[e (1 z+ n1r) ) ©)

w
Next, we consider Eisenstein series for a posivie integer k and a basis w = ( 2) of a lattice in C.
wh

We define

r1 ’ 1
ek(‘W) = Ze nok ;e (nIW2 + nZWl)k

n 1,12

and
1 1

7
E ; —_ ————— 9
% (u; @) lee (u + nw)k ,;,‘; (u 4+ ny@2 + now, )k

where n = (n; nz). For larger k (> 3), these series are independent of the summation process. We
take another basis @’ of some sublattice of the lattice which is generated by w. Then, ey satisfies the
distribution relation

7

ex(w’) + Z Ex(riw') = )
ez (@), if 2k > 4.

reR’

2midc
{ 82(W) - E; if 2k = 2, (10)
a b
Here we write @’ = yw = (c d)w, take R a set of representatives of the lattice generated by w

modulo the sublattice generated by @’ and put R":= R — {0}. The number § = =1 is the sign of the
orientation of w, i.e, it is equal to +1 if z = w2 /w, is on the upper half plane H, and —1 otherwise.
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01
Especially, for v = (1 0) and Sz > 0, then § = 1, R’ is empty and (10) becomes

S 2mi

(11)

e2(w') — ez(w) = .

By comparing the Fourier development of es and the eta constant, we know

ez(w) = %‘T)

Therefore, the equation (11) is nothing but the Legendre relation

mws — Nw; = 27, (12)

where 72 1= (Yw).

Remark.
All the facts in this section are found in the text book of Weil [We2], in particular Chap. III.

5 Some properties of the sigma function

We define the Weierstrass sigma. function by the infinite product

o(u;w) = uHI (1 - -7-}::_}—) exp (% + 2:;2) ) (13)

w2
where u € C, w = (
w1

We apply the Eisenstein product for this product (we call this operation “observation”):

2
! u u
oluiw) = uHe (1 : :rg) P (2nw2>/
n

1uler(w) ! (1 — l)
ue 1:1‘[8 nw )

) and we denote n = (n; ny) € Z2.

Moreover, by using (8) and (9), we have
w!nlwz-ug)

1 , sin
© exp (—uzeg(w)) sin (Lu) H ___._(____fl___.
m 2 w1 ¢ sin (mz)
w1

ni

w (1 _ X (1 - 2=1g")(1 = zg" _
- 2o (yem@n?) (o -o7H) El< oI EL N

o(u;w)

2

where 2 = @y /w1, v = u/w1, g = e(z) and = = e(v). This is almost equal to the Jacobi theta function.
In fact 9,1 has the triple product expansion

O11(v; 2) = —igh (z¥ -z~ %) H(l —q")(1 -z 1¢")(1 - zg™). (15)

n=1
Combining (14) and (15), we have

o'('u,; w) = _% exp (%WIUI(W)UZ) :‘—,%}l((:—)’:l | ' | : (16)
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This 7(z) = ¢"/24 [[(1 — ¢") is the Dedekind eta function.

Next, we consider the automorphic properties of the sigma function. We restrict our consideration to
only the action by SLy(Z). Assume that u is independent of w and a = (1 a2) € R?, then the action

by v = (Z Z) € SL2(Z) on w is as the following:
o(u + ayw; yw) = o(u + ayw; w).

In particular, if a = 0, by (16), we have

|- Sutamyw) @ (i) (=) (u_2 (n_i 3 ﬂ))
oclu+aow;w) w; Y(v;z) n(z')3 2 \w, w//’

where w] = cws + dwy, 7] = 2 + dm, v = v/w] and 2’ = (az + b)/(cz + d). Note that

m m 2mic

w, m wi(cwz+dw)’

by the distribution relation (10). Now, we shall use the automorphy of the Dedekind eta function
n(2') = e5(cz + d)in(z), le;] =1.

Ifweputw=2= (: ) , then we obtain the automorphy of the Jacobi theta function

v az+b) 4 cv? .
i (e ara) = (serg) @+ 9Muta) o

Put 813 = (1/21/2). For B = (p1 B2) = a+ P = (o1 a2) + (1/2 1/2) € R?, the characterized
theta functions are defined by

- dg(v;z) =e (%a'fz +a1v+ alﬁg) v+ aZ;z)

(hence ¥g,, = 911). We deduce the automorphy of these functions by (17):

2
90 (25 20 = ter+ e (2 ) rlaOan (2, 18)

oy(a) =e (a’la'z —ajoe + (al + %) - o (a’l + %)) ,

where o/ = ay and ' = o' + f11. Specially, if we take 8 € ((1/2)Z)/Z)?, we obtain the automorphy of
the Jacobi theta functions:

1, if 6=(1/21/2) = pn,
5.(0) = ((a+c)b+d—-a—c+1)—1)/4, if 8= (00),
T ) a(b-a+1)/4, if 6=(1/20),

c(d — c+1)/4, if 8=(01/2),

a b
fi = L2(Z).
or vy (c d)GS 2(Z)

For a # 0, the automorphy is not within one theta function, and some authors describe it under the
restriction to suitable subgroups of SL2(Z).
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A direct proof of the automorphy (18) is given by Ibukiyama [Ib]. Our proof is the same as Weber [Wel],
Weil [We2], Rademacher [Ral] and others, but we avoid the calculation of ..

The sigma function has a factorization into automorphic funcitons. Put f(z) = (1 — z)e*+**/2, We
then define the n-th part of the sigma function:

o™ (u; w): = H f (—1;1%) =o (%;w).

ged(miy,ma)=n

We define (n)g(w): = g(mm) and put T:=Y_"° | (n). Then the original sigma funciton is written by
nw;i

k)

o(u; @) =u (6(1)(u; w))T =y (0(1)(11.; w))c(’l'k)

where we put Ap: = (p) and write {(s,A): = [[,,(1 —A;*). This argument is the same for Eisenstein series.
We need a slightly different automorphy from above. We consider it in the next section.

In the rest of this section, we shall prove the quasi-periodicity of the sigma funciton. It is well-known
and simply obtained in the system of Weierstrass's elliptic functions. But we would like to get it directly
from our starting definiton (13). Shortly saying, the translation of w;’s direction has no effect in the
Eisenstein product (because w; — 1 and ¢ is an invariant of translation of integers), and the effect
appears in the exponential factor. The translation of ws’s direction appears in the Eisenstein product
as a finite quotient. Above two are not independent. Finally, the Legendre relation (12) decides their
twist to the quasi-periodicity as a well-known form.

For n’ = (n} n}) € Z2%, we have the quasi-periodicity

O’(U + nlw; w) — (_l)n’l+n',+n'1n'2ei-n',,(Zu-%-n'w)a(u; w)’ : (lg)

where n = (7]2
M

In fact, we see

) is the eta constants with respect to the basis w.

o(u+n'w; w)

o(u; w)
?
- U +n'w H’ 1- %%‘:E 6%3"'2'(:%)7{2“""”*'(""”)2}
u 1- u_

nw

u+nw

'
_ ut+in'w)n'we _ —nw
- e( : ) ’ I;-Ee I;Ize (1 u+n1wz+n2w1)

_ e(u+-}'n'w) (n'17+3,,"—1‘n’1) H sinw(v +n1z — nllz - n,2)

e sinw(v + n12)
ny

n
_ H (1_ -n'w )ef}{2un’w+(n’w)2}
e

_ e(u-f—%n'w)n'n-{-z-nivnx +mi(n]z+ny)n] (—-1)"’2 sinm(v — n'lz)

sinmv
x lim sinm(v + (n} + n1)z)sinw(v + (n] — n1)z)
N=—oo 12, sinm(v + ny2) sinw(v — ny12)

n/2 ) ! _ _nl
= (‘1)n”6("+%"'w)"1"2"3q+(—'1)"mzq"}'1 1xq2: :
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1=, — m=1_n1—n!
% lim (1 -=zgm™)(1 -z 'gMm™™)
N—oo (1 -zgm)(1—-z-1gm)

ny=1

(__l)n'z+n',nge(u+}nlw)n',,xn'lq§n', (n}+1) ]V"_zq-f_l_
l1-2

x lim
N-—-oo

) (Ot
oy (1—=zg))(1-z"1¢N")

ny+nin; (uv+dn'w)n'n, n}_ini(nj+1) 1- zq—nl‘ 1—-g-1 N -
= (—1) 1%2e z'q 1—z 1-— z_lq_ﬂ,‘ ll_Il (_x q )

= (- l)n'l +ny+ning e(u+}n’w)n"l_

As mentioned above, we used the Legendre relation (12).

Remark.

The first infinite product (13) of the Weierstrass sigma function has the most higher symmetric shape.
When we fix a specified generator of the lattice, this symmetry breaks. But the Legendre relation
restores it in many scenes. Symmetry means “indetermination”, therefore we named the process of “fix
basis” and “apply the Eisensten summation (product)” “observation”. We consider that a relation of
two observations has a right to be called canonical commutative relations as quantum mechanics. But
we do not know the exact correspondence between these terminology.

Indetermination has two faces for the sigma function: the first is indetermination between w and vyw
(where 7 is in GL2(Z)), and the second is that between u and u + nw. The first means the automorphy,
and the second means the periodicity.

Observation breaks the symmetrical w-expression to a special g-expression. Therefore, trivial things
on w may be complex on gq.

Needless to say, there are many remaining problems. In particular, we did not consider the automorphy
of the original Dedekind eta function. Does the eta function 7(z) have a homogeneous tw-expression ?
Our only knowledge is that 7 is a product of 7 Klein forms.

We see the sigma function as a solution of the multiplicative Cousin problem for lattices on C. There-
fore, we can imagine that if we find an explicit solusion of the multiplacative Cousin problem for lattices
on C9 then it is an automorphic function of degree g.

6 Klein forms

In this section we introduce the Klein forms and show their automorphy. Fix the notations: A(M) =
[0,1) (resp. Q%N [0,1)% or ((1/N)Z/Z)?N[0,1)?) for M = R (resp. Q or (1/N)Z). For & = (o az) €
A(R) and w, we define the Klein form

ko(w) = e'*"‘""'“’a(aw; w).
We see these functions are automorphic functions for SL2(Z) in the sense as follows:

Theorem 6. For vy € SLy(Z)

Ka(y®) = (~1)m+ratmmg (%m( ° ;)‘a') ket (), (20)

where o' € A(R) with a7¥a’=n= (n1n2) € Z2.
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Proof. In fact, by the quasi-periodicity (19), we have

~tarnavw

ka(yw) = e o(ayw; Yyw)

(_ 1)111 +n2+n1n2 e% (e’ w—a'nayw) ka’ (‘ZD)

0 1
(s (Gan( 0 (Yo ) ko),

where we used the Legendre relation (12) in the last equality. ‘ o

The automorphic factor €(7y,a) := kq(7®@)/ka(w) has complex absolute value 1. Furthermore, by
the Legendre relation (12) again, the Klein forms are written by

Ko(w) = E;%qusﬁ(a’)e (%ag(al - 1)) Eu —z71¢")(1 - zg" ). (21)

If we choose a in A(Q) [resp. A((1/N)Z)], then o' is in the same set for every ¥ € SL2(Z). Therefore,
if we consider suitable products or quotients of Klein forms, then they become true modular functions
of SLz(Z) for some congruence subgroups of SL2(Z).

7 Integrality of L(—1,xp)/2

Theorem 7. For every fundamental discriminant D > 8, L(—1,xp)/2 is an integer.

Proof. The proof is devided into two parts. The first part shows the theorem for prime discriminants.
The second part reduces the general case to the case of prime discriminant (which is possibly negative).

Part one. Let D = p > 5 be an odd prime number. We see

%L(‘l”(v) Z Xp(n)Bz(n/p) (mod Z)

= Zx,, n)n +~Zx,,(n)n (e Zz,z3,Z5)

—41_:02("’ —rnt Zn modZ

1 p? -1
= T()pp(p +1)P(3P +3p’ - 1)+ 16

r—1 3p? -7 p? -1
= ( 2 T 60 +1> 16 (€%

where p’ = (p — 1)/2 and r is the square of an odd primitive root modulo p. Hence we obtain the result.

Part two. Write D = D; D, with (possibly negative) fundamental discriminants D; and D such that
|D;] > 1 (i =1, 2) and they are prime to each other. By the Chinese remainder theorem, we can show

. ,
§L(—1, xp) = D1CmiL(~1,xp2) (mod Z),

with some integers C and m,;. If Dy < 0, then L(-1,xp,) vanishes by the gamma factor. Only
exceptional discriminant is 40 and we calculate directly in this case. In the other case, we can put
Dy = p > 5 and reduce to the part one. ‘ O
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8 Proof of the automorphy

We are now ready to complete the proof of the automorphy of 7, , (Theorems 1 and 3) by using those
Dz
of the Klein forms (Theorem 6). Put a = (a;/D 0) and w = ( 1 ), then by (21)

4 Ba(a)
k(@) = —5r oy ) [T - ¢ o) - gPme).

Therefore, we can express our 7, as a product of Klein forms:

mo(2)= ]I (k(n/D 0) (Iiz))xo('n) :

n€(Z/DZ)* /+1

Then we deduce from Theorem 6 that the automorphic factor of n,,, for v € I'g(D) is

Mo (¥2) o (—%bL(—l, XD)) " {xp(a), if D is a prime number, (22)

Txp (2)x0(0) - 1, otherwise,

when D # 8. By Theorem 7 in the previous section, the exponential factor is 1 except for the cases
D =5 or 8. In these cases, we calculate directly. This gives a complete proof of Theorems 1 and 3. O
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