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Nonlinear second order elliptic equations with subdifferetial terms

MEERKE BH EFE (Katsuyuki Ishii)

Kobe University of Mercantile Marine

1. Introduction This is a brief report of my joint work [6] with Prof. N. Yamada
(Fukuoka Univ.). , ,

We consider the following second order elliptic partial differential equation (PDE)
with subdifferential

—Au+tu—f+0®(z,u)>0 in K,
(1.1) {u=0 on ON.

Here @ C RY is a bounded domain, f is a given function and 8®(z,r) denotes the
subdifferential with respect to r for a proper, convex and lower semicontinuous function
®(z,r). An example for (1.1) is the following obstacle problem

u<s Y in

(1.2) —Autu—-f=0 in Q if u(z)<y(z),
—Au+t+u—fL0 in Q if u(z)=¢(a),
u=0 on ON. ‘

We define @ by
Q(.’E,T) — {0 if r § ¢($),

400 otherwise.

Then its subdifferential 0®(z,r) is

0 if r<yi(x),
0®(z,r) =< [0,+00) if r=1(z),
. ] otherwise,

and (1.2) turns to (1.1).
(1.2) has been studied from various viewpoints.

1.1 Variational inequa]ity Find u € K satisfying
(1.3) /(Du,D(u —v))dz +f u(u — v)dz = / f(u—v)dz (Vv € K).
Q Q Q

Here (-, ) is the inner product in RY and K = {u € H}(Q) | v £ ¢ a.e. in Q}. This is
a weak form of (1.2). We refer D. Kinderleher - G. Stampacchia [7] for an introdution
to variational inequalities and applications.

1.2 Subdifferential equation Consider the follwing inclusion.

(1.4) u—f € —0¥(u), u K,
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1
U(u) = §||Du||2Lz(Q) + Ix(u),Ig(u) =0 (u € K),= 400 (u ¢ K),
0¥ (u) = —Au + Ik (u), 81k (u) = subdifferential of I (u),
K={ue H(Q)|u<Ly ae in Q}.

The existence and uniqueness of solutions of (1.4) was discussed by applying the theory
of subdifferential operators. See H. Brézis [2] etc.

1.3 Degenerate elliptic equation (1.2) is the same as the following equation.

max{—-Au+u—-fiu—9¢}=0 in Q,
(1.5) {u =0 on Of.

See A. Benssousan-J.-L. Lions [1] etc. for the treatments of (1.5) and the relation of
(1.5) to stochastic control problems.

These problems are equivalent to (1.2) in some sense, although their derivations are
different from each other. Hence it seems to us intuitively that their solutions should
coincide with each other. It is obvious that (1.3) is equivalent to (1.4) in L?-sense. Since
the subdifferential 8Y(-) is defined in L?(f2) and it is a maximal monotone operator in
L?(R2), we want to understand 8¥(-) in the sense of pointwise. If we can do so, we think
that we can make the equivalence between (1.4) and (1.5) clearer.

Motivated by these considerations, N. Yamada (8] has given a notion of viscosity
solutions of nonlinear first order PDE’s with subdifferential and proved the comparison
principle. Our aim of this article is to extend the result of [8] and to propose a notion
of weak solutions of second order multi-valued PDE’s such as (1.1).

Our plan is the following. In Section 2 we state our assumptions and give our definition
of viscosity solutions. In Section 3 we present the comparison principle and existence
of solutions of (1.1). Section 4 is devoted to the stability of viscosity solutions and the
convergence of Yosida approximation for (1.1).

In the following we suppress the term “viscosity” since we are mainly concerned with
viscosity sub-, super- and solutions.

2. Preliminaries In this section we state our assumptions and give the definitions
of solutions of (1.1).
We make the following assumptions.

(A.1) @ C RY is a bounded domain with smooth boundary.

(A2) feCc®). _

(A.3) For each z € Q, ®(z,-) is proper, convex and lower semicontinuous in R.

(A4) Let E(z) = {r € R | ®(z,r) < +oo}. The set-valued function z — E(z) is
“continuous” on { (see Remark 2.1 (2) below).

(A.5) For any (z,r) with r € E(z), ® satisfies

lim &(y,s) = ®(z,r).
(v,8)>(=r)
+s€E(y)
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(A.6) 0 € E(z) for all z € 9. ,
Remark 2.1. (1) If (A.3) holds, then, for each z € ©, E(z) is a closed interval and

®(z,-) is continuous in int E(z).
(2) Set e*(z) = sup{r | r € E(z)} and e~ (z) = inf{r | r € E(z)}. Then (A.4) means
that the interval [e*(z),e ()] varies continuously with respect to z € Q. Thus it
follows that either et € C(Q) or e*(z) = +00 on Q holds. Similarly, either e~ € C(Q)
or e~ () = —oo on § holds.

To give the definition of solutions of (1.1), we prepare some notations. Let u : @ — R.
For each z € Q, we define

u(z) = lim sup{u(y) | ly — 2| < r,y € 0}, u.(2) = lim inf{u(y) | ly — 2| <r,y € Q}.

Definition 2.2. Letu:Q — R.
(1) We say u 1s a subsolution of (1.1) if and only if u*(z) < +o0, ®(z,u*(z)) < +oo
on Q and for any ¢ € C*(Q), z € Q and r < u*(z), we have -

®(z,r) — ®(z,u*(z)) 2 —(-Ad(z) + u*(z) — f(z))(r — u*(z))
provided u* — ¢ takes its mazimum at x. 7
(2) We say u is a supersolution of (1.1) if and only if u,(z) > —oo, B(z,u.(z)) < +o0
on Q and for any ¢ € C%(Q), z € Q and r > u,(z), we have

B(z,7) — 8(2, us(2)) 2 —(=A(2) + ue(2) — f(2))(r — ual(2))-

provided u, — ¢ takes its minimum at .
(3) We say u a solution of (1.1) if u is both a subsolution and a supersolutzon of (1.1).

Remark 2.3. If 0%(z,r) is smgleton then the above definition is the same as the
usual one (cf. [5, Section 2}). : :

3. Comparison princible and existence of solutions In this section we prove
the comparison principle and existence of solutions of (1.1).
The comparison principle is stated as follows:

Theorem 3.1. Assume (A.1)-(A.5). Let u, v be, respectwely, a subsolution and a
supersolution of (1.1). If u* L v, on 0N, thenu* < v, on Q.

Outline of Proof. We assume u € C(Q) and v € C*(Q) N C(Q) for simplicity.
Suppose supg(u — v) = u(z) — v(z) = 6 > 0 and we shall get a contradiction. Then
z € 2 because u < v on 02.

Since u is a subsolution of (1.1) and v is a supersolution of (1.1), for any r; < u(z)
and ro > v(z), we have the following inequalities.

(3.1) O(z,m1) — &(2,u(2)) 2 —(—Av(2) + u(2) — f(2))(r1 — u(z)),
(3.2) ®(z,r2) — 2(2,0(2)) 2 —(—Av(2) + v(2) — f(2))(rz — v(2)).

Hence, substituting r; = v(2) in (3.1) and r; = u(z) in (3.2) and summing up these
inequalities, we get 0 2 (u(z) — v(2))?, which is a contradiction. O
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Next we establish the existence of a unique solution of (1.1). We use Perron’s method
to show the existence of solutions (cf. [5, Section 4]). For simplicity we assume e* €
C(Q) and e* = 0 on 99, which are defined in Remark 2.1 (2). Then e~ (resp., e*) is a
subsolution (resp., a supersolution) of (1.1). We set

S = {v | v : subsolution of (1.1),v* < 0 on IN}(+# 0),
(33) u(z) = sup{o(z) | v € S}.

We have the following theorem.

Theorem 3.2. Assume (A.1)-(A.6). Let u be defined by (3.3). Then u is a unique
solution of (1.1) satisfying u = 0 on 0. Moreover, u € C(Q2).

Perron’s methods is divided into two lemmas. We assume (A.1)-(A.6) in the following
lemmas.

Lemma 3.3. u i3 a subsolution of (1.1).

Lemma 3.4. Assume v € S satisfies ®(z,v.(z)) < 400 on Q. Ifv is not a
supersolution of (1.1), then there ezists a w € S such that v(y) < w(y) for some y € Q.

We admit Lemmas 3.3 and 3.4 and prove Theorem 3.2. After doing so, we give their
proofs.

Proof of Theorem 3.2 We note that e~ = u, = u* = et = 0 on 9Q. It follows
from Lemma 3.2 that u is a subsolution of (1.1) and therefore u € S.

It is easily seen by the facts e” S uon Q and e~ € C(), we get e~ < u, < u* on
and &(z,u.(z)) < +o0 on .

Suppose u is not a supersolution of (1.1). By Lemma 3.4 we can find a w € S such
that u(y) < w(y) for some y € Q. This is a contradiction to the maximality of u. Hence
u is a supersolution of (1.1).

We use u* = u, = 0 on 9 and Theorem 3.1 to have u € C(2) and u = 0 on 99.
The uniqueness also follows from Theorem 3.1. o

Put E = U, g({z} x E(z)).

Outline of Proof of Lemma 3.3. Step 1. We prove &(z,u*(z)) < +oo on .

Fix zo € Q. By the definition of u*, there exists a sequence {z,} C  and {v,} C S
such that

(3.4) Tp = To,Vn(2q) = u*(z0) (n = +00).
Since (zn,v%(zn)) € E and E is closed in RN+ by (A.4), we get (z0,u*(20)) € E.

Therefore we have ®(zq,u*(zo)) < +00 on Q.
Step 2. Let ¢ € C?*(Q?) and let z¢ € 2 be a maximum point of u* — ¢. We show

(35)  ®(z0,r) — ®(z0,u*(20)) 2 ~(—Ad(z0) + u*(z0) — f(20))(r — u*(z0))-

for all r < u*(zo).
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By a slight modification of ¢ we may consider
(3.6) u*(20) — #(20) = 0,u”(z) — $(z) £ ~|z — zo|* on Q.

The definitions of u* and u imply there exist {zn,} C @ and {vn} C S satisfying (3.4).

Let yn be a maximum point of v}, — ¢ on Q. Then we have, by (3.4), (3.6) and some
calculations,

(3.7) Yn = Z0,Vp(yYn) = u*(z0) (n = +00).

Fix r < u*(zo). If ®(zo,r) = +00, then we have nothing to prove and thus we assume
®(z0,7) < +o00. We restrict our attention to the case (zo,r) € int E because the case
of (zo,r) ¢ int E can be proved similarly, by using some perturbations. It is easily seen
that (yn,v;(yn)) € int E, 7 < v} (yn) for large n >> 1. Since v, is a subsolution of (1.1),
we obtain the following inequality

2(yn,) = &(Yn, va(yn)) 2 —(=Ad(yn) + v7(yn) = f(¥a))(r — v3(yn)).
Letting n — +o0, we get (3.5) by (3.7), (A.2) and (A.5). o

Outline of Proof of Lemma 3.4.  Suppose v is not a supersolution of (1.1).

Then, there exist a ¢ € C*(Q2), an z¢ € Q and an ry > v,(zo) such that v, — ¢ takes its
minimum at zo and

(38)  ®(z0,70) — B(z0, vs(20)) + 46 < —(~Ad(z0) + va(z0) — F(z0))(ro — va(z0))
for some § > 0. We note ®(xo,10) < +00 and we may assume v, (o) = ¢(zo). Moreover
we observe

v(z) 2 vs(2) 2 ¢(2) = ¢(0) + (D(0), 2 — z0) + %(szﬁ(xo)(x ~ o), — Zo)

+o(lz —z0’) (V2 € B(zo,m0))
for small n9 > 0. We define

$(2) = ¢(z0) + (Dd(a0), 2 = z0) + 3{D*$(0)(z ~ 20,2 — z0) ~ 7lz — "
(3.8), (A.2) and (A.5) yield that there exists 0 < a, 1, < 1 such that
Y(r)+ta<r—a
®(z,r0 — @) — ¥(z,¥(z) + @)
S ~(=A%(z) + (¥(2) + a) = f(2))((ro — @) — (¥(2) + a)) — 4.
for any = € B(zo, m). By these inequalities and the convexity of & we see
®(z,r) - &(2,9(2) + @) 2 —(=A¢(z) + (¥(2) + ) = f(2))(r - (¥(z) + @)).
for all r < ¢(z) + . Thus we conclude that 3(z) + o is a C?%-subsolution of (1.1) in
B(zg,m). We set ’
) = { P00 2 i Do),
v(z) otherwise.

Then we can show v € § by a similar argument to the proof of Lemma 3.2.

We notice by the choice of ¢ that ¥(z) + a < v(z) (m/2 £ |Vz — 20| £ my) for
a < (yn})/8. The definition of v, implies that we can extract a sequence {zo} C Q
satisfying (z,,v(Za)) = (Z0,vs(Z0)) as n = +co. Thus we have ¥(z,) + a > v(z,) for
all n > 1 since ¥(z,) + @ = v.(z0) + @ as n — +00. o
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4. Convergence properties of solutions

4.1. Stability of solutions In this subsection we discuss the stability of solutions
under some perturbations on ®. Our arguments are based on [4, Section 6].
We consider the following problems

{—Au+u—f+3<1>,,(:c,u)30 in 9,

(4.1)n u=0 on ON.

We make the following assumptions.
(A.7) _lix_{xoodg (En,E) = 0. Here we denote E,(z) = {r | ®a(z,r) < +oo} and

B = U, ({2} x Bn(2))
(A.8) For each z € Q, r € E(z),

lim su o] ] lim inf ) ®(z,r
(y,n)—b(z,r),ogEn(y) n(y’ ) (v,8)=(=, r) s€EEn(y) n(y’ ) ( )
n—~+oc0 n—++oo

Let u, € C(0) be a unique solution of (4.1),,. Then we have the stability of solutions.

Theorem 4.1. Assume (A.1)-(A.2). Moreover assume that ® and ®, satisfy (A.3)-
(A.8). Then u, converges to u uniformly on Q as n = +oo. Here u is a unique solution

of (1.1) satisfying u =0 on OX}.

Outline of Proof. At first, by the barrier construction argument and the compar-
ison principle, we get supp>; [|unllLe(@) < +o00. We define

(4.2) u(z) = hm sup{un(y) | lv —z| < k™1, y € Q,n >k},
(4.3) u(z) = kkglwlnf{un(y) | ly—=zl <k™,y €Qn >k}

We prove only that ¥ is a subsolution of (1.1) because we can prove similarly that u
is a supersolution of (1.1).

It is easily seen by (A.8) and (A.4) that &(z,@(z)) < +oo on Q.
Next, we show 7 is a subsolution of (1.1).

For any ¢ € C?*(R), let w— ¢ take its maximum at zo € . By a suitable modification
of ¢, we may consider

(z0) = $(20),U(z) — §(z) < ~|z — zo[* on

By (4.2) there exists a sequence {( nk,z,,,il} C N x Q satisfying £n, = Zo, Un, (Tn,) =
u(zo) as k = +oo. Set nx = k. Let yi € Q be a maximum point of u} — ¢ on Q. Then,
by some calculations we observe

(4.4) Yk = To, uk(yx) = U(zo) (kK = +00).

Fix r < u(=zo). We may assume ®(zo,r) < 4+00. We consider only the case of
(zo,7) € int E because the case of (zq,r) ¢ int E can be proved similarly.
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It follows from (4.4) and (A.8) that r < ux(yx) and ®x(yx,r) < +00 for large k. Since
u is a subsolution of (4.1),, we have the following inequality

@i (yk,7) — Brlyr, ur(yr)) 2 —(—Ad(yx) + ur(yx) — f(zs))(r — uk(yk))-

Sending k — 400, we obtain by (44), (A.2) and (A8) |
(zo,r) — ®(0,E(20)) 2 ~(~Ad(20) + U(z0) — f(20))(r — W(20))-

We can show & = u = 0 on 89 by the barrier construction arguments and the
comparison principle and therefore we apply Theorem 3.1 to have ¥ = u(= u). on Q.
The uniform convergence is derived from the same argument as in [4, Section 6]. n]

4.2. Convergence of Yosida approximation This subsection is devoted to the

convergence of solutions of Yosida appoximation for (1.1). Yosida approximation of ®
is defined by

= 0t e )2 Q
@n(z,r)—:2£{¢(z,s)+2(r 3) } (zEQ,rE'R,nGN)
We consider the following problems.

(4.5) —Aut+u—f+0®,(z,u)=0 in K,
U u=10 ' on Ofd.

We show that a solution of (4.5),, converges to that of (1.1). As to the notion of viscosity
solutions of (4.5),,, we adopt the usual one (cf. [4, Definition 2.2]).

Before discussing the convergence of Yosida approximation, we recall some properties
of &, and 909,,.

Proposition 4.3. Assume (A.5) and fiz z € Q. Then we have the following prop-
erties.
(1) There ezists a unique minimizer so € E(z) for ®,(z,r). Set so = Ju(z, 7).
(2) Jn(z,-) i3 nonezpansive and lim Jn(z,r) =1 if r € E(z).

(3) ®n(z,r) is nondecreasing wzth respect ton € N and hm ®,(z,r) = ®(z,r).

n—+
(4) ®n(z,-) is differentiable and convez. Moreover, it holds

0%,(z,7) = —6—6?7‘2(:1:,7')= n(r — Jn(z’r))‘,

and 6@,,(.7:, ) i3 Yosida approzimation of 0%(z,-) for eazh z € Q.
(5) 0®,(z,-) is nondecreasing.
(6) B{r*} Ju(z,7) = Projg,r. Here PrOJE(z)T 13 the projection of r onto E(z).

See H. Brezis [3] for the proof.
Proposition 4.4. Assume (A.3)-(A.5). Then ®,, J, e C(AxR) forallne N.
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This proposition can be proved by the convexity of ® and lengthy calculations, so we
omit the proof. '

Under the assumptions (A.1)-(A.5), for each n € N, there exists a unique solution
un € C(R) of (4.5),, satisfying un = 0 on Q. We have the following theorem.

Theorem 4.5. Assume (A.1)-(A.6). Let u, be a solution of (4.7),, satisfying u, = 0
on Q. Then u, converges to u uniformly on Q as n — +oo. Here u is a unique
solution of (1.1) satisfying u =0 on 0.

Outline of Proof. By the barrier construction argument and the comparison prin-
ciple, we get sup,>; [[un||L= (@) < +00. Let @, u be defined by (4.2), (4.3), respectively.
Step 1. We show ®(z,u(z)), ®(z,u(z)) < 00 on Q.

Let zo € § be a point satisfying J>*%(zo) # 0. Then there exists a ¢ € C*(Q) such
that & — ¢ takes its maximum at zo € . Thus we can find a sequence {(nk,yn)} C
N x §Q satisfying
(4.6) {yn,, € @ : maximum point of u;, — ¢,

: ng — +00,Yn, —* T0,Un, (Yn,) = U(zo) (kK — +00).

Set nx = k for the sake of simplicity. Since uy is a subsolution of (4.5);, we get

(4.7) —Ad(yx) + ur(yr) — f(yr) + 0%i(yx, ux(yx)) < 0.

We can see {Ji(yx, ur(yx))} is bounded. Therefore we may consider Ji(y, ur(yx)) =
Jao(= ao(zo)) as k — +o0o by taking a subsequence if necessary. Hence, by (4.6), (4.7)
and (A.2), we obtain (7o) < ao. We note (2o, a0) € E(= U g{z} x E(z)) because
(y&, J(yx, uk(yx))) € E and E is closed in RN+,

For any zo € §, there exists a sequence {z,} C (2 satisfying

Tn = To,U(Tn) = W(Zo) (n = +00),J2Fu(z,) #0 (Vn € N).

It follows from the above observation that, for each n € N, there exists an a, € R
such that (z,,a,) € E and @(z,) £ an. Since {u,} is uniformly bounded on €, we
may consider {a,} is bounded. Hence we can extract a subsequence {ay, } satisfying
an, — Ja as k — 4oo. Since (zp,,an,) € E and E is closed in RN*!, we have
(:co,’o?) € E and u(zo) £ @.

Similarly we can show that, for any zo € Q, there exists an @ € R such that (zo,a) €
E and u(zo) 2 a. Therefore we obtain ¢ < u(zo) £ u(xo) £ @. Using (20,a),
(zo,2) € E and this, we conclude ®(zo,%(z0)), ®(z0,u(z0)) < +oo0 for all zo € (.
Step 2. We prove that @ is a subsolution of (1.1).

Assume that, for any ¢ € C?(), @ — ¢ takes its maximum at zo. We can find
a sequence {(nk,yn,)} C N x Q satisfying (4.6). Put ny = k for simplicity. Since
J2+q(xg) # 0, we may consider Jx(yk,ur(yx)) = 3ap as k — +oo by the argument in
Step 1. On the other hand, using

& (yk, uk(yk)) < Bk, Projpez,yui (ye)) + k(ui(yr) — Projgs,yur(ye))’
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and (A.5), we obtain
[u(z0) — ao| < [G@(20) — Projg(z,)u(o)l-
Thus we have

(4.8) Je(yr, ur(yx)) = 8(zo) (k= +00)

by means of u(xzo) € E(zo).

Fix r < (zo). We may consider ®(zo,r) < +o0. For simlicity, we assume (zo, #(zo)),
(zo,7) € int E. Since we can see by (A.4) that (yx,ur(yx)) € intE for large k € N, we
get

(Y, Je(yr, ue(yr))) = B(z0,%(0)), k(uk(yr) — Ji(yx, ur(yr)))* - 0,

‘Pk(yk, uk(yk)) — <I>(z'0, ﬂ(xo)).

as k — 400, by using (4.8) and (A.5).
We can prove that u is a supersolution of (1.1) by the same argumne as above. The
remainder is similar to the proof of Theorem 4.1. o
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