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DEFINABLE FIBER BUNDLES AND AFFINENESS OF DEFINABLE
C™ MANIFOLDS

TOMOHIRO KAWAKAMI

1. INTRODUCTION

Semialgebraic sets and semialgebraic maps have been studied and results on them
can be seen in [1]. Let M denote an o-minimal expansion of the standard structure
R = (R,+,-,<) of the field R of real numbers. Every definable category on M is a
generalization of the semialgebraic category and the definable category on R coincides
with the semialgebraic one [22].

Some of recent results concerning o-minimal categories are [4], [5], [6], [7], (8], [10],
(11], [12], [13], [14], [15], [16], [18], [21]. Semialgebraic G sets and semialgebraic G vector
bundles are studied in [2], [19], [20].

In this note, we are concerned with homotopy property of definable fiber bundles and
affineness of definable C™ manifolds. Throughout this article, the term “definable” means
“definable with parameters in M” and definable maps are assumed to be continuous.

The homotopy property for topological vector bundles is established in [9]. Its semi-
algebraic version, its equivariant semialgebraic version and its equivariant fiber bundle
version are known in 12.7.7 [1], [2] and 2.10 [17], respectively.

We have the following as a definable fiber bundle version of this property.

Theorem 1.1 (1.1 [15]). Let n = (E,p, X, F, K) be a definable fiber bundle over a de-
finable set X with fiber F' and structure group K. If two definable maps f,h: Y — X
between definable sets are homotopic and Y is compact, then f*(n) and h*(n) are definably
fiber bundle isomorphic.

Let X and Y be definable sets. Two definable maps f,h : X — Y are called de finably
homotopic if there exists a definable map H : X x [0,1] — Y such that H(z,0) = f(x)
and H(z,1) = h(z) for all z € X. By 1.2 [11], if two definable maps between definable
sets are homotopic, then they are definably homotopic. Hence two definable maps in
Theorem 1.1 are definably homotopic.

We say that M is polynomially bounded if for every function f : R — R definable in
M, there exist a natural number k and a real number z, such that |f(z)] < z* for any
x > zg. Otherwise, M is called exponential. One of typical examples of polynomially
bounded structures is R. By a result of C. Miller [18], if M .is exponential, then the
exponential function R — R,z > €* is definable. We call M exponentially bounded
if for every function h : R — R definable in M, there exist a natural number [ and a
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real number z; such that |h(z)| < exp)(z) for any x > z;, where exp;(z) denotes the [th
iterate of the exponential function, e.g. expy(z) = et

Theorem 1.2 (1.1 [10}). If M is exponentially bounded and 0 IS r < 00, then every
definable C™ manifold is affine.

2. DEFINABLE SETS, DEFINABLE FIBER BUNDLES AND DEFINABLE C” MANIFOLDS

Let M = (R, +, -, <, (f,-),-g, (Rj)jes, (ck)kek) be astructure expanding R = (R, +, -, <),
where + (respectively -) : R — R is the additive (respectively the multiplicative) function
of R, each f; : R*» — R, n(i) € NU {0} is a function, each R; C R*? n(j) € Nis a
relation, and each ¢ is a constant. We say that f (respectively R) is an m-place function
symbol (respectlvely an m-place relation symbol) if f R™ — R is a function (respectlvely
R C R™ is a relation). :

A term is a finite string of symbols obtained by repeated apphcatlons of the following
two rules:

1. Varlables are terms. ‘ _
2. If f is an m-place function symbol of M and ty,...,t, are terms, then the concate-
nated string ft1, ... tm) is a term. o

Note that if m = 0, then the second rule says that constant symbols (0-place function
symbols) are terms.

A formula is. a finite string of symbols s; ... s, where each s; is either a variable, a
function symbol, a relation symbol, one of the logical symbols =,—,V, A, 3,V, one of the
brackets (, ), or comma ,. Arbitrary formulas are generated inductively by the following
three rules:

1. For any two terms ¢, and %3, t; = t5 and ¢; > t; are formulas.

2. If R is an m-place relation symbol and tl, .., tm are terms, then R(ty,...,t,) is a
formula. 'v -

3. If ¢ and 7 are formulas, then the negation —¢, the disjunction ¢ V 9, and the
conjunction ¢ Ay are formulas. If ¢ is a formula and v is a variable, then (Jv)¢ and
(Vv)¢ are formulas.

A subset X of R" is de finable (in M) 1f it is defined by a formula (w1th parameters).
Namely, there exist a formula ¢(z1,...,Zn, Y1, - -, Ym) and elements by, ..., b, € R such
that X = {(a1,...,a.) € R*|¢(ay, . .. -,an,bl, <.y by) is true in M}.

Let K C R™ and L C R™ be definable sets. We say that a continuous map f: K — L
is definable (in M) if the graph of f (C K x L C R™® x R™) is definable. A definable
map f : K — L is called a definable homeomorphism if there exists a deﬁnable map
h:L— K such that foh =1id and ho f = id.

An open interval means something of the form (a,b),a € RU{—o0},b € RU{oco}. We
call M o-minimal (order-minimal) if every definable subset of R is a finite union of points
and open intervals. Remark that R is o-minimal [22]. For example, N' = (R, +, -, <, Z)
is an expansion of R but not o-minimal because a definable subset Z of R in N is not a
finite union of points and open intervals.

Notice that one can consider a definable category in a structure which is not o-minimal.
But this category does not have satisfactory properties.
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Let U C R™ and V C R™ be definable open sets and 0 <r <w. AC"map f: U -V
is called a definable C™ map if it is definable.

Let A C R™ be a definable set and 0 < r < w. A definable map f: A — R™ is a
definable C™ map if there exist a definable open set U C R"™ and a definable C'" map
F:U — R™ such that A C U and f = F|A.

The following theorem states some of useful properties of definable sets and definable
maps.

Theorem 2.1. (1) [Definable C™ cell decomposition (e.g. 7.3.3.2 [4])]. Suppose that
0<r<oo.

(a) For any definable set Ay, ..., Ay C R™, there ezists a decomposztzon of R™ into
definable C™ cells par’tztzomng A, .., Ag.

(b) For any definable function f : A — R A C R™, there exists a decomposition into
definable C™ cells partitioning A such that each restriction f|C : C — R is a
definable C™ map for each C C A of the decomposition. ‘

(2) [Definable triangulation (e.g. (8.2.9 [4])]. Let S C R™ be a definable set and
Si,..., Sk definable subsets of S. Then there exist a finite simplicial complez K
in R™ and a definable map ¢ : S — R"™ such that ¢ maps S and each S; definably
homeomorphically onto a union of open simplexes of K. If S 18 compact then we
can take K = ¢(S).

(3) [Piecewise definable trivialization (e.g. 9.1.2 [4])]. Let X and Y be definable sets and
f: X — Y a definable map. Then there exist a finite partition {T;}_, of Y into
definable sets and definable homeomorphisms ¢; = f~H(T;) — Ti x f~'(y:) such that
fIfUT) =piodi, (1 <i< k), wherey; € T; and p; : T; X f~(y;) — T; denotes the
projection. '

An equivariant version and an equivariant C” version of Theorem 2.1 (3) are proved in
[14]. ' ‘

A group G is a de finable group if G is a definable set and the group operations GXG —
G and G — G are definable. A subgroup of a definable group is a definable subgroup of
it if it is a definable subset of it.

Let G be a definable group. A definable set w1th a definable G action is a pair (X, 0)
consisting of a definable set X and a group action § : G x X — X such that 4 is a
definable map. This action is not necessarily linear.

A definable space is an object obtained by pasting finitely many definable sets together
along open definable subsets, and definable maps between definable spaces are defined
similarly (see Chap. 10 [4]). Definable spaces are generalizations of semialgebraic spaces
in the sense of (3. ‘ '

Definition 2.2. (1) A topological fiber bundle n = (E, p, X, F, K) is called a de finable
fiber bundle over X with fiber F' and structure group K if the following two condi-
tions are satisfied:

(a) The total space F is a definable space, the base space X is a definable set, the
structure group K is a definable group, the fiber F' is a definable set with an
effective definable K action, and the projection p : E — X is a definable map.

(b) There exists a finite family of local trivializations {U;, ¢; : p~2(U;) — U x F};
of n such that each U; is a definable open subset of X, {U;}; is a finite open
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covering of X. For any z € U, let ¢y, : p~1(z) — F, ¢iz(2) = m; o ¢s(2), where

m; stands for the projection U; x F — F. For any 4 and j with U; N U; # 0, the

transition function 5 := ¢;, 0 ¢;; : U;NU; — K is a definable map. We call

these trivializations de finable.

Definable fiber bundles with compatible definable local trivializations are iden-
tified.

(2) Let n = (E,p, X, F,K) and ¢ = (E',p’, X', F, K) be definable fiber bundles whose
definable local trivializations are {U;, ¢;}; and {V},;};, respectively. A definable
map f : E — E' is said to be a definable fiber bundle morphism if the following
two conditions are satisfied:

(a) There exists a definable map f X — X' such that fop=yp'of.

(b) For any i, j such that U; N f~1(V;) # 0 and for any z € U; N f~1(V}), the map
fii(@) = Yjsm 0 fodia : F— Fliesin K, and fi; : U;N f1(V;) - K is a
definable map.

A definable fiber bundle morphism f : E — E’ is called a definable fiber bundle

isomorphism if X = X', f = idx and there exists a definable fiber bundle morphism

F: E' — E such that f' = idx, fo f = id, and f' o f = id. We say that 7

is definably trivial if n is definably fiber bundle isomorphic to the trivial bundle

(X x F,proj, X, F,K), where proj : X x FF — X denotes the projection onto the

first factor.

(3) A continuous section s : X — FE of a definable ﬁber bundle n = (E,p, X, F,K) is a
definable section if for any i, the map ¢; o s|U; : U; — U; X F is a definable map.

(4) We say that a definable fiber bundle n = (E,p, X, F, K) is a principal definable
fiber bundle if F = K and the K action on F' is defined by the multiplication of K.

Definition 2.3. Suppose that 0 <7 < w.

(1) A definable subset X of R™ is called a d-dimensional definable C™ submanifold
of R™ if for any z € X there exists a definable C” diffeomorphism (a definable
homeomorphism if r = 0) ¢, from some open definable neighborhood U, of the
origin in R™ onto some open definable neighborhood V; of z in R™ such that ¢,(0) =
T,p(R*NU;) = X NV,. Here R? denotes the subset of R™ those which the last
(n — d) components are zero.

(2) A definable C™ manifold X of dimension d is a C" manifold with a finite system
of charts {¢; : U; — R?} such that for each i and j, ¢;(U; NU;) is an open definable
subset of R? and the map ¢; o ¢;'|¢:(U; NU;) : ¢(U; NU;) — ¢;(U; NT;) is a
definable CT diffeomorphism (a definable homeomorphism if » = 0). We call this
atlas definable C". Definable C™ manifolds with compatible atlases are identified.

(3) Let X (respectively Y) be a definable C™ manifold with definable C" charts {¢; :
U; — R"},; (respectively {¢; : V; = R™};). AC " map f: X — Y is said to be a
definable C™ map if for any i and j ¢:(f~1(V;)NU;) is open and definable in R™ and
the map ;0 fo¢; ' : ¢:(f(V;) NU;) — R™ is a definable C™ map.

(4) Let X and Y be definable C™ manifolds. We say that X is definably C™ di f feomor-
phic to Y (definably homeomorphic to Y if r = 0) if one can find definable C” maps
f:X—=Yandh:Y — X such that foh =id and ho f =1id.

(5) A definable C™ manifold is said to be af fine if it is definably C" diffeomorphic
(definably homeomorphic if 7 = 0) to a definable C™ submanifold of some R'.
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3. SKETCHES OF PROOFS
Theorem 1.1 is obtained from the following three results.

Lemma 3.1 ([15]). Let A be a definable set, X1 = {(21,22) € A x [0, 1} f1(z1) < 72 <
f2($1)}7X2 = {(xlny) € AX [071”.)(2(1‘1) S T2 < f3(xl)} and n = (Eapaxa F)K) a
definable fiber bundle over X = X; U Xy, where f; : A — [0,1], (1 <1 < 3), are definable
functions with fi < fo < f3. If n|X; and n| X2 are definably trivial, then n is definably
trivial. : '

Lemma 3.2 ([15]). Let X be a compact definable set and n = (E,p,X x [0,1],F, K) a

definable fiber bundle over X x [0,1]. Then there ezists a finite definable open covering
{U:}i of X such that each n|(U; X [0, 1]) is definable trivial.

Theorem 3.3 ([15]). Let X be a compact definable set, v : X x[0,1] — X x[0, 1], r(x,t) =
(z,1) and n = (E,p, X x [0,1], F, K) a definable fiber bundle over X x [0,1]. Then there
exists a definable fiber bundle morphism ¢ : E — E withpo¢ =rop. '

e——ezpn_l(l/:x:2)’ T # 0
0, z=0"
where ezpg(z) = z. Then elementary computations show the following proposition.

Let e, : R — R,n € N be the function deﬁhed by en(z) = {

Proposition 3.4 ([10]). (1) For any polynomial function P(zy,...,,) in n variables,

. 1 1 1
}}E% P(E) 6(17])1(;—2'), s 7expn—l("x_2))en(1") = 0.

(2) Every e, is a C*® function.

Since M is exponentially bounded, a similar proof of C.14 [7] proves the following
proposition.

Proposition 3.5 ([7], [10]). Let A be a non-empty compact definable subset of R* and
f,g two definable functions on A such that f~1(0) C g~'(0). If M is ezponentially

bounded, then there ezist a natural number k and a positive constant ¢ such that ex(g) <
c|f| on A.

Theorem 1.2 is proved by using the above two propositions.
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