DEFINABLE FIBER BUNDLES AND AFFINENESS OF DEFINABLE C^r MANIFOLDS

TOMOHIRO KAWAKAMI

1. Introduction

Semialgebraic sets and semialgebraic maps have been studied and results on them can be seen in [1]. Let \mathcal{M} denote an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers. Every definable category on \mathcal{M} is a generalization of the semialgebraic category and the definable category on \mathcal{R} coincides with the semialgebraic one [22].

Some of recent results concerning o-minimal categories are [4], [5], [6], [7], [8], [10], [11], [12], [13], [14], [15], [16], [18], [21]. Semialgebraic G sets and semialgebraic G vector bundles are studied in [2], [19], [20].

In this note, we are concerned with homotopy property of definable fiber bundles and affineness of definable C^r manifolds. Throughout this article, the term "definable" means "definable with parameters in \mathcal{M} " and definable maps are assumed to be continuous.

The homotopy property for topological vector bundles is established in [9]. Its semi-algebraic version, its equivariant semialgebraic version and its equivariant fiber bundle version are known in 12.7.7 [1], [2] and 2.10 [17], respectively.

We have the following as a definable fiber bundle version of this property.

Theorem 1.1 (1.1 [15]). Let $\eta = (E, p, X, F, K)$ be a definable fiber bundle over a definable set X with fiber F and structure group K. If two definable maps $f, h: Y \to X$ between definable sets are homotopic and Y is compact, then $f^*(\eta)$ and $h^*(\eta)$ are definably fiber bundle isomorphic.

Let X and Y be definable sets. Two definable maps $f, h: X \to Y$ are called definably homotopic if there exists a definable map $H: X \times [0,1] \to Y$ such that H(x,0) = f(x) and H(x,1) = h(x) for all $x \in X$. By 1.2 [11], if two definable maps between definable sets are homotopic, then they are definably homotopic. Hence two definable maps in Theorem 1.1 are definably homotopic.

We say that \mathcal{M} is polynomially bounded if for every function $f: \mathbb{R} \to \mathbb{R}$ definable in \mathcal{M} , there exist a natural number k and a real number x_0 such that $|f(x)| \leq x^k$ for any $x > x_0$. Otherwise, \mathcal{M} is called exponential. One of typical examples of polynomially bounded structures is \mathcal{R} . By a result of C. Miller [18], if \mathcal{M} is exponential, then the exponential function $\mathbb{R} \to \mathbb{R}$, $x \mapsto e^x$ is definable. We call \mathcal{M} exponentially bounded if for every function $h: \mathbb{R} \to \mathbb{R}$ definable in \mathcal{M} , there exist a natural number l and a

²⁰⁰⁰ Mathematics Subject Classification 14P10, 14P20, 57R22, 58A05, 03C64. Keywords and Phrases. Definable sets, definable fiber bundles, definable vector bundles, o-minimal, definable C^r manifolds.

real number x_1 such that $|h(x)| \leq exp_l(x)$ for any $x > x_1$, where $exp_l(x)$ denotes the *l*th iterate of the exponential function, e.g. $exp_2(x) = e^{e^x}$.

Theorem 1.2 (1.1 [10]). If \mathcal{M} is exponentially bounded and $0 \leq r < \infty$, then every definable C^r manifold is affine.

2. Definable sets, definable fiber bundles and definable C^r manifolds

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, (f_i)_{i \in I}, (R_j)_{j \in J}, (c_k)_{k \in K})$ be a structure expanding $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$, where + (respectively \cdot) : $\mathbb{R}^2 \to \mathbb{R}$ is the additive (respectively the multiplicative) function of \mathbb{R} , each $f_i : \mathbb{R}^{n(i)} \to \mathbb{R}, n(i) \in \mathbb{N} \cup \{0\}$ is a function, each $R_j \subset \mathbb{R}^{n(j)}, n(j) \in \mathbb{N}$ is a relation, and each c_k is a constant. We say that f (respectively R) is an m-place function symbol (respectively an m-place relation symbol) if $f : \mathbb{R}^m \to \mathbb{R}$ is a function (respectively $R \subset \mathbb{R}^m$ is a relation).

A *term* is a finite string of symbols obtained by repeated applications of the following two rules:

- 1. Variables are terms.
- 2. If f is an m-place function symbol of \mathcal{M} and t_1, \ldots, t_m are terms, then the concatenated string $f(t_1, \ldots, t_m)$ is a term.

Note that if m=0, then the second rule says that constant symbols (0-place function symbols) are terms.

A formula is a finite string of symbols $s_1
ldots s_k$, where each s_i is either a variable, a function symbol, a relation symbol, one of the logical symbols $=, \neg, \lor, \land, \exists, \forall$, one of the brackets (,), or comma, Arbitrary formulas are generated inductively by the following three rules:

- 1. For any two terms t_1 and t_2 , $t_1 = t_2$ and $t_1 > t_2$ are formulas.
- 2. If R is an m-place relation symbol and t_1, \ldots, t_m are terms, then $R(t_1, \ldots, t_m)$ is a formula.
- 3. If ϕ and ψ are formulas, then the negation $\neg \phi$, the disjunction $\phi \lor \psi$, and the conjunction $\phi \land \psi$ are formulas. If ϕ is a formula and v is a variable, then $(\exists v)\phi$ and $(\forall v)\phi$ are formulas.

A subset X of \mathbb{R}^n is definable (in \mathcal{M}) if it is defined by a formula (with parameters). Namely, there exist a formula $\phi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ and elements $b_1,\ldots,b_m\in\mathbb{R}$ such that $X=\{(a_1,\ldots,a_n)\in\mathbb{R}^n|\phi(a_1,\ldots,a_n,b_1,\ldots,b_m)\text{ is true in }\mathcal{M}\}.$

Let $K \subset \mathbb{R}^n$ and $L \subset \mathbb{R}^m$ be definable sets. We say that a continuous map $f: K \to L$ is definable (in \mathcal{M}) if the graph of $f \subset K \times L \subset \mathbb{R}^n \times \mathbb{R}^m$) is definable. A definable map $f: K \to L$ is called a definable homeomorphism if there exists a definable map $h: L \to K$ such that $f \circ h = id$ and $h \circ f = id$.

An open interval means something of the form $(a, b), a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{\infty\}$. We call \mathcal{M} o-minimal (order-minimal) if every definable subset of \mathbb{R} is a finite union of points and open intervals. Remark that \mathcal{R} is o-minimal [22]. For example, $\mathcal{N} = (\mathbb{R}, +, \cdot, <, \mathbb{Z})$ is an expansion of \mathcal{R} but not o-minimal because a definable subset \mathbb{Z} of \mathbb{R} in \mathcal{N} is not a finite union of points and open intervals.

Notice that one can consider a definable category in a structure which is not o-minimal. But this category does not have satisfactory properties.

Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be definable open sets and $0 < r \le \omega$. A C^r map $f: U \to V$ is called a definable C^r map if it is definable.

Let $A \subset \mathbb{R}^n$ be a definable set and $0 < r \le \omega$. A definable map $f : A \to \mathbb{R}^m$ is a definable C^r map if there exist a definable open set $U \subset \mathbb{R}^n$ and a definable C^r map $F : U \to \mathbb{R}^m$ such that $A \subset U$ and f = F|A.

The following theorem states some of useful properties of definable sets and definable maps.

- **Theorem 2.1.** (1) [Definable C^r cell decomposition (e.g. 7.3.3.2 [4])]. Suppose that $0 \le r < \infty$.
 - (a) For any definable set $A_1, \ldots, A_k \subset \mathbb{R}^n$, there exists a decomposition of \mathbb{R}^n into definable C^r cells partitioning A_1, \ldots, A_k .
 - (b) For any definable function $f: A \to \mathbb{R}, A \subset \mathbb{R}^n$, there exists a decomposition into definable C^r cells partitioning A such that each restriction $f|C: C \to \mathbb{R}$ is a definable C^r map for each $C \subset A$ of the decomposition.
 - (2) [Definable triangulation (e.g. (8.2.9 [4])]. Let $S \subset \mathbb{R}^n$ be a definable set and S_1, \ldots, S_k definable subsets of S. Then there exist a finite simplicial complex K in \mathbb{R}^n and a definable map $\phi: S \to \mathbb{R}^n$ such that ϕ maps S and each S_i definably homeomorphically onto a union of open simplexes of K. If S is compact, then we can take $K = \phi(S)$.
 - (3) [Piecewise definable trivialization (e.g. 9.1.2 [4])]. Let X and Y be definable sets and $f: X \to Y$ a definable map. Then there exist a finite partition $\{T_i\}_{i=1}^k$ of Y into definable sets and definable homeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(y_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$, $(1 \le i \le k)$, where $y_i \in T_i$ and $p_i: T_i \times f^{-1}(y_i) \to T_i$ denotes the projection.

An equivariant version and an equivariant C^r version of Theorem 2.1 (3) are proved in [14].

A group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable. A subgroup of a definable group is a definable subgroup of it if it is a definable subset of it.

Let G be a definable group. A definable set with a definable G action is a pair (X, θ) consisting of a definable set X and a group action $\theta : G \times X \to X$ such that θ is a definable map. This action is not necessarily linear.

A definable space is an object obtained by pasting finitely many definable sets together along open definable subsets, and definable maps between definable spaces are defined similarly (see Chap. 10 [4]). Definable spaces are generalizations of semialgebraic spaces in the sense of [3].

- **Definition 2.2.** (1) A topological fiber bundle $\eta = (E, p, X, F, K)$ is called a *definable fiber bundle* over X with fiber F and structure group K if the following two conditions are satisfied:
 - (a) The total space E is a definable space, the base space X is a definable set, the structure group K is a definable group, the fiber F is a definable set with an effective definable K action, and the projection $p: E \to X$ is a definable map.
 - (b) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i$ of η such that each U_i is a definable open subset of X, $\{U_i\}_i$ is a finite open

covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \to F$, $\phi_{i,x}(z) = \pi_i \circ \phi_i(z)$, where π_i stands for the projection $U_i \times F \to F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to K$ is a definable map. We call these trivializations definable.

Definable fiber bundles with compatible definable local trivializations are identified.

- (2) Let $\eta = (E, p, X, F, K)$ and $\zeta = (E', p', X', F, K)$ be definable fiber bundles whose definable local trivializations are $\{U_i, \phi_i\}_i$ and $\{V_j, \psi_j\}_j$, respectively. A definable map $\overline{f}: E \to E'$ is said to be a definable fiber bundle morphism if the following two conditions are satisfied:
 - (a) There exists a definable map $f: X \to X'$ such that $f \circ p = p' \circ \overline{f}$.
 - (b) For any i, j such that $U_i \cap f^{-1}(V_j) \neq \emptyset$ and for any $x \in U_i \cap f^{-1}(V_j)$, the map $f_{ij}(x) := \psi_{j,f(x)} \circ \overline{f} \circ \phi_{i,x}^{-1} : F \to F$ lies in K, and $f_{ij} : U_i \cap f^{-1}(V_j) \to K$ is a definable map.

A definable fiber bundle morphism $\overline{f}: E \to E'$ is called a definable fiber bundle isomorphism if X = X', $f = id_X$ and there exists a definable fiber bundle morphism $\overline{f'}: E' \to E$ such that $f' = id_X$, $\overline{f} \circ \overline{f'} = id$, and $\overline{f'} \circ \overline{f} = id$. We say that η is definably trivial if η is definably fiber bundle isomorphic to the trivial bundle $(X \times F, proj, X, F, K)$, where $proj: X \times F \to X$ denotes the projection onto the first factor.

- (3) A continuous section $s: X \to E$ of a definable fiber bundle $\eta = (E, p, X, F, K)$ is a definable section if for any i, the map $\phi_i \circ s | U_i : U_i \to U_i \times F$ is a definable map.
- (4) We say that a definable fiber bundle $\eta = (E, p, X, F, K)$ is a principal definable fiber bundle if F = K and the K action on F is defined by the multiplication of K.

Definition 2.3. Suppose that $0 \le r \le \omega$.

- (1) A definable subset X of \mathbb{R}^n is called a d-dimensional definable C^r submanifold of \mathbb{R}^n if for any $x \in X$ there exists a definable C^r diffeomorphism (a definable homeomorphism if r = 0) ϕ_x from some open definable neighborhood U_x of the origin in \mathbb{R}^n onto some open definable neighborhood V_x of x in \mathbb{R}^n such that $\phi_x(0) = x, \phi(\mathbb{R}^d \cap U_x) = X \cap V_x$. Here \mathbb{R}^d denotes the subset of \mathbb{R}^n those which the last (n-d) components are zero.
- (2) A definable C^r manifold X of dimension d is a C^r manifold with a finite system of charts $\{\phi_i: U_i \to \mathbb{R}^d\}$ such that for each i and j, $\phi_i(U_i \cap U_j)$ is an open definable subset of \mathbb{R}^d and the map $\phi_j \circ \phi_i^{-1} | \phi_i(U_i \cap U_j) : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism (a definable homeomorphism if r = 0). We call this atlas definable C^r . Definable C^r manifolds with compatible atlases are identified.
- (3) Let X (respectively Y) be a definable C^r manifold with definable C^r charts $\{\phi_i: U_i \to \mathbb{R}^n\}_i$ (respectively $\{\psi_j: V_j \to \mathbb{R}^m\}_j$). A C^r map $f: X \to Y$ is said to be a definable C^r map if for any i and j $\phi_i(f^{-1}(V_j) \cap U_i)$ is open and definable in \mathbb{R}^n and the map $\psi_j \circ f \circ \phi_i^{-1}: \phi_i(f^{-1}(V_j) \cap U_i) \to \mathbb{R}^m$ is a definable C^r map.
- (4) Let X and Y be definable C^r manifolds. We say that X is definably C^r diffeomorphic to Y (definably homeomorphic to Y if r=0) if one can find definable C^r maps $f: X \to Y$ and $h: Y \to X$ such that $f \circ h = id$ and $h \circ f = id$.
- (5) A definable C^r manifold is said to be affine if it is definably C^r diffeomorphic (definably homeomorphic if r = 0) to a definable C^r submanifold of some \mathbb{R}^l .

3. Sketches of proofs

Theorem 1.1 is obtained from the following three results.

Lemma 3.1 ([15]). Let A be a definable set, $X_1 = \{(x_1, x_2) \in A \times [0, 1] | f_1(x_1) < x_2 \le f_2(x_1)\}$, $X_2 = \{(x_1, x_2) \in A \times [0, 1] | f_2(x_1) \le x_2 < f_3(x_1)\}$ and $\eta = (E, p, X, F, K)$ a definable fiber bundle over $X = X_1 \cup X_2$, where $f_i : A \to [0, 1]$, $(1 \le i \le 3)$, are definable functions with $f_1 < f_2 < f_3$. If $\eta | X_1$ and $\eta | X_2$ are definably trivial, then η is definably trivial.

Lemma 3.2 ([15]). Let X be a compact definable set and $\eta = (E, p, X \times [0, 1], F, K)$ a definable fiber bundle over $X \times [0, 1]$. Then there exists a finite definable open covering $\{U_i\}_i$ of X such that each $\eta|(U_i \times [0, 1])$ is definable trivial.

Theorem 3.3 ([15]). Let X be a compact definable set, $r: X \times [0, 1] \to X \times [0, 1], r(x, t) = (x, 1)$ and $\eta = (E, p, X \times [0, 1], F, K)$ a definable fiber bundle over $X \times [0, 1]$. Then there exists a definable fiber bundle morphism $\phi: E \to E$ with $p \circ \phi = r \circ p$.

Let $e_n: \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}$ be the function defined by $e_n(x) = \begin{cases} e^{-exp_{n-1}(1/x^2)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, where $exp_0(x) = x$. Then elementary computations show the following proposition.

Proposition 3.4 ([10]). (1) For any polynomial function $P(x_1, \ldots, x_n)$ in n variables,

$$\lim_{x\to 0} P(\frac{1}{x}, exp_1(\frac{1}{x^2}), \dots, exp_{n-1}(\frac{1}{x^2}))e_n(x) = 0.$$

(2) Every e_n is a C^{∞} function.

Since \mathcal{M} is exponentially bounded, a similar proof of C.14 [7] proves the following proposition.

Proposition 3.5 ([7], [10]). Let A be a non-empty compact definable subset of \mathbb{R}^n and f, g two definable functions on A such that $f^{-1}(0) \subset g^{-1}(0)$. If \mathcal{M} is exponentially bounded, then there exist a natural number k and a positive constant c such that $e_k(g) \leq c|f|$ on A.

Theorem 1.2 is proved by using the above two propositions.

REFERENCES

- [1] J. Bochnak, M. Coste and M.F. Roy, Géométie algébrique réelle, Springer-Verlag (1987).
- [2] M. J. Choi, T. Kawakami and D.H. Park, Equivariant semialgebraic vector bundles, Topology and its appl. 123 (2002), 383-400.
- [3] H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981), 175-213.
- [4] L. van den Dries, Tame topology and o-minimal structure, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [5] L. van den Dries, A. Macintyre, and D. Marker, Logarithmic-exponential power series, J. London. Math. Soc., II. Ser. 56, No.3 (1997), 417-434.
- [6] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.

- [7] L. van den Dries and C. Miller, Geometric categories and o-minimal structure, Duke Math. J. 84 (1996), 497-540.
- [8] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. **350**, (1998), 4377–4421.
- [9] D. Husemoller, Fibre bundles, Springer (1975).
- [10] T. Kawakami, Affineness of definable C^r manifolds and its applications, preprint.
- [11] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, preprint.
- [12] T. Kawakami, Definable G fiber bundles and definable C^rG fiber bundles, in preparation.
- [13] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, preprint.
- [14] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology and its appl. 123 (2002), 323-349.
- [15] T. Kawakami, Homotopy property for definable fiber bundles, to appear.
- [16] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. 36 (1999), 183–201.
- [17] R. K. Lashof, Equivariant bundles, Illinois J. Math. 26(2) (1982), 257-271.
- [18] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257-259.
- [19] D.H. Park and D.Y. Suh, Equivariant semialgebraic homotopies, Topology and its appl. 115 (2001), 153-174.
- [20] D.H. Park and D.Y. Suh, Semialgebraic G CW complex structure of semialgebraic G spaces, J. Korean Math. Soc. 35 (1998), 371-386.
- [21] J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, preprint.
- [22] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951).

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp