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0 Introduction

In [Kal, Ka2, Ka3], the author examined the structure of crossed products of Cuntz-
algebras by so-called quasi-free actions of abelian groups. Recently, he introduced a new
class of C*-algebras which are arising from continuous graphs [Kad]. These C*-algebras
are generalization of graph algebras [KPRR, KPR, FLR| and homeomorphism C*-algebras
[T3, T4]. The above crossed products are examples of C*-algebras arising from continuous
graphs. From this point of view, some of results in [Kal] and [Ka3] can be considered as
a continuous counterpart of ones in [BHRS] and [HS]. This observation is further studied
in [Ka5] for more general settings.

In this short article, we give a definition of continuous graphs and C*-algebras associ-
ated with them, and then discuss how the results in [Kal] and [Ka3] can be interpreted
in terms of continuous graphs. '

1 C*-algebras arising from continuous graphs

Definition 1.1 Let E° and E! be locally compact (Hausdorff) spaces. A map d: E' —
E? is said to be locally homeomorphic if for any e € E*, there exists a neighborhood U of
e such that the restriction of d on U is a homeomorphism onto d(U) and that d(U) is a
neighborhood of d(e).

Every local homeomorphisms are continuous and open.

Definition 1.2 ([Ka4, Definition 2.1]) A continuous graph E = (E°, E*,d,r) consists
of two locally compact spaces E°, E!, a local homeomorphism d : E' — E° and a
continuous map r : E' — E°.

Note that d,r : E! — E° are not necessarily surjective nor injective. We think that
EP is a set of vertices and E! is a set of edges and that an edge e € E' is directed from its
domain d(e) € EP to its range r(e) € E°. From a homeomorphism o on a locally compact



space X, we can define a continuous graph E = (E°,E',d,r) by E° = EF' = X, d = id
and r = o. In this sense, a continuous graph can be considered as a generalization of
dynamical systems.

Let us denote by C;(E!) the set of continuous functions £ of E* such that (£|£)(v) =
Y eca-1(w) [E(€)]* < oo for any v € E° and (£|€) € Co(E®). For §,n € Cy(E") and
f € Co(E®), we define £f € C4(E") and (&|n) € Co(E®) by

(£f)(e) =&(e)f(d(e)) foree EY,
(Elm)w)= Y &(enle) forve E°.

ecd—1(v)
With these operations, C4(E) is a (right) Hilbert Co(E°)-module ([Ka4, Proposition
1.10]). We define a left action 7, of Co(E®) on C4(E!) by (m.(f)€)(e) = f(r(e))é(e) for
e € E', £ € C4(E") and f € Cy(E®). Thus we get a Hilbert Cy(E®)-bimodule Cy(E?).

Definition 1.3 Let E = (E°, E',d,r) be a continuous graph. A Toeplitz E-pair on a C*-
algebra A is a pair of maps T' = (T°,T!) where T : Co(E®) — A is a *-homomorphism
and T" : Cy(E') — A is a linear map satisfying that

(i) TH(€)*T*(n) = T°({&|n)) for §,n € Ca(E"),
(if) T°(f)T*(€) = T*(mr(f)€) for f € Co(E?) and & € Cu(E").

For f € Cy(E®) and £ € Cy(E?), the equation T (£)T(f) = T(£f) holds automat-
ically from the condition (i). For a Toeplitz E-pair T = (T°,T"), we write C*(T) for
denoting the C*-algebra generated by the images of the maps 7° and T?. We can define
a x-homomorphism &! : K(Cy(E?)) = C*(T) by #'(8¢,,) = T*(£)T*(n)* for &,n € Ca(E?)
where ¢, € K(C4(E?)) is defined by 6, ,(¢) = £€(n|() for ¢ € C4(E?).

Definition 1.4 Let £ = (E° E',d,r) be a continuous graph. We define three open
subsets ES,, EY, and EY, of E° by EJ, = E°\ r(E"),

E) ={veE°| there exists a neighborhood V' of v such that r~*(V') C E" is compact},

and E} = \ . We define two closed subsets E and Eg, of E° by E; = E°\ E},
and E° E0 \ E?

A vertex in Egce is called a source. When E is a discrete graph, EJ is the set of
vertices which receive finitely many edges, while EJ; is the set of vertices which receive
infinitely many edges. A vertex in E° is said to be regular, and a vertex in E’° is said
to be singular. Clearly we have that Ef,’ce C E'g and E, = E%, U E};. We have that
kerm, = Cy(ES,) and w1 (K(C4(E"))) = Co(EY,) ([Ka4 Propos1t10n 1. 24]) Hence the
restriction of m, on Co(Ep,) is an injection into IC(Cd(El))

Definition 1.5 Let F = (E° E',d,r) be a continuous graph. A Toeplitz E-pair T =
(T°,T?) is called a Cuntz-Krieger E-pair if T°(f) = &'(n,(f)) for any f € Co(EY).
We denote by O(E) the universal C*-algebra generated by a Cuntz-Krieger E-pair

74



75

When F is a discrete graph, O(FE) is isomorphic to the graph algebra of the opposite
graph of E. When a continuous graph F is defined by a homeomorphism ¢ on a locally
compact space X, O(E) is isomorphic to the homeomorphism C*-algebra Cy(X) x,Z. We
have that ¢° is injective ([Ka4, Proposition 3.7]). Let T be the group of complex numbers
z € C with |z| = 1. By the universality of O(E), there exists an action 3 : T ~ O(E)
defined by 5,(t°(f)) = t°(f) and B,(t}(£)) = 2t} (&) for f € Co(E®), £ € Cy(E*) and z € T.
The action 3 is called the gauge action. The next theorem says that the injectivity of T°
together with the existence of a gauge action implies the universality of T'.

Theorem 1.6 ([Ka4, Theorem 4.5]) For a continuous graph E and a Cuntz-Krieger
E-pair T, the natural surjection O(E) — C*(T) is an isomorphism if and only if T® is
injective and there erists an automorphism B, of C*(T) such that B,(T°(f)) = T°(f) and
BL(TY(€)) = 2T(€) for every z € T.

2 Invariant subsets of continuous graphs

We review definitions and results in [Ka5]. Let E = (E°, E',d,r) be a continuous graph.

Definition 2.1 A subset X° of E? is said to be positively invariant if d(e) € X° implies
r(e) € X? for each e € E, and to be negatively invariant if for v € X° N EJ, there exists
e € E' with 7(e) = v and d(e) € X°. A subset X° of E° is said to be invariant if X° is
both positively and negatively invariant.

These terminologies coincides with the ordinal ones when continuous graphs are arising
from dynamical systems. When E is a discrete graph, X° is positively invariant if and
only if its complement is hereditary, and X° is negatively invariant if and only if its
complement is saturated (cf. [BHRS]). For a closed positively invariant subset X° of E°,
we set X! = d~1(X?). Then X = (X°, X!, d,r) is a continuous graph. A closed positively
invariant set X° is invariant if and only if X, C B3, N X°.

Definition 2.2 A pair p = (X% Z) of closed subsets of E° satisfying the following two
conditions is called an admissible pair; '

(i) X° is invariant,
(i) Xo C Z c Eg N X°.

Definition 2.3 For an admissible pair p = (X?, Z), we define a continuous graph E, =
(Ep, E},dy, 1)) as follows. Set Y, = X3, N Z, Y, =Y, \ Y,, and define

Eg =X Hayp 7,, , E; =Xx! Hd-l(aYp) d_l(?;).

The domain map d, : E} — E? is defined from d : X* — X° and d : d}(Y;) = Y,. The
range map 7, : E} — E9 is defined from r : X! — X° and r : d71(Y,) = X°.



Note that for an admissible pair p = (X°, Z) with Z = ng, we have E, = X. Define
a C*-subalgebra F' C O(E) and a *-homomorphism 7§ : F! — Co(E,) by
F'={t(f) +¢'(z) | f € Co(E%),z € K(Ca(E"))},
and 75(t°(f) + ¢'(z)) = flgs,. For an ideal I of O(E), we define closed subsets X} and
Z[ of E° by

X? ={ve E®| f(v) =0 for all f € Cy(E®) with t°(f) € I},
Zr={ve Efg | f(v) =0for all femny(INF)}.

Proposition 2.4 For an ideal I of O(E), the pair p; = (XY, Z;) is an admissible pair.
By using Theorem 1.6, we can show the following.

Proposition 2.5 For a gauge-invariant ideal I of O(FE), there exists a natural isomor-
phism O(E)/I = O(E,,).

From this proposition and some computation, we get the next theorem.

Theorem 2.6 The map I — pr gives us an inclusion reversing one-to-one correspon-
dence between the set of all gauge-invariant ideals and the set of all admissible pairs.

This theorem is a continuous counterpart of [BHRS, Theorem 3.6]. It is known that
gauge-invariant ideals of a homeomorphism C*-algebra correspond bijectively to closed
invariant subsets [T2, Theorem 2]. The next proposition is a generalization of this fact.

Proposition 2.7 When a continuous graph E satisfies that Efg = E° the map I —
X? gives an inclusion reversing one-to-one correspondence between the set of all gauge-
invariant ideals and the set of closed invariant sets.

Proof. For a closed invariant set X°, we have X3 = Eg N X° = (. Hence admissible
pairs correspond bijectively to closed invariant subsets. Now the assertion follows from
Theorem 2.6. |

3 Free and topologically free continuous graphs
For n =2,3,..., we define a space E™ of paths with length n by
E" = {(e,,,... ,62,61) € El X+ X El X El l d(ek+1) = r(ek) (1 < k <n-— 1)}

We define domain and range maps d,r : E® — E° by d(e) = d(e;) and r(e) = r(e,) for
e=(en,...,e1) € E*. Apathe = (e,,...,e1) € E™ (n > 1) is called a loop if r(e) = d(e),
and the vertex r(e) = d(e) is called the base point of the loop e. A loop e = (ep,...,€1)
is said to be without entrances if r=1(r(ex)) = {ex} for k=1,... ,n.
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Definition 3.1 A continuous graph FE is said to be topologically free if the set of base
points of loops without entrances has an empty interior.

This generalizes topological freeness of ordinary dynamical systems and Condition L
of graph algebras (see, for example, [T1] and [KPR]).

Theorem 3.2 ([Ka4, Theorem 5.12]) If a continuous graph E = (E°, E*, d, r) is topo-
logically free, then the natural surjection O(E) — C*(T) is an isomorphism for all Cuntz-
Krieger E-pair T = (T°, T*) such that T° is injective.

By the above theorem, we have the following (cf. Proposition 2.5).

Proposition 3.3 ([Ka5]) Let I be an ideal of O(E). If a continuous graph E,, is topo-
logically free, then I is gauge-invariant.

We define a positive orbit space Orb*(v) C E° of v € E° by
Orb*(v) = {v} U {r(e) € E° | e € E" with d(e) = v (n > 1)}.

It is easy to see that a subset X° of E° is positively invariant if and only if Orb*(v) C X°
for all v € X°. For v € E°, we define L(v) C E° by

L(v) = {v' € Orb*(v) | v € Orb* ()}

Definition 3.4 For a positive integer n, we denote by Per,,(E') the set of vertices v,
satisfying the following three conditions;

(i) L(v) is a finite set {vy,v2,... ,Un},

(i) {e € E* | d(e),r(e) € L(v1)} = {e1,e€2,... ,en} with d(e;) = v; and r(e;) = vi41 for
i=1,2,...,n where v,4; = vy,

(iii) v is isolated in Orb*(v;).
We set Per(E) = |J2 | Per,,(E) and Aper(E) = E° \ Per(E).

An element in Per(E) is called a periodic point while an element in Aper(E) is called
an aperiodic point.

Definition 3.5 A continuous graph E is said to be free if Aper(E) = E°

This is a generalization of freeness of ordinary dynamical systems and Condition K of
graph algebras (see, for example, [KPRR]).

Proposition 3.6 ([Ka5]) A continuous graph E is free if and only if E, is topologically
free for every admaissible pair p.

In particular, free continuous graphs are topologically free.

Theorem 3.7 ([Ka5)) If a continuous graph E is free, then every ideal is gauge-invariant.
Hence the set of all ideals corresponds bijectively to the set of all admissible pairs by the
map I — py.

Proof. Clear from Proposition 3.6, Proposition 3.3 and Theorem 2.6. ]
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4 Crossed products of Cuntz algebras

For n = 2,3,... ,00, the Cuntz algebra O, is the universal C*-algebra generated by n

isometries Sy, Sa, ..., S, (we also use this notation for n = 00), satisfying
n
>SSt =1 if n < oo,
i=1

StS; =0 (for any ¢,j withi#j) if n=o0.

We fix a locally compact abelian group G whose dual group is denoted by I'. We
always use + for multiplicative operations of abelian groups except for T. The pairing of
t € G and v € I is denoted by (t|v) € T.

Definition 4.1 Let w = (w;,ws, ... ,w,) € I'™ be given. We define the action o : G ~
O, by
o) (S) = (t|lwi)Si (i=1,2,...,n, te Q).

We recall some elementary facts on the crossed product O,x,~G by the action o”,
which was stated in [Kal]. The crossed product O, X,.G has a C*-subalgebra C1x,.G,
which is isomorphic to Co(I") via the Fourier transform. We denote by T° the isomorphism

T° : Cy(T) = ClXgwG C OpXauG.

The Cuntz algebra O,, is naturally embedded into the mulfiplier algebra M (O, Xqw G)k of
O, XqwG. The crossed product O, x,+G is generated as a C*-algebra by

{ST°(f) lie{1,... ,n}, f € Co(D)}.
For 7y € I, we define a (reverse) shift automorphism o, : Co(I') = Co(T') by (04,f)(7) =
f(y+7). Then we have T°(f)S; = S;T°(0., f) for all f € Cy(T') and i € {1,...,n}. From
the gauge action of O,, we can define an action 8 : T ~ O, X,~G which is also called a

gauge action. We have (3,(T°(f)) = T°(f) and B,(S;T°(f)) = 2S;T°(f) for f € Cy(T),
ie{l,...,n},and z € T. _

Definition 4.2 Let w = (wy,ws,... ,wp) € ['™ be given. We define a continuous graph

= (E2,El,d,,r,) as follows. We set E0 =T and E} = []_,I; where I’; = T for
i=1,2,...,n. The map d, : E} — E? is defined by identity maps on each I;, and the
map 7, : E} — E? is defined by r,|r,(y) =y +w; fori =1,2,...

Each v € E? receives and emits n-edges. It is easy to see that ES = ( 0)rg if 7 < 00,
and E? = (E? )mf if n = oo. Since d,, is defined by identity maps, we have

CuBa) = Gl

where Cy(I';) = Co(T') has natural Hilbert Cy(I')-module structure. The left action =, :
Co(T') = L(Cy4, (E,)) satisfies _

Tre, (f)(é-l’ 52’ tet E‘n) = (le (f)é.l’ Ow, (f)§2’ coe s Ow, (f)En) € @ CO(P'i):
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fOI' f € Co(r) and (51,52, ... :€n) € @?:1 CQ(F,)
We have a *-homomorphism T° : Cy(T') = O, xqG. We define a linear map T :
P, Co(T;) > OpxeuG by

T1(€1)§27' .. )€n) = ZS,TO(&') € Oﬂ-xa"’G

=1
for (&1,&,... ,6n) € @, Co(Ty).

Proposition 4.3 The pair T = (T°,T") is a Cuntz-Krieger E,-pair, and this induces an
isomorphism O(E,) = O, XoG.

Proof. 1t is not difficult to see that T is a Toeplitz E -pair. When n = oo, T is a Cuntz-
Krieger E,-pair because Co((EQ)rg) = 0. When n < 0o, we have Co((E2)s) = Co(T). For
f € Co(I), we see that

Tr(f) =D O
i=1

where &;,7; € Cy(T';) satisfies that &7 = o, (f) fori =1,2,... ,n. We have
n n » |
& (7, (£) = D THE)T ()" = Y ST°(E)T*(m:)* S}
i=1 i=1

=2_ ST (0w ()8} = Y _T(f)SiS; = T°(f).

=1

Hence T is a Cuntz-Krieger E,-pair. By definition, T is injective, and the gauge action
on Op, X4+ G satisfies the condition of Theorem 1.6. Hence the natural surjection O(E,) —
OrnX e G is an isomorphism. |

5 Ideal structures of O, xwG (n < 00)

In this section, we discuss the ideal structure of O, X,+G in the case that n < 0o. Let
n be an integer grater than 1, and take w € I'*. In [Kal], we introduced the following
notion.

Definition 5.1 ([Kal, Definition 3.2]) A subset X° of I is called w-invariant if X is
a closed set satisfying the following two conditions:

(i) For any v € X° and any i € {1,2,...,n}, we have v+ w; € X°.
(ii) For any v € X, there exists ¢ € {1,2,... ,n} such that v — w; € X°.

The condition (i) above corresponds to positive invariance of X° C T' = E°, and the
condition (ii) corresponds to negative invariance of X°. Hence X° is an w-invariant set
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if and only if X is a closed invariant set of the continuous graph E,. For an ideal I of
Op¥owG, we define X? C T by

X2 ={yeT| f(y)=0forall f e Co(l') with T°(f) € I}.

Then X! is an w-invariant subset of I ([Kal, Proposition 3.3]). The following is the one
of main results in [Kal].

Theorem 5.2 ([Kal, Theorem 3.14]) The correspondence I — X} gives an inclusion
reversing bijection between the set of gauge-invariant ideals of OpXowG and the set of
w-invariant subsets of T.

Proof. This follows from Theorem 2.6 and Proposition 2.7. |

Definition 5.3 ([Kal, Definition 4.2]) An w-invariant subset X of I' is said to be
bad if there exists 7o € X such that there is only one element iy € {1,2,...,n} with
Yo — wi, € X, and this element i, satisfies that mw;, = 0 for some positive integer m. An
w-invariant subset X of I is said to be good if X is not bad.

Lemma 5.4 An w-invariant subset X° is good if and o‘nly if the continuous graph X =
(X° X1, d,r) is topologically free.

Proof. If an w-invariant subset X° is bad, then there exists vy € X° satisfying that there
is only one element 4y € {1,2,... ,n} with 49 — w;, € X° and mw;, = 0 for some positive
integer m. Let V = X°\ U,y, X° +wi. The set V' is an open subset of X° and it is not
empty because 7y € V. All v € V' is a base point of a loop

'Y+mwio =7

v Ytwig
— .

which has no entrances in the continuous graph X. Hence the continuous graph X is
not topOlOgically free. Conversely if the continuous graph X is not topologically free,
then a base point v of a loop without entrances satisfies that there is only one element
io € {1,2,... ,n} with 7o —w;, € X°, and for some positive integer m we have mw;, = 0.
Hence X? is bad. |

Proposition 5.5 ([Kal, Theorem 4.5]) Let I be an ideal of OpXauG such that X] is
good. Then I is gauge-invariant.
Proof. Combine Proposition 3.3 and Lemma 5.4. ' |

An element w € I'® is said to satisfy Condition 5.1 if for each i € {1,2,...,n}, one of
the following two conditions is satisfied ([Kal)):
(i) For any positive integer k, kw; # 0. »
(ii) There exists j # 4 such that —w; is in the closed semigroup generated by w;,... ,wy
and —-—Wj. . )
It is not difficult to see that Condition 5.1 is exactly same as the condition that a
continuous graph E, is free. Hence from Theorem 3.7, we get the following.

Proposition 5.6 ([Kal, Theorem 5.2]) When w satisfies Condition 5.1, all ideals are
gauge-invariant and there is a one-to-one correspondence between the set of ideals of
O, %G and the set of w-invariant subsets of I '
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6 Ideal structures of O, X G

In [Ka3], we discussed, among others, the ideal structure of OuXqwG. The argument
there was analogous to the case that n < co done in [Kal]. However we need to change
some details, for example, the definition of w-invariant sets. Take w = (wy,ws,...) € I'®
and fix it.

Definition 6.1 ([Ka3, Definition 3.3]) A subset X° of I' is called w-invariant if X° is
a closed set with X° + w; C X° for any positive integer <.

An w-invariant set is same as a closed positively invariant set in the continuous graph
E,. However, note that every positively invariant subsets of F,, are invariant because
(E%):g = 0. Hence we see that w-invariant sets are same as closed invariant sets. For an
w-invariant set X°, we define a closed set Hxo by

—-X°\U(X°+w,) U (‘] U(X0+w,) c X°.

n=1i=n
Definition 6.2 ([Ka3, Definition 3.4]) A pair X = (X% X) of subsets of I" is called
w-invariant if X° is an w-invariant set, and X is a closed set satisfying Hxo C X C X°.

It is not difficult to see that

X8, = X0\ D(X° rw),  Xy=UE +w),

n=1i=n

and Hxo = X3, U X3¢ = X2. From this fact, we see that the definition of w-invariant
pairs is same as the one of admxsmble pairs. For an ideal I of Oy x,.G and n € N, we
define the closed subset X7} of I' by

X?={y€eT| f(y)=0forall feCy) w1thPT°(f) € I},

where Py=1and P, =1-37_ S;S! € O . Clearly, the definition of X? C T is same

as in Section 2. Set X{° = (oo, X7'. The pair X; = (X9, X) is w-invariant ([Ka3,
Proposition 3.5]). We can see that X§° = Z;. Hence Theorem 2.6 gives the following.

Theorem 6.3 ([Ka3, Theorem 3.16])) The correspondence I X; gives a bijection
between the set of gauge-invariant ideals of O XovG and the set of w-invariant pairs.

An element w € '™ is said to satisfy Condition 5.1 if for each i € Z,, one of the
following two conditions is satisfied:
(i) For any positive integer k, kw; # 0.
(ii) For k = 1,2,..., there exist positive integers iy x,... ,in,k (nx > 1) with 414 # ¢
and limgy00 D35 wi;, = 0.
Similarly as in the case of n < oo, we see that Condition 5.1 is exactly same as the

condition that a continuous graph E, is free. Hence from Theorem 3.7, we get the
following.

Theorem 6.4 ([Ka3, Theorem 5.3]) Suppose that w satisfies Condition 5.1. Then all
ideal of OxXowG is gauge-invariant. Hence there ezists a one-to-one correspondence
between the set of ideals of O XawG and the set of w-invariant pairs of subsets of I.
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7 Primitive ideal spaces

In [Kal] and [Ka3], we studied the ideal structures of O, X, G by using primitive ideal
spaces when w does not satisfy Condition 5.1. These works can be considered as continuous
counterparts of [HS]. So far, the author has not succeeded in generalizing these results
to more general continuous graphs which are not free. Note that a continuous graph E,
defined here is a special kind of continuous graph which satisfies that every vertices receive
and emit same number of edges in the same way.
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