Continuous graphs and crossed products of Cuntz algebras.

Takeshi Katsura (勝良 健史)
Department of Mathematical Sciences
University of Tokyo, Komaba, Tokyo, 153-8914, JAPAN
e-mail: katsu@ms.u-tokyo.ac.jp

0 Introduction

In [Ka1, Ka2, Ka3], the author examined the structure of crossed products of Cuntz-algebras by so-called quasi-free actions of abelian groups. Recently, he introduced a new class of C^* -algebras which are arising from continuous graphs [Ka4]. These C^* -algebras are generalization of graph algebras [KPRR, KPR, FLR] and homeomorphism C^* -algebras [T3, T4]. The above crossed products are examples of C^* -algebras arising from continuous graphs. From this point of view, some of results in [Ka1] and [Ka3] can be considered as a continuous counterpart of ones in [BHRS] and [HS]. This observation is further studied in [Ka5] for more general settings.

In this short article, we give a definition of continuous graphs and C^* -algebras associated with them, and then discuss how the results in [Ka1] and [Ka3] can be interpreted in terms of continuous graphs.

1 C^* -algebras arising from continuous graphs

Definition 1.1 Let E^0 and E^1 be locally compact (Hausdorff) spaces. A map $d: E^1 \to E^0$ is said to be *locally homeomorphic* if for any $e \in E^1$, there exists a neighborhood U of e such that the restriction of d on U is a homeomorphism onto d(U) and that d(U) is a neighborhood of d(e).

Every local homeomorphisms are continuous and open.

Definition 1.2 ([Ka4, Definition 2.1]) A continuous graph $E = (E^0, E^1, d, r)$ consists of two locally compact spaces E^0, E^1 , a local homeomorphism $d: E^1 \to E^0$, and a continuous map $r: E^1 \to E^0$.

Note that $d, r: E^1 \to E^0$ are not necessarily surjective nor injective. We think that E^0 is a set of vertices and E^1 is a set of edges and that an edge $e \in E^1$ is directed from its domain $d(e) \in E^0$ to its range $r(e) \in E^0$. From a homeomorphism σ on a locally compact

space X, we can define a continuous graph $E=(E^0,E^1,d,r)$ by $E^0=E^1=X, d=\mathrm{id}$ and $r=\sigma$. In this sense, a continuous graph can be considered as a generalization of dynamical systems.

Let us denote by $C_d(E^1)$ the set of continuous functions ξ of E^1 such that $\langle \xi | \xi \rangle(v) = \sum_{e \in d^{-1}(v)} |\xi(e)|^2 < \infty$ for any $v \in E^0$ and $\langle \xi | \xi \rangle \in C_0(E^0)$. For $\xi, \eta \in C_d(E^1)$ and $f \in C_0(E^0)$, we define $\xi f \in C_d(E^1)$ and $\langle \xi | \eta \rangle \in C_0(E^0)$ by

$$(\xi f)(e) = \xi(e)f(d(e)) \quad \text{ for } e \in E^1,$$

$$\langle \xi \mid \eta \rangle(v) = \sum_{e \in d^{-1}(v)} \overline{\xi(e)} \eta(e) \quad \text{ for } v \in E^0.$$

With these operations, $C_d(E^1)$ is a (right) Hilbert $C_0(E^0)$ -module ([Ka4, Proposition 1.10]). We define a left action π_r of $C_0(E^0)$ on $C_d(E^1)$ by $(\pi_r(f)\xi)(e) = f(r(e))\xi(e)$ for $e \in E^1$, $\xi \in C_d(E^1)$ and $f \in C_0(E^0)$. Thus we get a Hilbert $C_0(E^0)$ -bimodule $C_d(E^1)$.

Definition 1.3 Let $E = (E^0, E^1, d, r)$ be a continuous graph. A *Toeplitz E-pair* on a C^* -algebra A is a pair of maps $T = (T^0, T^1)$ where $T^0 : C_0(E^0) \to A$ is a *-homomorphism and $T^1 : C_d(E^1) \to A$ is a linear map satisfying that

- (i) $T^1(\xi)^*T^1(\eta) = T^0(\langle \xi | \eta \rangle)$ for $\xi, \eta \in C_d(E^1)$,
- (ii) $T^0(f)T^1(\xi) = T^1(\pi_r(f)\xi)$ for $f \in C_0(E^0)$ and $\xi \in C_d(E^1)$.

For $f \in C_0(E^0)$ and $\xi \in C_d(E^1)$, the equation $T^1(\xi)T^0(f) = T^1(\xi f)$ holds automatically from the condition (i). For a Toeplitz E-pair $T = (T^0, T^1)$, we write $C^*(T)$ for denoting the C^* -algebra generated by the images of the maps T^0 and T^1 . We can define a *-homomorphism $\Phi^1 : \mathcal{K}(C_d(E^1)) \to C^*(T)$ by $\Phi^1(\theta_{\xi,\eta}) = T^1(\xi)T^1(\eta)^*$ for $\xi, \eta \in C_d(E^1)$ where $\theta_{\xi,\eta} \in \mathcal{K}(C_d(E^1))$ is defined by $\theta_{\xi,\eta}(\zeta) = \xi(\eta | \zeta)$ for $\zeta \in C_d(E^1)$.

Definition 1.4 Let $E = (E^0, E^1, d, r)$ be a continuous graph. We define three open subsets $E_{\text{sce}}^0, E_{\text{fin}}^0$ and E_{rg}^0 of E^0 by $E_{\text{sce}}^0 = E^0 \setminus \overline{r(E^1)}$,

 $E_{\text{fin}}^0 = \{v \in E^0 \mid \text{ there exists a neighborhood } V \text{ of } v \text{ such that } r^{-1}(V) \subset E^1 \text{ is compact}\},$

and $E_{\rm rg}^0 = E_{\rm fin}^0 \setminus \overline{E_{\rm sce}^0}$. We define two closed subsets $E_{\rm inf}^0$ and $E_{\rm sg}^0$ of E^0 by $E_{\rm inf}^0 = E^0 \setminus E_{\rm fin}^0$ and $E_{\rm sg}^0 = E^0 \setminus E_{\rm rg}^0$.

A vertex in E_{sce}^0 is called a *source*. When E is a discrete graph, E_{fin}^0 is the set of vertices which receive infinitely many edges, while E_{inf}^0 is the set of vertices which receive infinitely many edges. A vertex in E_{rg}^0 is said to be *regular*, and a vertex in E_{sg}^0 is said to be *singular*. Clearly we have that $E_{\text{sce}}^0 \subset E_{\text{fin}}^0$ and $E_{\text{sg}}^0 = \overline{E_{\text{sce}}^0} \cup E_{\text{inf}}^0$. We have that $\ker \pi_r = C_0(E_{\text{sce}}^0)$ and $\pi_r^{-1}(\mathcal{K}(C_d(E^1))) = C_0(E_{\text{fin}}^0)$ ([Ka4, Proposition 1.24]). Hence the restriction of π_r on $C_0(E_{\text{rg}}^0)$ is an injection into $\mathcal{K}(C_d(E^1))$.

Definition 1.5 Let $E=(E^0,E^1,d,r)$ be a continuous graph. A Toeplitz E-pair $T=(T^0,T^1)$ is called a Cuntz-Krieger E-pair if $T^0(f)=\Phi^1(\pi_r(f))$ for any $f\in C_0(E^0_{rg})$.

We denote by $\mathcal{O}(E)$ the universal C^* -algebra generated by a Cuntz-Krieger E-pair

When E is a discrete graph, $\mathcal{O}(E)$ is isomorphic to the graph algebra of the opposite graph of E. When a continuous graph E is defined by a homeomorphism σ on a locally compact space X, $\mathcal{O}(E)$ is isomorphic to the homeomorphism C^* -algebra $C_0(X) \rtimes_{\sigma} \mathbb{Z}$. We have that t^0 is injective ([Ka4, Proposition 3.7]). Let \mathbb{T} be the group of complex numbers $z \in \mathbb{C}$ with |z| = 1. By the universality of $\mathcal{O}(E)$, there exists an action $\beta : \mathbb{T} \curvearrowright \mathcal{O}(E)$ defined by $\beta_z(t^0(f)) = t^0(f)$ and $\beta_z(t^1(\xi)) = zt^1(\xi)$ for $f \in C_0(E^0)$, $\xi \in C_d(E^1)$ and $z \in \mathbb{T}$. The action β is called the gauge action. The next theorem says that the injectivity of T^0 together with the existence of a gauge action implies the universality of T.

Theorem 1.6 ([Ka4, Theorem 4.5]) For a continuous graph E and a Cuntz-Krieger E-pair T, the natural surjection $\mathcal{O}(E) \to C^*(T)$ is an isomorphism if and only if T^0 is injective and there exists an automorphism β'_z of $C^*(T)$ such that $\beta'_z(T^0(f)) = T^0(f)$ and $\beta'_z(T^1(\xi)) = zT^1(\xi)$ for every $z \in \mathbb{T}$.

2 Invariant subsets of continuous graphs

We review definitions and results in [Ka5]. Let $E = (E^0, E^1, d, r)$ be a continuous graph.

Definition 2.1 A subset X^0 of E^0 is said to be *positively invariant* if $d(e) \in X^0$ implies $r(e) \in X^0$ for each $e \in E^1$, and to be *negatively invariant* if for $v \in X^0 \cap E^0_{rg}$, there exists $e \in E^1$ with r(e) = v and $d(e) \in X^0$. A subset X^0 of E^0 is said to be *invariant* if X^0 is both positively and negatively invariant.

These terminologies coincides with the ordinal ones when continuous graphs are arising from dynamical systems. When E is a discrete graph, X^0 is positively invariant if and only if its complement is hereditary, and X^0 is negatively invariant if and only if its complement is saturated (cf. [BHRS]). For a closed positively invariant subset X^0 of E^0 , we set $X^1 = d^{-1}(X^0)$. Then $X = (X^0, X^1, d, r)$ is a continuous graph. A closed positively invariant set X^0 is invariant if and only if $X^0_{sg} \subset E^0_{sg} \cap X^0$.

Definition 2.2 A pair $\rho = (X^0, Z)$ of closed subsets of E^0 satisfying the following two conditions is called an *admissible* pair;

- (i) X^0 is invariant,
- (ii) $X_{sg}^0 \subset Z \subset E_{sg}^0 \cap X^0$

Definition 2.3 For an admissible pair $\rho = (X^0, Z)$, we define a continuous graph $E_{\rho} = (E_{\rho}^0, E_{\rho}^1, d_{\rho}, r_{\rho})$ as follows. Set $Y_{\rho} = X_{\rm rg}^0 \cap Z$, $\partial Y_{\rho} = \overline{Y_{\rho}} \setminus Y_{\rho}$, and define

$$E^0_\rho = X^0 \coprod_{\partial Y_\rho} \overline{Y_\rho} , \qquad E^1_\rho = X^1 \coprod_{d^{-1}(\partial Y_\rho)} d^{-1}(\overline{Y_\rho}).$$

The domain map $d_{\rho}: E_{\rho}^{1} \to E_{\rho}^{0}$ is defined from $d: X^{1} \to X^{0}$ and $d: d^{-1}(\overline{Y_{\rho}}) \to \overline{Y_{\rho}}$. The range map $r_{\rho}: E_{\rho}^{1} \to E_{\rho}^{0}$ is defined from $r: X^{1} \to X^{0}$ and $r: d^{-1}(\overline{Y_{\rho}}) \to X^{0}$.

Note that for an admissible pair $\rho=(X^0,Z)$ with $Z=X^0_{\rm rg}$, we have $E_\rho=X$. Define a C^* -subalgebra $\mathcal{F}^1\subset\mathcal{O}(E)$ and a *-homomorphism $\pi^1_0:\mathcal{F}^1\to C_0(E^0_{\rm sg})$ by

$$\mathcal{F}^1 = \{ t^0(f) + \varphi^1(x) \mid f \in C_0(E^0), x \in \mathcal{K}(C_d(E^1)) \},$$

and $\pi_0^1(t^0(f) + \varphi^1(x)) = f|_{E_{\text{eg}}^0}$. For an ideal I of $\mathcal{O}(E)$, we define closed subsets X_I^0 and Z_I of E^0 by

$$X_I^0 = \{ v \in E^0 \mid f(v) = 0 \text{ for all } f \in C_0(E^0) \text{ with } t^0(f) \in I \},$$

 $Z_I = \{ v \in E_{sg}^0 \mid f(v) = 0 \text{ for all } f \in \pi_0^1(I \cap \mathcal{F}^1) \}.$

Proposition 2.4 For an ideal I of $\mathcal{O}(E)$, the pair $\rho_I = (X_I^0, Z_I)$ is an admissible pair.

By using Theorem 1.6, we can show the following.

Proposition 2.5 For a gauge-invariant ideal I of $\mathcal{O}(E)$, there exists a natural isomorphism $\mathcal{O}(E)/I \cong \mathcal{O}(E_{\rho_I})$.

From this proposition and some computation, we get the next theorem.

Theorem 2.6 The map $I \mapsto \rho_I$ gives us an inclusion reversing one-to-one correspondence between the set of all gauge-invariant ideals and the set of all admissible pairs.

This theorem is a continuous counterpart of [BHRS, Theorem 3.6]. It is known that gauge-invariant ideals of a homeomorphism C^* -algebra correspond bijectively to closed invariant subsets [T2, Theorem 2]. The next proposition is a generalization of this fact.

Proposition 2.7 When a continuous graph E satisfies that $E_{rg}^0 = E^0$, the map $I \mapsto X_I^0$ gives an inclusion reversing one-to-one correspondence between the set of all gauge-invariant ideals and the set of closed invariant sets.

Proof. For a closed invariant set X^0 , we have $X^0_{sg} = E^0_{sg} \cap X^0 = \emptyset$. Hence admissible pairs correspond bijectively to closed invariant subsets. Now the assertion follows from Theorem 2.6.

3 Free and topologically free continuous graphs

For $n = 2, 3, \ldots$, we define a space E^n of paths with length n by

$$E^n = \{(e_n, \ldots, e_2, e_1) \in E^1 \times \cdots \times E^1 \times E^1 \mid d(e_{k+1}) = r(e_k) \ (1 \le k \le n-1)\}.$$

We define domain and range maps $d, r: E^n \to E^0$ by $d(e) = d(e_1)$ and $r(e) = r(e_n)$ for $e = (e_n, \ldots, e_1) \in E^n$. A path $e = (e_n, \ldots, e_1) \in E^n$ $(n \ge 1)$ is called a loop if r(e) = d(e), and the vertex r(e) = d(e) is called the base point of the loop e. A loop $e = (e_n, \ldots, e_1)$ is said to be without entrances if $r^{-1}(r(e_k)) = \{e_k\}$ for $k = 1, \ldots, n$.

Definition 3.1 A continuous graph E is said to be *topologically free* if the set of base points of loops without entrances has an empty interior.

This generalizes topological freeness of ordinary dynamical systems and Condition L of graph algebras (see, for example, [T1] and [KPR]).

Theorem 3.2 ([Ka4, Theorem 5.12]) If a continuous graph $E = (E^0, E^1, d, r)$ is topologically free, then the natural surjection $\mathcal{O}(E) \to C^*(T)$ is an isomorphism for all Cuntz-Krieger E-pair $T = (T^0, T^1)$ such that T^0 is injective.

By the above theorem, we have the following (cf. Proposition 2.5).

Proposition 3.3 ([Ka5]) Let I be an ideal of $\mathcal{O}(E)$. If a continuous graph E_{ρ_I} is topologically free, then I is gauge-invariant.

We define a positive orbit space $Orb^+(v) \subset E^0$ of $v \in E^0$ by

$$Orb^+(v) = \{v\} \cup \{r(e) \in E^0 \mid e \in E^n \text{ with } d(e) = v \ (n \ge 1)\}.$$

It is easy to see that a subset X^0 of E^0 is positively invariant if and only if $\mathrm{Orb}^+(v) \subset X^0$ for all $v \in X^0$. For $v \in E^0$, we define $L(v) \subset E^0$ by

$$L(v) = \{v' \in \operatorname{Orb}^+(v) \mid v \in \operatorname{Orb}^+(v')\}.$$

Definition 3.4 For a positive integer n, we denote by $Per_n(E)$ the set of vertices v_1 satisfying the following three conditions;

- (i) $L(v_1)$ is a finite set $\{v_1, v_2, \ldots, v_n\}$,
- (ii) $\{e \in E^1 \mid d(e), r(e) \in L(v_1)\} = \{e_1, e_2, \dots, e_n\}$ with $d(e_i) = v_i$ and $r(e_i) = v_{i+1}$ for $i = 1, 2, \dots, n$ where $v_{n+1} = v_1$,
- (iii) v_1 is isolated in $Orb^+(v_1)$.

We set $Per(E) = \bigcup_{n=1}^{\infty} Per_n(E)$ and $Aper(E) = E^0 \setminus Per(E)$.

An element in Per(E) is called a *periodic point* while an element in Aper(E) is called an *aperiodic point*.

Definition 3.5 A continuous graph E is said to be free if $Aper(E) = E^0$.

This is a generalization of freeness of ordinary dynamical systems and Condition K of graph algebras (see, for example, [KPRR]).

Proposition 3.6 ([Ka5]) A continuous graph E is free if and only if E_{ρ} is topologically free for every admissible pair ρ .

In particular, free continuous graphs are topologically free.

Theorem 3.7 ([Ka5]) If a continuous graph E is free, then every ideal is gauge-invariant. Hence the set of all ideals corresponds bijectively to the set of all admissible pairs by the map $I \mapsto \rho_I$.

Proof. Clear from Proposition 3.6, Proposition 3.3 and Theorem 2.6.

4 Crossed products of Cuntz algebras

For $n=2,3,\ldots,\infty$, the Cuntz algebra \mathcal{O}_n is the universal C^* -algebra generated by n isometries S_1,S_2,\ldots,S_n (we also use this notation for $n=\infty$), satisfying

$$\sum_{i=1}^{n} S_{i}S_{i}^{*} = 1 \qquad \text{if } n < \infty,$$

$$S_{i}^{*}S_{j} = 0 \quad \text{(for any } i, j \text{ with } i \neq j\text{)} \quad \text{if } n = \infty.$$

We fix a locally compact abelian group G whose dual group is denoted by Γ . We always use + for multiplicative operations of abelian groups except for \mathbb{T} . The pairing of $t \in G$ and $\gamma \in \Gamma$ is denoted by $\langle t | \gamma \rangle \in \mathbb{T}$.

Definition 4.1 Let $\omega = (\omega_1, \omega_2, \dots, \omega_n) \in \Gamma^n$ be given. We define the action $\alpha^{\omega} : G \curvearrowright \mathcal{O}_n$ by

$$\alpha_t^{\omega}(S_i) = \langle t | \omega_i \rangle S_i \quad (i = 1, 2, \dots, n, \ t \in G).$$

We recall some elementary facts on the crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ by the action α^{ω} , which was stated in [Ka1]. The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ has a C^* -subalgebra $\mathbb{C}1 \rtimes_{\alpha^{\omega}} G$, which is isomorphic to $C_0(\Gamma)$ via the Fourier transform. We denote by T^0 the isomorphism

$$T^0: C_0(\Gamma) \to \mathbb{C}1 \rtimes_{\alpha^{\omega}} G \subset \mathcal{O}_n \rtimes_{\alpha^{\omega}} G.$$

The Cuntz algebra \mathcal{O}_n is naturally embedded into the multiplier algebra $M(\mathcal{O}_n \rtimes_{\alpha^{\omega}} G)$ of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$. The crossed product $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is generated as a C^* -algebra by

$${S_iT^0(f) \mid i \in \{1,\ldots,n\}, f \in C_0(\Gamma)\}.$$

For $\gamma_0 \in \Gamma$, we define a (reverse) shift automorphism $\sigma_{\gamma_0} : C_0(\Gamma) \to C_0(\Gamma)$ by $(\sigma_{\gamma_0} f)(\gamma) = f(\gamma + \gamma_0)$. Then we have $T^0(f)S_i = S_i T^0(\sigma_{\omega_i} f)$ for all $f \in C_0(\Gamma)$ and $i \in \{1, \ldots, n\}$. From the gauge action of \mathcal{O}_n , we can define an action $\beta : \mathbb{T} \curvearrowright \mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ which is also called a gauge action. We have $\beta_z(T^0(f)) = T^0(f)$ and $\beta_z(S_i T^0(f)) = zS_i T^0(f)$ for $f \in C_0(\Gamma)$, $i \in \{1, \ldots, n\}$, and $z \in \mathbb{T}$.

Definition 4.2 Let $\omega = (\omega_1, \omega_2, \dots, \omega_n) \in \Gamma^n$ be given. We define a continuous graph $E_{\omega} = (E_{\omega}^0, E_{\omega}^1, d_{\omega}, r_{\omega})$ as follows. We set $E_{\omega}^0 = \Gamma$ and $E_{\omega}^1 = \coprod_{i=1}^n \Gamma_i$ where $\Gamma_i = \Gamma$ for $i = 1, 2, \ldots, n$. The map $d_{\omega} : E_{\omega}^1 \to E_{\omega}^0$ is defined by identity maps on each Γ_i , and the map $r_{\omega} : E_{\omega}^1 \to E_{\omega}^0$ is defined by $r_{\omega}|_{\Gamma_i}(\gamma) = \gamma + \omega_i$ for $i = 1, 2, \ldots, n$.

Each $v \in E_{\omega}^{0}$ receives and emits n-edges. It is easy to see that $E_{\omega}^{0} = (E_{\omega}^{0})_{rg}$ if $n < \infty$, and $E_{\omega}^{0} = (E_{\omega}^{0})_{inf}$ if $n = \infty$. Since d_{ω} is defined by identity maps, we have

$$C_{d_{\omega}}(E_{\omega}) = \bigoplus_{i=1}^{n} C_0(\Gamma_i),$$

where $C_0(\Gamma_i) = C_0(\Gamma)$ has natural Hilbert $C_0(\Gamma)$ -module structure. The left action π_{r_ω} : $C_0(\Gamma) \to \mathcal{L}(C_{d_\omega}(E_\omega))$ satisfies

$$\pi_{r_{\omega}}(f)(\xi_1,\xi_2,\ldots,\xi_n)=(\sigma_{\omega_1}(f)\xi_1,\sigma_{\omega_2}(f)\xi_2,\ldots,\sigma_{\omega_n}(f)\xi_n)\in\bigoplus_{i=1}^nC_0(\Gamma_i),$$

for $f \in C_0(\Gamma)$ and $(\xi_1, \xi_2, \dots, \xi_n) \in \bigoplus_{i=1}^n C_0(\Gamma_i)$. We have a *-homomorphism $T^0 : C_0(\Gamma) \to \mathcal{O}_n \rtimes_{\alpha^\omega} G$. We define a linear map T^1 : $\bigoplus_{i=1}^n C_0(\Gamma_i) \to \mathcal{O}_n \rtimes_{\alpha^\omega} G$ by

$$T^{1}(\xi_{1},\xi_{2},\ldots,\xi_{n})=\sum_{i=1}^{n}S_{i}T^{0}(\xi_{i})\in\mathcal{O}_{n}\rtimes_{\alpha^{\omega}}G$$

for $(\xi_1, \xi_2, \dots, \xi_n) \in \bigoplus_{i=1}^n C_0(\Gamma_i)$.

Proposition 4.3 The pair $T = (T^0, T^1)$ is a Cuntz-Krieger E_{ω} -pair, and this induces an isomorphism $\mathcal{O}(E_{\omega}) \cong \mathcal{O}_n \rtimes_{\alpha^{\omega}} G$.

Proof. It is not difficult to see that T is a Toeplitz E_{ω} -pair. When $n=\infty$, T is a Cuntz-Krieger E_{ω} -pair because $C_0((E_{\omega}^0)_{rg})=0$. When $n<\infty$, we have $C_0((E_{\omega}^0)_{rg})=C_0(\Gamma)$. For $f \in C_0(\Gamma)$, we see that

$$\pi_{r_{\omega}}(f) = \sum_{i=1}^{n} \theta_{\xi_{i},\eta_{i}}$$

where $\xi_i, \eta_i \in C_0(\Gamma_i)$ satisfies that $\xi_i \overline{\eta_i} = \sigma_{\omega_i}(f)$ for i = 1, 2, ..., n. We have

$$\Phi^{1}(\pi_{r_{\omega}}(f)) = \sum_{i=1}^{n} T^{1}(\xi_{i})T^{1}(\eta_{i})^{*} = \sum_{i=1}^{n} S_{i}T^{0}(\xi_{i})T^{0}(\eta_{i})^{*}S_{i}^{*}$$
$$= \sum_{i=1}^{n} S_{i}T^{0}(\sigma_{\omega_{i}}(f))S_{i}^{*} = \sum_{i=1}^{n} T^{0}(f)S_{i}S_{i}^{*} = T^{0}(f).$$

Hence T is a Cuntz-Krieger E_{ω} -pair. By definition, T^0 is injective, and the gauge action on $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ satisfies the condition of Theorem 1.6. Hence the natural surjection $\mathcal{O}(E_{\omega}) \to$ $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ is an isomorphism.

Ideal structures of $\mathcal{O}_n \rtimes_{o^{\omega}} G$ $(n < \infty)$ 5

In this section, we discuss the ideal structure of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ in the case that $n < \infty$. Let n be an integer grater than 1, and take $\omega \in \Gamma^n$. In [Ka1], we introduced the following notion.

Definition 5.1 ([Ka1, Definition 3.2]) A subset X^0 of Γ is called ω -invariant if X^0 is a closed set satisfying the following two conditions:

- (i) For any $\gamma \in X^0$ and any $i \in \{1, 2, ..., n\}$, we have $\gamma + \omega_i \in X^0$.
- (ii) For any $\gamma \in X^0$, there exists $i \in \{1, 2, ..., n\}$ such that $\gamma \omega_i \in X^0$.

The condition (i) above corresponds to positive invariance of $X^0 \subset \Gamma = E^0$, and the condition (ii) corresponds to negative invariance of X^0 . Hence X^0 is an ω -invariant set

if and only if X^0 is a closed invariant set of the continuous graph E_{ω} . For an ideal I of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$, we define $X_I^0 \subset \Gamma$ by

$$X_I^0 = \{ \gamma \in \Gamma \mid f(\gamma) = 0 \text{ for all } f \in C_0(\Gamma) \text{ with } T^0(f) \in I \}.$$

Then X_I^0 is an ω -invariant subset of Γ ([Ka1, Proposition 3.3]). The following is the one of main results in [Ka1].

Theorem 5.2 ([Ka1, Theorem 3.14]) The correspondence $I \mapsto X_I^0$ gives an inclusion reversing bijection between the set of gauge-invariant ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and the set of ω -invariant subsets of Γ .

Proof. This follows from Theorem 2.6 and Proposition 2.7.

Definition 5.3 ([Ka1, Definition 4.2]) An ω -invariant subset X of Γ is said to be bad if there exists $\gamma_0 \in X$ such that there is only one element $i_0 \in \{1, 2, ..., n\}$ with $\gamma_0 - \omega_{i_0} \in X$, and this element i_0 satisfies that $m\omega_{i_0} = 0$ for some positive integer m. An ω -invariant subset X of Γ is said to be good if X is not bad.

Lemma 5.4 An ω -invariant subset X^0 is good if and only if the continuous graph $X = (X^0, X^1, d, r)$ is topologically free.

Proof. If an ω -invariant subset X^0 is bad, then there exists $\gamma_0 \in X^0$ satisfying that there is only one element $i_0 \in \{1, 2, \ldots, n\}$ with $\gamma_0 - \omega_{i_0} \in X^0$ and $m\omega_{i_0} = 0$ for some positive integer m. Let $V = X^0 \setminus \bigcup_{i \neq i_0} X^0 + \omega_i$. The set V is an open subset of X^0 and it is not empty because $\gamma_0 \in V$. All $\gamma \in V$ is a base point of a loop

$$\stackrel{\gamma}{\cdot} \rightarrow \stackrel{\gamma+\omega_{i_0}}{\cdot} \rightarrow \cdots \rightarrow \stackrel{\gamma+m\omega_{i_0}=\gamma}{\cdot}$$

which has no entrances in the continuous graph X. Hence the continuous graph X is not topologically free. Conversely if the continuous graph X is not topologically free, then a base point γ of a loop without entrances satisfies that there is only one element $i_0 \in \{1, 2, \ldots, n\}$ with $\gamma_0 - \omega_{i_0} \in X^0$, and for some positive integer m we have $m\omega_{i_0} = 0$. Hence X^0 is bad.

Proposition 5.5 ([Ka1, Theorem 4.5]) Let I be an ideal of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ such that X_I^0 is good. Then I is gauge-invariant.

Proof. Combine Proposition 3.3 and Lemma 5.4.

An element $\omega \in \Gamma^n$ is said to satisfy *Condition 5.1* if for each $i \in \{1, 2, ..., n\}$, one of the following two conditions is satisfied ([Ka1]):

- (i) For any positive integer k, $k\omega_i \neq 0$.
- (ii) There exists $j \neq i$ such that $-\omega_j$ is in the closed semigroup generated by $\omega_1, \ldots, \omega_n$ and $-\omega_i$.

It is not difficult to see that Condition 5.1 is exactly same as the condition that a continuous graph E_{ω} is free. Hence from Theorem 3.7, we get the following.

Proposition 5.6 ([Ka1, Theorem 5.2]) When ω satisfies Condition 5.1, all ideals are gauge-invariant and there is a one-to-one correspondence between the set of ideals of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ and the set of ω -invariant subsets of Γ .

6 Ideal structures of $\mathcal{O}_{\infty} \rtimes_{\alpha^{\omega}} G$

In [Ka3], we discussed, among others, the ideal structure of $\mathcal{O}_{\infty} \rtimes_{\alpha^{\omega}} G$. The argument there was analogous to the case that $n < \infty$ done in [Ka1]. However we need to change some details, for example, the definition of ω -invariant sets. Take $\omega = (\omega_1, \omega_2, \dots) \in \Gamma^{\infty}$ and fix it.

Definition 6.1 ([Ka3, Definition 3.3]) A subset X^0 of Γ is called ω -invariant if X^0 is a closed set with $X^0 + \omega_i \subset X^0$ for any positive integer i.

An ω -invariant set is same as a closed positively invariant set in the continuous graph E_{ω} . However, note that every positively invariant subsets of E_{ω} are invariant because $(E_{\omega}^{0})_{rg} = \emptyset$. Hence we see that ω -invariant sets are same as closed invariant sets. For an ω -invariant set X^{0} , we define a closed set $H_{X^{0}}$ by

$$H_{X^0} = X^0 \setminus \bigcup_{i=1}^{\infty} (X^0 + \omega_i) \cup \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} (X^0 + \omega_i) \subset X^0.$$

Definition 6.2 ([Ka3, Definition 3.4]) A pair $\widetilde{X} = (X^0, X^\infty)$ of subsets of Γ is called ω -invariant if X^0 is an ω -invariant set, and X^∞ is a closed set satisfying $H_{X^0} \subset X^\infty \subset X^0$.

It is not difficult to see that

$$X_{\text{sce}}^{0} = X^{0} \setminus \bigcup_{i=1}^{\infty} (X^{0} + \omega_{i}) , \qquad X_{\text{inf}}^{0} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} (X^{0} + \omega_{i}),$$

and $H_{X^0} = \overline{X^0_{\text{sce}}} \cup X^0_{\text{inf}} = X^0_{\text{sg}}$. From this fact, we see that the definition of ω -invariant pairs is same as the one of admissible pairs. For an ideal I of $\mathcal{O}_{\infty} \rtimes_{\alpha^{\omega}} G$ and $n \in \mathbb{N}$, we define the closed subset X^n_I of Γ by

$$X_I^n = \{ \gamma \in \Gamma \mid f(\gamma) = 0 \text{ for all } f \in C_0(\Gamma) \text{ with } P_n T^0(f) \in I \},$$

where $P_0=1$ and $P_n=1-\sum_{i=1}^n S_iS_i^*\in\mathcal{O}_\infty$. Clearly, the definition of $X_I^0\subset\Gamma$ is same as in Section 2. Set $X_I^\infty=\bigcap_{n=0}^\infty X_I^n$. The pair $\widetilde{X}_I=(X_I^0,X_I^\infty)$ is ω -invariant ([Ka3, Proposition 3.5]). We can see that $X_I^\infty=Z_I$. Hence Theorem 2.6 gives the following.

Theorem 6.3 ([Ka3, Theorem 3.16]) The correspondence $I \mapsto \widetilde{X}_I$ gives a bijection between the set of gauge-invariant ideals of $\mathcal{O}_{\infty} \rtimes_{\alpha^{\omega}} G$ and the set of ω -invariant pairs.

An element $\omega \in \Gamma^{\infty}$ is said to satisfy Condition 5.1 if for each $i \in \mathbb{Z}_+$, one of the following two conditions is satisfied:

- (i) For any positive integer k, $k\omega_i \neq 0$.
- (ii) For k = 1, 2, ..., there exist positive integers $i_{1,k}, ..., i_{n_k,k}$ $(n_k \ge 1)$ with $i_{1,k} \ne i$ and $\lim_{k\to\infty} \sum_{j=1}^{n_k} \omega_{i_{j,k}} = 0$.

Similarly as in the case of $n < \infty$, we see that Condition 5.1 is exactly same as the condition that a continuous graph E_{ω} is free. Hence from Theorem 3.7, we get the following.

Theorem 6.4 ([Ka3, Theorem 5.3]) Suppose that ω satisfies Condition 5.1. Then all ideal of $\mathcal{O}_{\infty} \rtimes_{\alpha^{\omega}} G$ is gauge-invariant. Hence there exists a one-to-one correspondence between the set of ideals of $\mathcal{O}_{\infty} \rtimes_{\alpha^{\omega}} G$ and the set of ω -invariant pairs of subsets of Γ .

7 Primitive ideal spaces

In [Ka1] and [Ka3], we studied the ideal structures of $\mathcal{O}_n \rtimes_{\alpha^{\omega}} G$ by using primitive ideal spaces when ω does not satisfy Condition 5.1. These works can be considered as continuous counterparts of [HS]. So far, the author has not succeeded in generalizing these results to more general continuous graphs which are not free. Note that a continuous graph E_{ω} defined here is a special kind of continuous graph which satisfies that every vertices receive and emit same number of edges in the same way.

References

- [BHRS] Bates, T.; Hong, J.; Raeburn, I.; Szymański, W. The ideal structure of the C*-algebras of infinite graphs. Preprint.
- [FLR] Fowler, N. J.; Laca, M.; Raeburn, I. The C*-algebras of infinite graphs. Proc. Amer. Math. Soc. 128 (2000), no. 8, 2319-2327.
- [HS] Hong, J. H.; Szymanski, W. The primitive ideal space of the C*-algebras of infinite graphs. Preprint.
- [Ka1] Katsura, T. The ideal structures of crossed products of Cuntz algebras by quasifree actions of abelian groups. To appear in Canad. J. Math.
- [Ka2] Katsura, T. AF-embeddability of crossed products of Cuntz algebras. To appear in J. Funct. Anal.
- [Ka3] Katsura, T. On crossed products of the Cuntz algebra \mathcal{O}_{∞} by quasi-free actions of abelian groups. To appear in the proceedings of OAMP Conference (Constanta 2001).
- [Ka4] Katsura, T. A class of C^* -algebras generalizing both graph algebras and homeomorphism C^* -algebras I, fundamental results. Preprint.
- [Ka5] Katsura, T. A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras III, ideal structures. Preprint.
- [KPR] Kumjian, A.; Pask, D.; Raeburn, I. Cuntz-Krieger algebras of directed graphs. Pacific J. Math. 184 (1998), no. 1, 161–174.
- [KPRR] Kumjian, A.; Pask, D.; Raeburn, I.; Renault, J. Graphs, groupoids, and Cuntz-Krieger algebras. J. Funct. Anal. 144 (1997), no. 2, 505-541.
- [T1] Tomiyama, J. The interplay between topological dynamics and theory of C*-algebras. Lecture Notes Series, 2. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1992.
- [T2] Tomiyama, J. Structure of ideals and isomorphisms of C*-crossed products by single homeomorphism. Tokyo J. Math. 23 (2000), no. 1, 1-13.

- [T3] Tomiyama, J. Hulls and kernels from topological dynamical systems and their applications to homeomorphism C^* -algebras. Preprint.
- [T4] Tomiyama, J. On the projection theorem for homeomorphism C^* -algebras. Preprint.