CORING STRUCTURES AND HILBERT C*-MODULES

大阪女子大学理学部 大内本夫 (MOTO O'UCHI)
OSAKA WOMEN'S UNIVERSITY

1. Introduction

S. Baaj and G. Skandalis [1] introduced the notion of multiplicative unitaries and they studied Hopf C^* -algebras associated with them. J. M. Vallin introduced the notion of pseudo-multiplicative unitaries and algebraic structures associated with them ([11], [12]). M. Enock and Vallin [2] studied pseudo-multiplictive unitaries and quantum groupoids associated with inclusions of von Neumann algebras. The author introduced a notion of multiplicative unitary operators (MUO) on Hilbert C^* -modules ([8], see also [6] and [7]). It is interesting to study natural algebraic structures associated with MUO's. In this note, we will show the relation btween MUO's and coring structures on Hilbert C^* -modules. Coring structures were introduced by M. Sweedler [10] in the purely algebraic framework. Y. Watatani [13] showed that incusions of C^* -algebras give natural coring structures in the framework of his index theory. In this note, we introduce notions of coring structures on Hilbert C^* -modules and study coring structures associated with MUO's. In Sections 2 and 3, we study coring structures associated with MUO's arising from groupoids and inclusions of C^* -algebras of inedx finite type in the sense of Watatani. In the case of groupoids, the base algebras are commutative. In the case of inclusions of

Date: May 29, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 46L08.

Key words and phrases. Multiplicative unitary oprator, coproduct, inclusion of C^* -algebras, groupoid, compact operator.

 C^* -algebras of index finite type, we do not know any concrete examples of MUO's on infinite-dimensional Hilbert C^* -modules. Therefore it is interesting to study concrete examples of MUO's and the associated coring structures such that the base algebras are not commutative and the Hilbert C^* -modules are infinite-dimensional. In the last section, we study an MUO and the associated coring structures on the Hilbert C^* -module of compact operators. In this case, the Hilbert C^* -module is infinite-dimensional and the base algebra is the C^* -algebra of compact operators.

2. Preliminaries

2.1. Multiplicative operators on Hilbert C^* -modules. Let A be a C^* -algebra, let E be a Hilbert A-module and let ϕ and ψ be *-homomorphisms of A to $\mathcal{L}_A(E)$. We assume that ϕ and ψ commute, that is, $\phi(a)\psi(b)=\psi(b)\phi(a)$ for all $a,b\in A$. We define a *-homomorphism $\iota\otimes_{\phi}\psi$ of A to $\mathcal{L}_A(E\otimes_{\phi}E)$ by $(\iota\otimes_{\phi}\psi)(a)=I\otimes_{\phi}\psi(a)$. and define a *-homomorphism $\iota\otimes_{\psi}\phi$ of A to $\mathcal{L}_A(E\otimes_{\psi}E)$ by $(\iota\otimes_{\psi}\phi)(a)=I\otimes_{\psi}\phi(a)$. Let W be an operator in $\mathcal{L}_A(E\otimes_{\psi}E,E\otimes_{\phi}E)$. We assume that W satisfies the following equations;

$$(2.1) W(\iota \otimes_{\psi} \phi)(a) = (\phi \otimes_{\phi} \iota)(a)W,$$

(2.2)
$$W(\psi \otimes_{\psi} \iota)(a) = (\iota \otimes_{\phi} \psi)(a)W,$$

$$(2.3) W(\phi \otimes_{\psi} \iota)(a) = (\psi \otimes_{\phi} \iota)(a)W$$

for all $a \in A$. Then we can define following operators;

$$W \otimes_{\psi} I \in \mathcal{L}_{A}(E \otimes_{\psi} E \otimes_{\psi} E, E \otimes_{\phi} E \otimes_{\psi} E),$$
 $I \otimes_{\phi \otimes_{\iota}} W \in \mathcal{L}_{A}(E \otimes_{\phi} E \otimes_{\psi} E, E \otimes_{\psi} E \otimes_{\phi} E),$
 $W \otimes_{\phi} I \in \mathcal{L}_{A}(E \otimes_{\psi} E \otimes_{\phi} E, E \otimes_{\phi} E \otimes_{\phi} E),$
 $I \otimes_{\psi \otimes_{\iota}} W \in \mathcal{L}_{A}(E \otimes_{\psi} E \otimes_{\psi} E, E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E)),$
 $I \otimes_{\iota \otimes_{\phi}} W \in \mathcal{L}_{A}(E \otimes_{\iota \otimes_{\phi}} (E \otimes_{\psi} E), E \otimes_{\phi} E \otimes_{\phi} E).$

Since ϕ and ψ commute, there exists an isomorphism Σ_{12} of $E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E)$ onto $E \otimes_{\iota \otimes \phi} (E \otimes_{\psi} E)$ as Hilbert A-modules such that, for $x_i \in E$ (i = 1, 2, 3),

$$\Sigma_{12}(x_1 \otimes (x_2 \otimes x_3)) = x_2 \otimes (x_1 \otimes x_3).$$

Definition 2.1 ([8]). Let W be an element of $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$. Assume that W satisfies the equations (2.1), (2.2) and (2.3). An operator W is said to be multiplicative if it satisfies the pentagonal equation

$$(2.4) (W \otimes_{\phi} I)(I \otimes_{\phi \otimes \iota} W)(W \otimes_{\psi} I) = (I \otimes_{\iota \otimes \phi} W) \Sigma_{12}(I \otimes_{\psi \otimes \iota} W).$$

Example 2.2. Suppose that $A = \mathbb{C}$. Then E = H is a usual Hilbert space and $\mathcal{L}_{\mathbb{C}}(E) = \mathcal{L}(H)$ is the C^* -albebra of bounded linear operators on H. Let $\phi = \psi = id$, where $id(\lambda) = \lambda I_H$ for $\lambda \in \mathbb{C}$. Then $E \otimes_{id} E$ is the usual tensor product $H \otimes H$. Let $\Sigma \in \mathcal{L}(H \otimes H)$ be the flip, that is, $\Sigma(\xi \otimes \eta) = \eta \otimes \xi$. Let W be an element of $\mathcal{L}(H \otimes H)$. Then the pentagonal equation (2.4) has the following form:

$$(2.5) (W \otimes I)(I \otimes W)(W \otimes I) = (I \otimes W)(\Sigma \otimes I)(I \otimes W).$$

Defin an operator \widetilde{W} by $\widetilde{W} = W\Sigma$. Then W satisfies the pentagonal equation (2.5) if and only if \widetilde{W} satisfies the usual pentagonal equation;

$$(2.6) \widetilde{W}_{12}\widetilde{W}_{13}\widetilde{W}_{23} = \widetilde{W}_{23}\widetilde{W}_{13}.$$

2.2. Coproducts on Hilbert C^* -modules. Let E be a Hilbert A-module and ϕ be a *-homomorphism of A to $\mathcal{L}_A(E)$.

Definition 2.3. Let δ be an operator in $\mathcal{L}_A(E, E \otimes_{\phi} E)$. We say that δ is a coproduct of (E, ϕ) if δ satisfies the following equations;

(2.7)
$$\delta\phi(a) = (\phi \otimes \iota)(a)\delta \quad \text{for all } a \in A,$$

(2.8)
$$(\delta \otimes I_E)\delta = (I_E \otimes \delta)\delta.$$

Suppose that δ is a coproduct for E. For ξ , $\eta \in E$, we define a product $\xi \eta$ in E by $\xi \eta = \delta^*(\xi \otimes_{\phi} \eta)$. It follows from (2.8) that this product is associative. Then E is an algebra over \mathbb{C} . Note that we have $\|\xi \eta\| \leq \|\delta\| \|\xi\| \|\eta\|$.

2.3. Coproducts associated with MUO's. Let E be a Hilbert A-module and let ϕ and ψ be *-homomorphisms of A to $\mathcal{L}_A(E)$ such that ϕ and ψ commute. Let $W \in \mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ be a multiplicative unitary operator (MUO).

For an element ξ_0 of E, we say that ξ_0 has Property E1 if it satisfies the following conditions;

- (i) $W(\xi_0 \otimes_{\psi} \xi_0) = \xi_0 \otimes_{\phi} \xi_0$.
- (ii) For every $\xi \in E$, there exists an element $\pi_{\xi_0}(\xi)$ of $\mathcal{L}_A(E)$ such that

$$<\eta, \pi_{\xi_0}(\xi)\zeta> = < W(\xi_0 \otimes_{\psi} \eta), \xi \otimes_{\phi} \zeta> \text{ for every } \eta, \zeta \in E.$$

Fix an element ξ_0 with Property E1. Define an operator $\delta = \delta_{\xi_0}$ in $\mathcal{L}_A(E, E \otimes_{\phi} E)$ by $\delta(\eta) = W(\xi_0 \otimes_{\psi} \eta)$. Then we have $\delta^*(\xi \otimes \eta) = \pi_{\xi_0}(\xi)\eta$. Since W satisfies the pentagonal equation, δ is a coproduct of (E, ϕ) .

For an element ξ_0 of E, we say that ξ_0 has Property E2 if it satisfies the following conditions;

- (i) $W(\xi_0 \otimes_{\psi} \xi_0) = \xi_0 \otimes_{\phi} \xi_0$.
- (ii) For every $\xi \in E$, there exists an element $\widehat{\pi}_{\xi_0}(\xi)$ of $\mathcal{L}_A(E)$ such that

$$<\eta,\widehat{\pi}_{\xi_0}(\xi)\zeta>=< W^*(\xi_0\otimes_\phi\eta), \xi\otimes_\psi\zeta>\quad \text{ for every }\eta,\,\zeta\in E.$$

Fix an element ξ_0 with Property E2. Define an operator $\widehat{\delta} = \widehat{\delta}_{\xi_0}$ in $\mathcal{L}_A(E, E \otimes_{\psi} E)$ by $\widehat{\delta}(\eta) = W^*(\xi_0 \otimes_{\phi} \eta)$. Since W satisfies the pentagonal equation, $\widehat{\delta}$ is a coproduct of (E, ψ) .

3. Coring structures on Hilbert C^* -modules

Let E be a Hilbert A-module and let ϕ be a *-homomorphism of A to $\mathcal{L}_A(E)$. Note that A itself is a Hilbert A-module with the A-valued inner product $\langle a, b \rangle = a^*b$.

We denote by i the *-homomorphism of A to $\mathcal{L}_A(A)$ defined by i(a)b = ab. Then there exists a unitary operator t in $\mathcal{L}_A(E \otimes_i A, E)$ defined by $t(\xi \otimes_i a) = \xi a$. If ϕ is non-degenerate, then there exists a unitary operator t' in $\mathcal{L}_A(A \otimes_{\phi} E, E)$ such that $t'(a \otimes_{\phi} \xi) = \phi(a)\xi$.

Definition 3.1. Suppose that ϕ is non-degenerate. Let δ be a coproduct of (E, ϕ) and let Q be an element of $\mathcal{L}_A(E, A)$, such that $Q\phi(a) = aQ$ for $a \in A$.

(1) We say that (E, ϕ, δ, Q) is a right counital A-coring if it satisfies the following equation;

$$t(I_E \otimes_{\phi} Q)\delta = I_E.$$

Then Q is called a right counit.

(2) We say that (E, ϕ, δ, Q) is a left counital A-coring if it satisfies the following equation;

$$t'(Q \otimes_{\phi} I_E)\delta = I_E.$$

Then Q is called a left counit.

(3) We say that (E, ϕ, δ, Q) is a counital A-coring if Q is a right and left counit. Then Q is called a counit.

For $n \geq 2$, we set

$$E^{\otimes_{\phi} n} = E \otimes_{\phi} \cdots \otimes_{\phi} E$$
 (*n* times).

Let (E, ϕ, δ, Q) be a left or right counital A-coring. We defin an element ω of $\mathcal{L}_A(E^{\otimes_\phi 4}, E^{\otimes_\phi 2})$ by

$$\omega = \{ t(I_E \otimes_{\phi} Q) \otimes_{\phi} I_E \} (I_E \otimes_{\phi \otimes \iota} \delta^* \otimes_{\phi} I_E).$$

Then we have $\omega(\omega \otimes_{\phi \otimes \iota} I) = \omega(I \otimes_{\phi \otimes \iota} \omega)$. Therefore we can difine a product on $E \otimes_{\phi} E$ by $xy = \omega(x \otimes_{\phi \otimes \iota} y)$. Then $E \otimes_{\phi} E$ is an algebra over \mathbb{C} . Note that we have

$$(\xi_1 \otimes_{\phi} \xi_2)(\eta_1 \otimes_{\phi} \eta_2) = (\xi_1 Q(\xi_2 \eta_1)) \otimes_{\phi} \eta_2.$$

Definition 3.2. We say that δ and Q are compatible if the following equation holds; $\delta(\xi\eta) = \delta(\xi)\delta(\eta)$ for every ξ , $\eta \in E$.

Example 3.3 ([13]). Let $1 \in A_0 \subset A_1$ be an inclusion of C^* -algebras and let P_1 : $A_1 \to A_0$ be a faithful positive conditional expectation of index finite type. Let $\{u_i, u_i^*; i = 1, \cdots, N\}$ be a quasi-basis of P_1 . Let $E_1 = A_1$ be a Hilbert A_0 -module with the A_0 -valued inner product defined by $\langle a, b \rangle = P_1(a^*b)$. Let $\phi_1 : A_1 \to \mathcal{L}_{A_0}(E_1)$ be a *-homomorphism defined by $\phi_1(a)b = ab$. We denote by ϕ_0 the restriction of ϕ_1 to A_0 . Define $\delta \in \mathcal{L}_{A_0}(E_1, E_1 \otimes_{\phi_0} E_1)$ by $\delta(\xi) = \sum_{i=1}^N (\xi u_i) \otimes_{\phi_0} u_i^*$. The product on E_1 induced by δ agrees with the product on A_1 . Then $(E_1, \phi_0, \delta, P_1)$ is a compatible counital A-coring.

Example 3.4. Let G be a finite groupoid. Set $A = C(G^{(0)})$ and E = C(G). Then E is a right A-module with the right A-action defined by $(\xi a)(x) = \xi(x)a(s(x))$ for $\xi \in E$, $a \in A$ and $x \in G$. We define an A-valued inner product of E by

$$<\xi,\eta>(u)=\sum_{g\in G_u}\overline{\xi(g)}\eta(g)$$

for ξ , $\eta \in E$ and $u \in G^{(0)}$, where $G_u = s^{-1}(u)$ for $u \in G^{(0)}$. Then E is a Hilbert A-module. Define *-homomorphisms ϕ and ψ of A to $\mathcal{L}_A(E)$ by $(\phi(a)\xi)(x) = a(r(x))\xi(x)$ and $\psi(a) = \xi a$ respectively for $a \in A$, $\xi \in E$ and $x \in G$. Note that we have $E \otimes_{\psi} E = C(G^2(ss))$ and $E \otimes_{\phi} E = C(G^{(2)})$, where $G^2(ss) = \{(g,h) \in G^2; s(g) = s(h)\}$. Let $W \in \mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ be the MUO defined by $(W\xi)(g,h) = \xi(h,gh)$. Define an element $a_0 \in A$ by $a_0(u) = |G_u|^{-1/2}$ and define an element $\xi_0 \in E$ by $\xi_0(g) = a_0(s(g))$. Then ξ_0 satisfies Properties E1 and E2. Note that we have $||\xi_0|| = 1$. Define an element $\eta_0 \in E$ by $\eta_0 = \chi_{G^{(0)}} a_0^{-1}$. Define operators Q_{η_0} , $Q_{\xi_0} : E \to A$ by $Q_{\eta_0}(\xi) = \langle \eta_0, \xi \rangle$ and $Q_{\xi_0}(\xi) = \langle \xi_0, \xi \rangle$ respectively. Then $(E, \phi, \delta_{\xi_0}, Q_{\eta_0})$ is a compatible counital A-coring. The product on E induced by δ_{ξ_0} is of the form $\xi \eta = (\xi * \eta)a_0$, where $\xi * \eta$ is the convolution product on C(G). We also have two compatible right counital A-corings $(E, \psi, \delta_{\xi_0}, Q_{\xi_0})$

and $(E, \psi, \delta_{\xi_0}, Q_{\eta_0})$. Two products on $E \otimes_{\psi} E$ associated with above right counital A-corings are different.

4. Coring structures associated with inclusions of C^* -algebras

Let $1 \in A_0 \subset A_1$ be an inclusion of C^* -algebras and let $P_1 : A_1 \to A_0$ be a faithful positive conditional expectation of index-finite type with a quasi-basis $\{u_i, u_i^*\}_{i=1}^N$. Let E_1 , ϕ_1 and ϕ_0 be as in Example 3.3. Set $E_2 = E_1 \otimes_{\phi_0} E_1$ and define a *-homomorphism $\phi_2 : A_1 \to \mathcal{L}_{A_0}(E_2)$ by $\phi_2 = \phi_1 \otimes \iota$. Define a C^* -algebra A by $A = \mathcal{L}_{A_0}(E_1, \phi_1)$ and a Hilbert A-module E by

$$E = \mathcal{L}_{A_0}((E_1, \phi_1), (E_2, \phi_2)),$$

that is, E is the set of elements $x \in \mathcal{L}_{A_0}(E_1, E_2)$ such that $x\phi_1(a) = \phi_2(a)x$ for all $a \in A$. The A-valued inner product on E is defined by $\langle x, y \rangle = x^*y$. We define *-homomorphisms ϕ and ψ of A to $\mathcal{L}_A(E)$ by $\phi(a)x = (a \otimes_{\phi_0} I)x$ and $\psi(a)x = (I \otimes_{\phi_0} a)x$ respectively. We suppose that there exists an MUO $W \in \mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ such that $V^*\widetilde{V} = W \otimes_i I_{E_1}$, where $V : E \otimes_{\phi} E \otimes_i E_1 \to E_3$ and $\widetilde{V} : E \otimes_{\psi} E \otimes_i E_1 \to E_3$ are operators defined in [8]. As for sufficient conditions for W to exist, see [7] and [8]. Define an element $x_0 \in E$ by $x_0(\xi) = \xi \otimes_{\phi_0} 1$. Then x_0 satisfies Properties E1 and E2. Note that we have $||x_0|| = 1$. Define an element $\widetilde{y_0} \in E$ by

$$\widetilde{y_0}(\xi) = \sum_{i=1}^N (\xi u_i) \otimes_{\phi_0} u_i^*.$$

Note that we have $\widetilde{y_0}^*(\xi \otimes_{\phi_0} \eta) = \xi \eta$, where $\xi \eta$ is the product on A_1 . Define $Q_{x_0}, Q_{\widetilde{y_0}} \in \mathcal{L}_A(E, A)$ by $Q_{x_0}(x) = \langle x_0, x \rangle$ and $Q_{\widetilde{y_0}}(x) = \langle \widetilde{y_0}, x \rangle$ respectively. Then we have the following theorem.

Theorem 4.1. (1) $(E, \phi, \delta_{x_0}, Q_{x_0})$ is a compatible right counital A-coring.

(2) Suppose that there exist elements $(v_i, w_i) \in E \times E \ (i = 1, \dots K)$ such that

$$\widehat{\delta}_{x_0}(\widetilde{y_0}) = \sum_{i=1}^K v_i \otimes_{\psi} w_i.$$

Then $(E, \psi, \widehat{\delta}_{x_0}, Q_{\widetilde{y_0}})$ is a compatible counital A-coring.

5. Coring structures on the set of compact operators

$$M(x\otimes_{\phi}y)=(x\otimes I_H)y,$$

$$\widetilde{M}(x \otimes_{\psi} y) = (I_H \otimes x)y$$

for $x, y \in E$ respectively. Define $W = M^{-1}\widetilde{M}$. Then we have the following:

Theorem 5.1. The operator W is the unique multiplicative unitary operator in $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$.

Now we introduce a coring structure on (E, ϕ, ψ) . Recall that an approximate unit $\{u_n\}_{n=1}^{\infty}$ of A is said to be increasing if $u_n \geq 0$ and $u_{n+1} \geq u_n$ for every n.

Definition 5.2. Let δ be a coproduct of (E, ϕ) . For $n = 1, 2, \dots$, let Q_n be an element of $\mathcal{L}_A(E, A)$ such that $Q_n(\phi(a)x) = aQ_n(x)$ for $a \in A$ and $x \in E$ and let $\{u_n\}_{n=1}^{\infty}$ be an increasing approximate unit of A such that $u_1 \neq 0$ and $u_n \neq u_{n+1}$ for every n. Then $(\delta, \{Q_n\}_{n=1}^{\infty}, \{u_n\}_{n=1}^{\infty})$ is called a coring structure on (E, ϕ, ψ) if it

satisfies the following equations for every n;

$$t(I_E \otimes_{\phi} Q_n)\delta = t'(Q_n \otimes_{\phi} I_E)\delta = \psi(u_n),$$

 $Q_n\psi(u_n) = Q_n.$

Then $\{Q_n\}$ is called an approximate counit.

Let T be an element of $\mathcal{L}(H, H \otimes H)$. We will say that T has Property D if it satisfies the following conditions:

- (i) $(T \otimes I_H)T = (I_H \otimes T)T$.
- (ii) There exists a family $\{K_n\}_{n=1}^{\infty}$ of mutually orthogonal non-trivial finite-dimensional subspaces of H such that $H = \bigoplus_{n=1}^{\infty} K_n$ and there exists a complete orthonormal basis $\{e_{k_{n-1}+1}, \dots, e_{k_n}\}$ of K_n for $n=1,2,\dots$, where $k_0=0$, such that, if we set $\lambda_{j,\ell}^i = \langle e_j \otimes e_\ell, Te_i \rangle$, then $\{\lambda_{j,\ell}^i\}$ satisfies the following conditions;
 - (a) for $i = k_{n-1} + 1$, $\lambda_{i,i}^i \neq 0$ and $\lambda_{j,\ell}^i = \lambda_{\ell,j}^i = 0$ for every $j \in \mathbb{N}$ and $\ell = k_m + 1$ $(m = 0, 1, 2, \cdots)$ except for $j = \ell = i$,
 - (b) if dim $K_n \ge 2$, for $i = k_{n-1} + 2, \dots, k_n$,

$$\lambda_{i,k_{n-1}+1}^i = \lambda_{k_{n-1}+1,i}^i = \lambda_{k_{n-1}+1,k_{n-1}+1}^{k_{n-1}+1},$$

and $\lambda_{j,\ell}^i = \lambda_{\ell,j}^i = 0$ for every $j \in \mathbb{N}$ and $\ell = k_m + 1$ $(m = 0, 1, 2, \cdots)$ except for $(j,\ell) = (i,k_{n-1}+1)$.

Then we have the following theorem:

Theorem 5.3. There exists a one-to-one correspondence between the set of coring structures $(\delta, \{Q_n\}, \{u_n\})$ on (E, ϕ, ψ) and the set of elements $(T, \{K_n\}, \{e_{k_{n-1}+1}\})$ which satisfy Property D. The correspondence is given as follows: If $(T, \{K_n\}, \{e_{k_{n-1}+1}\})$

has Property D, set

$$H_n = \bigoplus_{i=1}^n K_i,$$

$$\xi_n = \sum_{i=1}^n \eta_i \in H_n, \quad \text{where } \eta_i = (\overline{\lambda_{k_{i-1}+1,k_{i-1}+1}^{k_{i-1}+1}})^{-1} e_{k_{i-1}+1} \in K_i,$$

define $f_n \in H^*$ by $f_n(\xi) = \langle \xi_n, \xi \rangle$, then $u_n \in \mathcal{K}(H)$ is the projection onto H_n and δ and Q_n are given by the following equations;

$$\delta(x) = M^{-1}(I_H \otimes T)x,$$

$$Q_n(x) = (I_H \otimes f_n)x.$$

Question. Suppose that T has Property D. Does T determine $\{K_n\}$ and $\{e_{k_{n-1}+1}\}$ uniquely?

The following theorem shows the relation between the coring structures and the multiplicative unitary operator W defined above:

Theorem 5.4. Let $(\delta, \{Q_n\}, \{u_n\})$ be a coring structure on (E, ϕ, ψ) and let T be the operator which corresponds to $(\delta, \{Q_n\}, \{u_n\})$ by Theorem 5.3. Put $x_n = Tu_n$. Then x_n is an element of E and satisfies Property E1. Let δ_n be the coproduct of (E, ϕ) defined by

$$\delta_n(x) = W(x_n \otimes_{\psi} x).$$

Then the following equation holds;

$$\delta = \lim_{n \to \infty} \delta_n$$

with respect to the strict topology on $\mathcal{L}_A(E, E \otimes_{\phi} E)$.

REFERENCES

- S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École. Norm. Sup. 26(1993), 425-488.
- [2] M. Enock and J. M. Vallin, Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Analysis 172(2000), 249-300.

- [3] E. C. Lance, Hilbert C*-modules, Cambridge University Press, Cambridge, 1995.
- [4] M. Macho-Stadler and M. O'uchi, Correspondence of groupoid C*-algebras, J. Operator Theory 42(1999), 103–119.
- [5] M. O'uchi, On coproducts for transformation group C*-algebras, Far East J. Math. Sci.(FJMS)
 2(2000), 139-148.
- [6] M. O'uchi, Pseudo-multiplicative unitaries on Hilbert C*-modules, Far East J. Math. Sci.(FJMS), Special Volume(2001), Part2, (Functional Analysis and its Applications), 229–249.
- [7] M. O'uchi, Pseudo-multiplicative unitaries associated with inclusions of finite dimensional C*-algebras, Linear Algebra Appl. 341(2002), 201-218.
- [8] M. O'uchi, Pentagonal equations for operators associated with inclusions of C*-algebras, preprint.
- [9] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793, Springer-Verlag,
 Berlin, 1980.
- [10] M. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Transactions A. M. S. 213(1975), 391-406.
- [11] J. M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde applications à la moyennabilité, J. Operator Theory 44(2000), 347-368.
- [12] J. M. Vallin, Groupoids quantiques finis, J. Algebra 239(2001), 215-261.
- [13] Y. Watatani, *Index for C*-subalgebras*, Memoir Amer. Math. Soc. **424**(1990).

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCE, OSAKA WOMEN'S UNI-VERSITY, SAKAI CITY, OSAKA 590-0035, JAPAN

E-mail address: ouchi@appmath.osaka-wu.ac.jp