1. INTRODUCTION

S. Baaj and G. Skandalis [1] introduced the notion of multiplicative unitaries and they studied Hopf C^*-algebras associated with them. J. M. Vallin introduced the notion of pseudo-multiplicative unitaries and algebraic structures associated with them ([11], [12]). M. Enock and Vallin [2] studied pseudo-multiplicative unitaries and quantum groupoids associated with inclusions of von Neumann algebras. The author introduced a notion of multiplicative unitary operators (MUO) on Hilbert C^*-modules ([8], see also [6] and [7]). It is interesting to study natural algebraic structures associated with MUO's. In this note, we will show the relation between MUO's and coring structures on Hilbert C^*-modules. Coring structures were introduced by M. Sweedler [10] in the purely algebraic framework. Y. Watatani [13] showed that inclusions of C^*-algebras give natural coring structures in the framework of his index theory. In this note, we introduce notions of coring structures on Hilbert C^*-modules and study coring structures associated with MUO's. In Sections 2 and 3, we study coring structures associated with MUO's arising from groupoids and inclusions of C^*-algebras of inedex finite type in the sense of Watatani. In the case of groupoids, the base algebras are commutative. In the case of inclusions of

Date: May 29, 2002.

2000 Mathematics Subject Classification. 46L08.

Key words and phrases. Multiplicative unitary operator, coproduct, inclusion of C^*-algebras, groupoid, compact operator.
\(C^* \)-algebras of index finite type, we do not know any concrete examples of MUO’s on infinite-dimensional Hilbert \(C^* \)-modules. Therefore it is interesting to study concrete examples of MUO’s and the associated coring structures such that the base algebras are not commutative and the Hilbert \(C^* \)-modules are infinite-dimensional. In the last section, we study an MUO and the associated coring structures on the Hilbert \(C^* \)-module of compact operators. In this case, the Hilbert \(C^* \)-module is infinite-dimensional and the base algebra is the \(C^* \)-algebra of compact operators.

2. Preliminaries

2.1. Multiplicative operators on Hilbert \(C^* \)-modules. Let \(A \) be a \(C^* \)-algebra, let \(E \) be a Hilbert \(A \)-module and let \(\phi \) and \(\psi \) be \(*\)-homomorphisms of \(A \) to \(\mathcal{L}_A(E) \). We assume that \(\phi \) and \(\psi \) commute, that is, \(\phi(a)\psi(b) = \psi(b)\phi(a) \) for all \(a, b \in A \).

We define a \(*\)-homomorphism \(\iota \otimes \phi \psi \) of \(A \) to \(\mathcal{L}_A(E \otimes \phi E) \) by \((\iota \otimes \phi \psi)(a) = I \otimes \phi \psi(a)\) and define a \(*\)-homomorphism \(\iota \otimes \psi \phi \) of \(A \) to \(\mathcal{L}_A(E \otimes \psi E) \) by \((\iota \otimes \psi \phi)(a) = I \otimes \psi \phi(a)\).

Let \(W \) be an operator in \(\mathcal{L}_A(E \otimes \psi E, E \otimes \phi E) \). We assume that \(W \) satisfies the following equations;

\[
\begin{align*}
(2.1) \quad & W(\iota \otimes \phi \psi)(a) = (\phi \otimes \iota \phi)(a)W, \\
(2.2) \quad & W(\psi \otimes \psi \iota)(a) = (\iota \otimes \psi \psi)(a)W, \\
(2.3) \quad & W(\phi \otimes \psi \iota)(a) = (\psi \otimes \iota \psi)(a)W
\end{align*}
\]

for all \(a \in A \). Then we can define following operators;

\[
\begin{align*}
W \otimes \psi I & \in \mathcal{L}_A(E \otimes \psi E \otimes \psi E, E \otimes \phi E \otimes \psi E), \\
I \otimes \phi \otimes \psi W & \in \mathcal{L}_A(E \otimes \phi E \otimes \psi E, E \otimes \psi E \otimes \phi E), \\
W \otimes \phi I & \in \mathcal{L}_A(E \otimes \psi E \otimes \phi E, E \otimes \phi E \otimes \phi E), \\
I \otimes \psi \otimes \phi W & \in \mathcal{L}_A(E \otimes \psi E \otimes \phi E, E \otimes \iota \psi (E \otimes \phi E)), \\
I \otimes \iota \otimes \phi W & \in \mathcal{L}_A(E \otimes \iota \otimes \phi (E \otimes \psi E), E \otimes \phi E \otimes \phi E).
\end{align*}
\]
Since ϕ and ψ commute, there exists an isomorphism Σ_{12} of $E \otimes_{\iota \otimes \psi} (E \otimes_{\phi} E)$ onto $E \otimes_{\iota \otimes \phi} (E \otimes_{\psi} E)$ as Hilbert A-modules such that, for $x_i \in E$ ($i = 1, 2, 3$),

$$\Sigma_{12}(x_1 \otimes (x_2 \otimes x_3)) = x_2 \otimes (x_1 \otimes x_3).$$

Definition 2.1 ([8]). Let W be an element of $\mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$. Assume that W satisfies the equations (2.1), (2.2) and (2.3). An operator W is said to be multiplicative if it satisfies the pentagonal equation

$$(W \otimes_{\phi} I)(I \otimes_{\phi \otimes \iota} W)(W \otimes_{\psi} I) = (I \otimes_{\iota \otimes \phi} W)\Sigma_{12}(I \otimes_{\psi \otimes \iota} W).$$

Example 2.2. Suppose that $A = \mathbb{C}$. Then $E = H$ is a usual Hilbert space and $\mathcal{L}_C(E) = \mathcal{L}(H)$ is the C^*-algebra of bounded linear operators on H. Let $\phi = \psi = id$, where $id(\lambda) = \lambda I_H$ for $\lambda \in \mathbb{C}$. Then $E \otimes_{id} E$ is the usual tensor product $H \otimes H$.

Let $\Sigma \in \mathcal{L}(H \otimes H)$ be the flip, that is, $\Sigma(\xi \otimes \eta) = \eta \otimes \xi$. Let W be an element of $\mathcal{L}(H \otimes H)$. Then the pentagonal equation (2.4) has the following form:

$$(W \otimes I)(I \otimes W)(W \otimes I) = (I \otimes W)(\Sigma \otimes I)(I \otimes W).$$

Define an operator \overline{W} by $\overline{W} = W \Sigma$. Then W satisfies the pentagonal equation (2.5) if and only if \overline{W} satisfies the usual pentagonal equation;

$$\overline{W}_{12}\overline{W}_{13}\overline{W}_{23} = \overline{W}_{23}\overline{W}_{13}. $$

2.2. Coproducts on Hilbert C^*-modules. Let E be a Hilbert A-module and ϕ be a *-homomorphism of A to $\mathcal{L}_A(E)$.

Definition 2.3. Let δ be an operator in $\mathcal{L}_A(E, E \otimes_{\phi} E)$. We say that δ is a coproduct of (E, ϕ) if δ satisfies the following equations:

$$(\delta \otimes I_E)\delta = (I_E \otimes \delta)\delta.$$
Suppose that δ is a coproduct for E. For $\xi, \eta \in E$, we define a product $\xi \eta$ in E by $\xi \eta = \delta^*(\xi \otimes_{\phi} \eta)$. It follows from (2.8) that this product is associative. Then E is an algebra over \mathbb{C}. Note that we have $||\xi \eta|| \leq ||\delta||||\xi||||\eta||$.

2.3. Coproducts associated with MUO's. Let E be a Hilbert A-module and let ϕ and ψ be $*$-homomorphisms of A to $\mathcal{L}_A(E)$ such that ϕ and ψ commute. Let $W \in \mathcal{L}_A(E \otimes_{\psi} E, E \otimes_{\phi} E)$ be a multiplicative unitary operator (MUO).

For an element ξ_0 of E, we say that ξ_0 has Property E1 if it satisfies the following conditions:

(i) $W(\xi_0 \otimes_{\psi} \xi_0) = \xi_0 \otimes_{\phi} \xi_0$.

(ii) For every $\xi \in E$, there exists an element $\pi_{\xi_0}(\xi)$ of $\mathcal{L}_A(E)$ such that

$$<\eta, \pi_{\xi_0}(\xi)\zeta> = <W(\xi_0 \otimes_{\psi} \eta), \xi \otimes_{\phi} \zeta> \quad \text{for every } \eta, \zeta \in E.$$

Fix an element ξ_0 with Property E1. Define an operator $\delta = \delta_{\xi_0}$ in $\mathcal{L}_A(E, E \otimes_{\phi} E)$ by $\delta(\eta) = W(\xi_0 \otimes_{\phi} \eta)$. Then we have $\delta^*(\xi \otimes \eta) = \pi_{\xi_0}(\xi)\eta$. Since W satisfies the pentagonal equation, δ is a coproduct of (E, ϕ).

For an element ξ_0 of E, we say that ξ_0 has Property E2 if it satisfies the following conditions:

(i) $W(\xi_0 \otimes_{\psi} \xi_0) = \xi_0 \otimes_{\phi} \xi_0$.

(ii) For every $\xi \in E$, there exists an element $\hat{\pi}_{\xi_0}(\xi)$ of $\mathcal{L}_A(E)$ such that

$$<\eta, \hat{\pi}_{\xi_0}(\xi)\zeta> = <W^*(\xi_0 \otimes_{\phi} \eta), \xi \otimes_{\psi} \zeta> \quad \text{for every } \eta, \zeta \in E.$$

Fix an element ξ_0 with Property E2. Define an operator $\hat{\delta} = \hat{\delta}_{\xi_0}$ in $\mathcal{L}_A(E, E \otimes_{\psi} E)$ by $\hat{\delta}(\eta) = W^*(\xi_0 \otimes_{\phi} \eta)$. Since W satisfies the pentagonal equation, $\hat{\delta}$ is a coproduct of (E, ψ).

3. Coring structures on Hilbert C^*-modules

Let E be a Hilbert A-module and let ϕ be a $*$-homomorphism of A to $\mathcal{L}_A(E)$. Note that A itself is a Hilbert A-module with the A-valued inner product $<a, b> = a^*b$.
We denote by i the $*$-homomorphism of A to $\mathcal{L}_A(A)$ defined by $i(a)b = ab$. Then there exists a unitary operator t in $\mathcal{L}_A(E \otimes_A A, E)$ defined by $t(\xi \otimes_A a) = \xi a$. If ϕ is non-degenerate, then there exists a unitary operator t' in $\mathcal{L}_A(A \otimes_{\phi} E, E)$ such that $t'(a \otimes_{\phi} \xi) = \phi(a)\xi$.

Definition 3.1. Suppose that ϕ is non-degenerate. Let δ be a coproduct of (E, ϕ) and let Q be an element of $\mathcal{L}_A(E, A)$, such that $Q\phi(a) = aQ$ for $a \in A$.

(1) We say that (E, ϕ, δ, Q) is a right counital A-coring if it satisfies the following equation:

$$t(I_E \otimes_{\phi} Q)\delta = I_E.$$

Then Q is called a right counit.

(2) We say that (E, ϕ, δ, Q) is a left counital A-coring if it satisfies the following equation:

$$t'(Q \otimes_{\phi} I_E)\delta = I_E.$$

Then Q is called a left counit.

(3) We say that (E, ϕ, δ, Q) is a counital A-coring if Q is a right and left counit. Then Q is called a counit.

For $n \geq 2$, we set

$$E^{\otimes_{\phi} n} = E \otimes_{\phi} \cdots \otimes_{\phi} E \quad (n \text{ times}).$$

Let (E, ϕ, δ, Q) be a left or right counital A-coring. We define an element ω of $\mathcal{L}_A(E^{\otimes_{\phi} 4}, E^{\otimes_{\phi} 2})$ by

$$\omega = \{t(I_E \otimes_{\phi} Q) \otimes_{\phi} I_E\}(I_E \otimes_{\phi \otimes \iota} \delta' \otimes_{\phi} I_E).$$

Then we have $\omega(\omega \otimes_{\phi \otimes \iota} I) = \omega(I \otimes_{\phi \otimes \iota} \omega)$. Therefore we can define a product on $E \otimes_{\phi} E$ by $xy = \omega(x \otimes_{\phi \otimes \iota} y)$. Then $E \otimes_{\phi} E$ is an algebra over \mathbb{C}. Note that we have

$$(\xi_1 \otimes_{\phi} \xi_2)(\eta_1 \otimes_{\phi} \eta_2) = (\xi_1 Q(\xi_2 \eta_1)) \otimes_{\phi} \eta_2.$$
Definition 3.2. We say that δ and Q are compatible if the following equation holds:
$$\delta(\xi \eta) = \delta(\xi) \delta(\eta)$$
for every $\xi, \eta \in E$.

Example 3.3 ([13]). Let $1 \in A_0 \subset A_1$ be an inclusion of C^*-algebras and let $P_1 : A_1 \to A_0$ be a faithful positive conditional expectation of index finite type. Let \{ $u_i, u_i^*; i = 1, \ldots, N$ \} be a quasi-basis of P_1. Let $E_1 = A_1$ be a Hilbert A_0-module with the A_0-valued inner product defined by $< a, b > = P_1(a^* b)$. Let $\phi_1 : A_1 \to \mathcal{L}_{A_0}(E_1)$ be a $*$-homomorphism defined by $\phi_1(a) b = ab$. We denote by ϕ_0 the restriction of ϕ_1 to A_0. Define $\delta \in \mathcal{L}_{A_0}(E_1, E_1 \otimes_{\phi_0} E_1)$ by $\delta(\xi) = \sum_{i=1}^{N} (\xi u_i) \otimes_{\phi_0} u_i^*$. The product on E_1 induced by δ agrees with the product on A_1. Then $(E_1, \phi_0, \delta, P_1)$ is a compatible counital A-coring.

Example 3.4. Let G be a finite groupoid. Set $A = C(G^{(0)})$ and $E = C(G)$. Then E is a right A-module with the right A-action defined by $(\xi a)(x) = \xi(x)a(s(x))$ for $\xi \in E$, $a \in A$ and $x \in G$. We define an A-valued inner product of E by
$$< \xi, \eta > (u) = \sum_{g \in G_u} \bar{\xi}(g) \eta(g)$$
for $\xi, \eta \in E$ and $u \in G^{(0)}$, where $G_u = s^{-1}(u)$ for $u \in G^{(0)}$. Then E is a Hilbert A-module. Define $*$-homomorphisms ϕ and ψ of A to $\mathcal{L}_A(E)$ by $(\phi(a) \xi)(x) = a(r(x)) \xi(x)$ and $\psi(a) = \xi a$ respectively for $a \in A$, $\xi \in E$ and $x \in G$. Note that we have $E \otimes_{\psi} E = C(G^2(ss))$ and $E \otimes_{\phi} E = C(G^{(2)})$, where $G^2(ss) = \{(g, h) \in G^2; s(g) = s(h)\}$. Let $W \in \mathcal{L}_A(E \otimes_{\phi} E, E \otimes_{\phi} E)$ be the MUO defined by $(W \xi)(g, h) = \xi(h, gh)$. Define an element $a_0 \in A$ by $a_0(u) = |G_u|^{-1/2}$ and define an element $\xi_0 \in E$ by $\xi_0(g) = a_0(s(g))$. Then ξ_0 satisfies Properties E1 and E2. Note that we have $||\xi_0|| = 1$. Define an element $\eta_0 \in E$ by $\eta_0 = \chi_{G^{(0)}} a_0^{-1}$. Define operators $Q_{\eta_0}, Q_{\xi_0} : E \to A$ by $Q_{\eta_0}(\xi) = < \eta_0, \xi >$ and $Q_{\xi_0}(\xi) = < \xi_0, \xi >$ respectively. Then $(E, \phi, \delta_{\xi_0}, Q_{\eta_0})$ is a compatible counital A-coring. The product on E induced by δ_{ξ_0} is of the form $\xi \eta = (\xi * \eta) a_0$, where $\xi * \eta$ is the convolution product on $C(G)$. We also have two compatible right counital A-corings $(E, \psi, \delta_{\xi_0}, Q_{\xi_0})$.

and \((E, \psi, \delta_{x_0}, Q_{x_0})\). Two products on \(E \otimes_{\psi} E\) associated with above right counital \(A\)-corings are different.

4. CORING STRUCTURES ASSOCIATED WITH INCLUSIONS OF \(C^*\)-ALGEBRAS

Let \(1 \in A_0 \subset A_1\) be an inclusion of \(C^*\)-algebras and let \(P_1 : A_1 \to A_0\) be a faithful positive conditional expectation of index-finite type with a quasi-basis \(\{u_i, u_i^*\}_{i=1}^N\).

Let \(E_1, \phi_1\) and \(\phi_0\) be as in Example 3.3. Set \(E_2 = E_1 \otimes_{\phi_0} E_1\) and define a \(\ast\)-homomorphism \(\phi_2 : A_1 \to \mathcal{L}_{A_0}(E_2)\) by \(\phi_2 = \phi_1 \otimes \iota\). Define a \(C^*\)-algebra \(A\) by \(A = \mathcal{L}_{A_0}(E_1, \phi_1)\) and a Hilbert \(A\)-module \(E\) by \(E = \mathcal{L}_{A_0}((E_1, \phi_1), (E_2, \phi_2))\), that is, \(E\) is the set of elements \(x \in \mathcal{L}_{A_0}(E_1, E_2)\) such that \(x\phi_1(a) = \phi_2(a)x\) for all \(a \in A\). The \(A\)-valued inner product on \(E\) is defined by \(<x, y> = x^*y\). We define \(\ast\)-homomorphisms \(\phi\) and \(\psi\) of \(A\) to \(\mathcal{L}_A(E)\) by \(\phi(a)x = (a \otimes_{\phi_0} I)x\) and \(\psi(a)x = (I \otimes_{\phi_0} a)x\) respectively. We suppose that there exists an MUO \(W \in \mathcal{L}_A(E \otimes_{\phi} E, E \otimes_{\phi} E)\) such that \(V^*\hat{V} = W \otimes I_{E_1}\), where \(V : E \otimes_{\phi} E \otimes I_{E_1} \to E_3\) and \(\hat{V} : E \otimes_{\phi} E \otimes I_{E_1} \to E_3\) are operators defined in [8]. As for sufficient conditions for \(W\) to exist, see [7] and [8]. Define an element \(x_0 \in E\) by \(x_0(\xi) = \xi \otimes_{\phi_0} 1\). Then \(x_0\) satisfies Properties E1 and E2. Note that we have \(\|x_0\| = 1\). Define an element \(\tilde{y}_0 \in E\) by

\[
\tilde{y}_0(\xi) = \sum_{i=1}^N (\xi u_i) \otimes_{\phi_0} u_i^*.
\]

Note that we have \(\tilde{y}_0^* (\xi \otimes_{\phi_0} \eta) = \xi \eta\), where \(\xi \eta\) is the product on \(A_1\). Define \(Q_{x_0}, Q_{\tilde{y}_0} \in \mathcal{L}_A(E, A)\) by \(Q_{x_0}(x) = <x_0, x>\) and \(Q_{\tilde{y}_0}(x) = <\tilde{y}_0, x>\) respectively.

Then we have the following theorem.

Theorem 4.1. (1) \((E, \phi, \delta_{x_0}, Q_{x_0})\) is a compatible right counital \(A\)-coring.

(2) Suppose that there exist elements \((u_i, w_i) \in E \times E (i = 1, \cdots K)\) such that

\[
\hat{\delta}_{x_0}(\tilde{y}_0) = \sum_{i=1}^K u_i \otimes_{\psi} w_i.
\]
Then \((E, \psi, \tilde{\delta}_{x_{0}}, Q_{\tilde{y}_{0}})\) is a compatible counital \(A\)-coring.

5. CORING STRUCTURES ON THE SET OF COMPACT OPERATORS

Let \(H\) be an infinite-dimensional separable Hilbert space. We consider \(H\) to be a Hilbert \(\mathbb{C}\)-module, in particular the inner product is linear in the second variable. We denote by \(A\) the \(C^*\)-algebra \(\mathcal{K}(H)\) of compact operators on \(H\). Let \(E\) be a Hilbert \(A\)-module \(\mathcal{K}(H, H \otimes H)\). The right action of \(A\) on \(E\) is defined by \((xa)(\xi) = x(a(\xi))\) for \(x \in E, a \in A\) and \(\xi \in H\) and the \(A\)-valued inner product of \(E\) is defined by \(<x, y> = x^*y\) for \(x, y \in E\). Define \(*\)-homomorphisms \(\phi\) and \(\psi\) of \(A\) to \(\mathcal{L}_{A}(E)\) by \(\phi(a)x = (a \otimes I_{H})x\) and \(\psi(a)x = (I_{H} \otimes a)x\) for \(a \in A\) and \(x \in E\) respectively. We denote by \(F\) the Hilbert \(A\)-module \(\mathcal{K}(H, H \otimes H \otimes H)\). The right action of \(A\) on \(F\) and the \(A\)-valued inner product of \(F\) are defined by the same formulas as those in \(E\). There exist unitary operators \(M \in \mathcal{L}_{A}(E \otimes_{\phi} E, F)\) and \(\overline{M} \in (E \otimes_{\psi} E, F)\) such that

\[
M(x \otimes_{\phi} y) = (x \otimes I_{H})y,
\]
\[
\overline{M}(x \otimes_{\psi} y) = (I_{H} \otimes x)y
\]

for \(x, y \in E\) respectively. Define \(W = M^{-1}\overline{M}\). Then we have the following:

Theorem 5.1. The operator \(W\) is the unique multiplicative unitary operator in \(\mathcal{L}_{A}(E \otimes_{\psi} E, E \otimes_{\phi} E)\).

Now we introduce a coring structure on \((E, \phi, \psi)\). Recall that an approximate unit \(\{u_{n}\}_{n=1}^{\infty}\) of \(A\) is said to be increasing if \(u_{n} \geq 0\) and \(u_{n+1} \geq u_{n}\) for every \(n\).

Definition 5.2. Let \(\delta\) be a coproduct of \((E, \phi)\). For \(n = 1, 2, \cdots\), let \(Q_{n}\) be an element of \(\mathcal{L}_{A}(E, A)\) such that \(Q_{n}(\phi(a)x) = aQ_{n}(x)\) for \(a \in A\) and \(x \in E\) and let \(\{u_{n}\}_{n=1}^{\infty}\) be an increasing approximate unit of \(A\) such that \(u_{1} \neq 0\) and \(u_{n} \neq u_{n+1}\) for every \(n\). Then \((\delta, \{Q_{n}\}_{n=1}^{\infty}, \{u_{n}\}_{n=1}^{\infty})\) is called a coring structure on \((E, \phi, \psi)\) if it
satisfies the following equations for every \(n \);

\[
t(I_E \otimes \phi Q_n)\delta = t'(Q_n \otimes \phi I_E)\delta = \psi(u_n),
\]

\[
Q_n\psi(u_n) = Q_n.
\]

Then \(\{Q_n\} \) is called an approximate counit.

Let \(T \) be an element of \(\mathcal{L}(H, H \otimes H) \). We will say that \(T \) has Property D if it satisfies the following conditions:

(i) \((T \otimes I_H)T = (I_H \otimes T)T \).

(ii) There exists a family \(\{K_n\}_{n=1}^{\infty} \) of mutually orthogonal non-trivial finite-dimensional subspaces of \(H \) such that \(H = \bigoplus_{n=1}^{\infty} K_n \) and there exists a complete orthonormal basis \(\{e_{k_{n-1}+1}, \ldots, e_{k_n}\} \) of \(K_n \) for \(n = 1, 2, \ldots \), where \(k_0 = 0 \), such that, if we set \(\lambda^{i}_{j,\ell} = < e_j \otimes e_{\ell}, Te_i > \), then \(\{\lambda^{i}_{j,\ell}\} \) satisfies the following conditions;

(a) for \(i = k_{n-1} + 1 \), \(\lambda^{i}_{i,i} \neq 0 \) and \(\lambda^{i}_{j,\ell} = \lambda^{i}_{\ell,j} = 0 \) for every \(j \in \mathbb{N} \) and \(\ell = k_m + 1 \) (\(m = 0, 1, 2, \ldots \)) except for \(j = \ell = i \),

(b) if \(\dim K_n \geq 2 \), for \(i = k_{n-1} + 2, \ldots, k_n \),

\[
\lambda^{i}_{i,k_{n-1}+1} = \lambda^{i}_{k_{n-1}+1,i} = \lambda^{k_{n-1}+1}_{k_{n-1}+1,k_{n-1}+1},
\]

and \(\lambda^{i}_{j,\ell} = \lambda^{i}_{\ell,j} = 0 \) for every \(j \in \mathbb{N} \) and \(\ell = k_m + 1 \) (\(m = 0, 1, 2, \ldots \)) except for \((j,\ell) = (i,k_{n-1}+1) \).

Then we have the following theorem:

Theorem 5.3. There exists a one-to-one correspondence between the set of coring structures \((\delta, \{Q_n\}, \{u_n\}) \) on \((E, \phi, \psi) \) and the set of elements \((T, \{K_n\}, \{e_{k_{n-1}+1}\}) \) which satisfy Property D. The correspondence is given as follows: If \((T, \{K_n\}, \{e_{k_{n-1}+1}\}) \)
has Property D, set

\[H_n = \oplus_{i=1}^{n} K_i, \]

\[\xi_n = \sum_{i=1}^{n} \eta_i \in H_n, \quad \text{where} \quad \eta_i = \left(\lambda_{k_{i-1}+1}^{k_{i-1}+1} \right)^{-1} e_{k_{i-1}+1} \in K_i, \]

define $f_n \in H^\ast \text{ by } f_n(\xi) = \langle \xi_n, \xi \rangle$, then $u_n \in \mathcal{K}(H)$ is the projection onto H_n and δ and Q_n are given by the following equations;

\[\delta(x) = M^{-1}(I_H \otimes T)x, \]

\[Q_n(x) = (I_H \otimes f_n)x. \]

Question. Suppose that T has Property D. Does T determine $\{K_n\}$ and $\{e_{k_{n-1}+1}\}$ uniquely?

The following theorem shows the relation between the coring structures and the multiplicative unitary operator W defined above:

Theorem 5.4. Let $(\delta, \{Q_n\}, \{u_n\})$ be a coring structure on (E, ϕ, ψ) and let T be the operator which corresponds to $(\delta, \{Q_n\}, \{u_n\})$ by Theorem 5.3. Put $x_n = Tu_n$. Then x_n is an element of E and satisfies Property E1. Let δ_n be the coproduct of (E, ϕ) defined by

\[\delta_n(x) = W(x_n \otimes_{\psi} x). \]

Then the following equation holds;

\[\delta = \lim_{n \to \infty} \delta_n \]

with respect to the strict topology on $\mathcal{L}_A(E, E \otimes_{\phi} E)$.

REFERENCES

Department of Applied Mathematics, Faculty of Science, Osaka Women's University, Sakai City, Osaka 590-0035, Japan

E-mail address: ouchi@appmath.osaka-wu.ac.jp