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CORING STRUCTURES AND HILBERT C*-MODULES

KIREFRFBFR  KPAR (MOTO O’UCHI)
OSAKA WOMEN’S UNIVERSITY

1. INTRODUCTION

S. Baaj and G. Skandalis [1] introduced the notion of multiplicative unitaries and
they studied Hopf C*-algebras associated with them. J. M. Vallin introduced the
notion of pseudo-multiplicative unitaries and algebraic structures associated with
them ([11], [12]). M. Enock and Vallin [2] studied pseudo-multiplictive unitaries
and quantum groupoids associated with inclusions of von Neumann algebras. The
author introduced a notion of multiplicative unitary operators (MUO) on Hilbert
C*-modules ([8], see also [6] and [7]). It is interesting to study natural algebraic
structures associated_with MUQ’s. In this note, we will show the relation btween
MUO?’s and coring structures on Hilbert C*-modules. Coring structures were in-
troduced by M. Sweedler [10] in the purely algebraic framework. Y. Watatani [13]
showed that incusions of C*-algebras give natural coring structures in the frame-
work of his index theory. In this note, we introduce notions of coring structures on
Hilbert C*-modules and study coring structures associated with MUQO’s. In Sections
2 and 3, we study coring structures associated with MUQO’s arising from groupoids
and inclusions of C*-algebras of inedx finite type in the sense of Watatani. In the

case of groupoids, the base algebras are commutative. In the case of inclusions of
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C*-algebras of index finite type, we do not know any concrete examples of MUQO’s
on infinite-dimensional Hilbert C*-modules. Therefore it is interesting to study con-
crete examples of MUQO’s and the associated coring structures such that the base
algebras are not commutative and the Hilbert C*-modules are infinite-dimensional.
In the last section, we study an MUO and the associatd coring structures on the
Hilbert C*-module of compact operators. In this case, the Hilbert C*-module is

infinite-dimensional and the base algebra is the C*-algebra of compact operators.

2. PRELIMINARIES

2.1. Multiplicative operators on Hilbert C*-modules. Let A be a C*-algebra,
let F be a Hilbert A-module and let ¢ and ¢ be *-homomorphisms of A to La(E).
We assume that ¢ and ¢ commute, that is, ¢(a)y(b) = ¥(b)¢(a) for all a, b € A.
We define a x-homomorphism ¢t ®,4 v of A to LA(E®¢ E) by (1®4%)(a) = I®4%(a).
and define a *-homomorphism ¢ ®, ¢ of A to LA(E®y E) by (t®y ¢)(a) = I®y ¢(’a).
Let W be an operator in L4(F ®y E,E ®, E). We assume that W satisfies thé

following equations;

(21) W( ®y ¢)(a) = (¢ ® 1) (@)W,
(2.2) W (¥ ®y )(a) = (¢ ®4 ¥)(a)W,
(2.3) W (¢ ®y 1)(a) = (¥ @y 1) ()W

for all a € A. Then we can define following operators;
W®yIE€LAEQyFEQ®yE,E®4E®yFE),
I®ue. W E LA(ERyERy E,E®y EQyE),
WRpl€La(E®RyE®y E,E®4 E®4 E),
I ®yg. W € LA(E®y E®y E,E ®,gy (E ®4 E)),



Since ¢ and ¢ commute, there exists an isomorphism Y5 of F ® 54 (E ®4 E) onto

F ®,94 (F ®, E) as Hilbert A-modules such that, for z; € E (i = 1,2, 3),
Th2(21 ® (22 ® 73)) = 72 ® (21 @ T3).

Definition 2.1 ([8]). Let W be an element of L4(E ®y E, E Q4 F). Assume that
W satisfies the equations (2.1), (2.2) and (2.3). An operator W is said to be multi-

plicative if it satisfies the pentagonal equation
(2.4) (W @4 I)(I @y W)(W @y I) = (I Qugp W)E12(I ®ya. W).

Eiafnple 2.2. Suppose that A = C. Then‘ E = H is a usual Hilbert space and
[,C‘(E) = C(H ) is the C*-albebra of bounded linear operators on H. Let ¢ = ¢ = id,
v;rhere id(A) = Mg for A € C. Then E ®;q F is the usual tensor product H @ H.
Let ¥ € L(H ® H) be the flip, that is, Z(6 ® 1) = n® £. Let W be an element of
L(H ® H). Then the pentagonal equationl(2.4) has the following form:

(2.5) WRNUIWYWRI=IIW)ZRI)(IRQW).

Defin an operator w by W = WEX. Then W satisfies the pentagonal equation (2.5)

if and only if W satisfies the usual pentagonal equation ;
(2.6) WiaWi3Was = WasWhs.

2.2. Coproducts on Hilbert C*-modules. Let E be a Hilbert A-module and ¢

be a *-homomorphism of A to L4(E).

Definition 2.3. Let ¢ be an operator in L4(E, E®4E). We say that § is a coprod-

uct of (E, ¢) if § satisfies the following equations;

(2.7) dd(a) = (¢ ®t)(a)d  forallae€ A,

(2.8) (6 ® Ig)s = (I ® 6)6.
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Suppose that § is a coproduct for E. For £, n € E, we define a product {n in £
by &n = 6*(£ ®4n). It follows from (2.8) that this product is associative. Then E is

an algebra over C. Note that we have ||&n|| < [|0]/|I]]|Inl]-

2.3. Coproducts associated with MUO’s. Let E be a Hilbert A-module and
let ¢ and 1) be *-homomorphisms of A to £L4(E) such that ¢ and 1 commute. Let
W € L4(E ®, E, E ®, E) be a multiplicative unitary-operator (MUO).
For an element & of E, we say that & has Property E1 if it satisfies the following
conditions;
(i) W (& ®y &) = &o ®4 o-
(ii) For every £ € E, there exists an element 7¢,(§) of L4(E) such that

<7, T (f)c >=< W(£0 Ry 77),5 ®¢ C > for every 1, C € E.

Fix an element & with Property E1. Define an operator § = &, in LA(E,E @4 E)
by 6(n) = W (& ®y n). Then we have 6*(§£ ® n) = g, (£)n. Since W satisfies the

pentagonal equation, d is a coproduct of (E, ¢).
For an element & of E, we say that & has Property E2 if it satisfies the following
cpnditions;
(1) W (& ®y &) = & By o-
(ii) For every £ € E, there exists an element 7¢,(§) of L4(E) such that

<N, T ()¢ >=< W*(& ®4 1), E®y (> foreveryn, ( € E.

Fix an element & with Property E2. Define an operator 6= 3\50 in LA(E,E ®y E)

~

by 8(n) = W*(& ®4 n). Since W satisfies the pentagonal equation, § is a coproduct
of (E, ). |
3. CORING STRUCTURES ON HILBERT C*-MODULES

- Let F be a Hilbert A-module and let ¢ be a *-homomorphism of A to L4(E). Note

that A itself is a Hilbert A-module with the A-valued inner product < a,b >= a*b.
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We denote by i the *-homomorphism of A to £4(A) defined by i(a)b = ab. Then
there exists a unitary operator ¢ in L4(E ®; A, E) defined by (£ ®; a) = &a. If ¢ is

non-degenerate, then there exists a unitary operator t' in £4(A ®, E, E) such that

t'(a ®¢ £) = ¢(a)¢.

Definition 3.1. Suppose that ¢ is non-degenerate. Let d be a coproduct of (E, @)
and let Q be an element of L4(F, A), such that Q¢(a) = aQ for a € A.
(1) We say that (E, ¢,4, Q) is a right counital A-coring if it satisfies the following
equation;
t(Ig ®p Q)6 = Ig.
'f‘hen Q is called a right counit.
(2) We say that (E, ¢,d,Q) is a left counital A-coring if it satisfies the following
equation,;
t'(Q ®y4 Ig)6 = IE.
Then ( is called a left counit.
(3) We say that (E, ¢,6,Q) is a counital A-coring if @ is a right and left counit.

Then Q is called a counit.

For n > 2, we set
E®" =EQy- ®3 E  (ntimes).

Let (E,¢,6,Q) be a left or right counital A-coring. We defin an element w of
EA(E®¢4, E®¢2) by

w={tIg ®s Q) ® Ie}(Ir ®yg. 6" ®¢ IE).

Then we have w(w ®@. I) = w(I ®pe. w). Therefore we can difine a product on

E®4E by zy = w(2 ®4e. y). Then E®y E is an algebra over C. Note that we have

(61 ®¢ &2) (M ®g m2) = (L1Q(&2m)) @4 M2
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Definition 3.2. We say that d and () are compatible if the following equation holds;
6(&n) = 6(£)é(n) for every §, n € E.

Example 3.3 ([13]). Let 1 € Ay C A; be an inclusion of C*-algebras and let P :
A, — Ap be a faithful positive conditional expectation of index finite type. Let
{ui,uf;1=1,--- ,N} be a quasi-basis of P;. Let E; = A; be a Hilbert Ap-module
with the Aj-valued inner product defined by < a,b >= Pl(afb). Let ¢ : A, —
La,(E1) be a x-homomorphism defined by ¢,(a)b = ab. We denote by ¢, the
restriction of ¢; to Ao. Define 6 € L4,(Ey, By ®4, E1) by 6(€) = TN, (Eus) @y, ul-
The product on E; induced by & agrees with the product on A;. Then (E;, ¢, 9, P1)

is a compatible counital A-coring.

Example 3.4. Let G be a finite groupoid. Set A = C(G®) and E = C(G). Then
E is a right A-module with the right A-action defined by (£a)(z) = &(z)a(s(z)) for
£ € E,a€ Aand z € G. We define an A-valued inner product of E by

<tm> @)=Y &Il

9€Gu
for £, n € E and u € GO, where G, = s7'(u) for u € G, Then E is a Hilbert
A-module. Define *-homomorphisms ¢ and 9 of A to L4(E) by (¢(a)é)(z) =
a(r(z))¢(x) and 9(a) = &a respectively for a € A, £ € E and z € G. Note
that we have E ®y E = C(G?(ss)) and E ®3 E = C(G?), where G*(ss) =
{(g,h) € G?; s(g9) = s(h)}. Let W € LA(E ®, E,E ®4 E) be the MUO defined by
(WE)(g,h) = &(h, gh). Define an element ag € A by ag(u) = |G,|™/? and define
an element & € E by &(g9) = ao(s(g)). Then &, satisfies Properties E1 and E2.
Note that we have ||&]| = 1. Define an element ny € E by 19 = xgoag'. Define
operators Qny, Qg : E = A by Qye(€) =< mo,€ > and Qg,(§) =< &, & > respec-
tively. Then (E, @, ¢, @y,) is a compatible counital A-coring. The product on E
induced by &, is of the form &n = (£ * n)ao, where & x 7 is the convolution prod-

uct on C(G). We also have two compatible right counital A-corings (E, ¥, d¢,, Q)
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and (E, %, d¢,, Qn,)- Two products on F ®, E associated with above right counital

A-corings are different.

4. CORING STRUCTURES ASSOCIATED WITH INCLUSIONS OF C*-ALGEBRAS

Let 1 € Ay C A; be an inclusion of C*-algebras and let P, : A; — Ag be a faithful
positive conditional expectation of index-finite type with a quasi-basis {u;, u!}Y,.
Let E), ¢1 and ¢ be as in Example 3.3. Set E; = E; ®¢4, E; and define a *-
homomorphism‘ ¢ : Ay = La,(E2) by ¢ = ¢ ® t. Define a C*-algebra A by
A= L4,(E1, ¢1) and a Hilbert A-module E by

E = EAO((Ely ¢1)’ (EZ’ ¢2))7

that is, E is the set of elements z € L4,(F1, F3) such that z¢,(a) = ¢2(a)z for all
a € A. The A-valued inner product on F is deﬁned by < z,y >= z*y. We define *-
homomorphisms ¢ and w of 7A to Lao(E) by ¢(a)z = (a®¢, 1)z and Y(a)z = (I®¢,a)z
respectively. We suppbse that there exists an MUO W € L4(E @y E, E ®4 E) such
that V*V = W ®; In,, where V : E®y E®; B, — B and V : E®y E ®; Ey — By
are operators defined in [8]. As for sufficient conditions for W to exist, see 7] and
[8]. Define an element zo € E by ¢(§) = € ®¢, 1. Then z, satisfies Properties E1

and E2. Note that we have ||zo|| = 1. Define an element gy € E by
N

Jo(6) =) _(Ew:) ®gy uj.

i=1
Note that we have 7" (£ ®g, 7) = &7, where £n is the product on A;. Define
Qzo> Qi € La(E, A) by Qg(z) =< o,z > and Qg () =< o,z > respecively.

Then we have the following theorem.

Theorem 4.1. (1) (E, ¢, 8z, Qz,) s a compatible right counital A-coring.
(2) Suppose that there esist elements (v;,w;) € Ex E (i =1,--- K) such that

K
NS Zvi Ry W;-
=1
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Then (E,w,gzo,ng) is a compatible counital A-coring.

5. CORING STRUCTURES ON THE SET OF COMPACT OPERATORS

Let H be an infinite-dimensional separable Hilbert space. We consider H to be
a Hilbert C-module, in particular the inner product is linear in the second variable.
We denote by A the C*-algebra K(H) of compact operators on H ‘. Let E be a Hilbert
A-module K(H, H® H). The right action of A on E is defined by (za)(¢) = z(a(£))
fér T € E,a € Aand £ € H and the A-valued inner product of E is defined by
< z,y >=z"y for z, y € E. Define *-homomorphisms ¢ and ¢ of A to L4(E) by
#¢(a)z = (a ® Ig)zr and Y(a)z = (Ig @ a)z for a € A and = € F respectively. We
denote by F' the Hilbert A-module X(H,H ® H ® H). The right action of A on F
and the A-valued inner product of F' are defined by the same formulas as those in
E. There exist unitary operators M € L4(FE ®4 E,F) and Me (E ®y E, F) such
that

M(z ®4y) = (z® Ix)y,
Mz ®yy) = Iz @)y

for z, y € E respectively. Define W = M ~1M. Then we have the following:

Theorem 5.1. The operator W is the unique multiplicative unitary operator in

LA(E®y E,EQ4E).

Now we introduce a coring structure on (E, ¢,v). Recall that an approximate

unit {u,}52, of A is said to be increasing if u, > 0 and un11 > u, for every n.

Definition 5.2. Let § be a coproduct of (F,¢). Forn = 1,2,.--, let Q, be an
element of L4(F, A) such that Q,(#(a)z) = aQn(z) for a € A and z € E and:let
{un}22, be an increasing approximate unit of A such that u; # 0 and u, # up4

for every n. Then (6, {Qn}32;, {un}32,) is called a coring structure on (E, ¢, %) if it

91



satisfies the following equations for every n;

t(IE Qs Qn)6 = t,(Qn s IE)(S = w(un)’

an(un) = Qn-
Then {Q.} is called an approximate counit.

Let T be an element of L(H,H ® H). We will say that T has Property D if it

satisfies the following conditions:

(i) (TRIg)T=Ug®T)T.

(ii) There exists a family {Kn}32, of mutually orthogonal non-trivial finite-dimensional
subspaces of H such that H = &2, K,, and there exists a complete orthonor-
mal basis {ex,_,+1, " €k, } of Ky forn=1,2,--. ', where ko = 0, such that, if
we set X , =< e; ® es, T'e; >, then {)},} satisfies the following conditions;

(a) for 1 = kn—l + 1, A;:,i # 0 and /\;',l = 2,]

0 for every j € N and ¢ =
km+1(m=0,1,2,.--) except for j ={ =71,
(b) if dim K,, > 2,for i =kp_1 + 2, , kn,

1 — Ai — Akn—1+1
iykn—l+1 - kn—l+11i - kn—l+1ykn—l+1,

and Xiy = M}, =0 forevery j € Nand £=kn+1 (m=0,1,2,---) except
for (5,€) = (1, kn—1 +1). |

Then we have the following theorem:

Theorem 5.3. There ezists a one-to-one correspondence between the set of coring
structures (0, {Qn}, {un}) on (E,d,v) and the set of elements (T, {Kn.},{€k._,+1})

which satisfy Property D. The correspondence is given as follows: If (T, {Kn}, {€k._,+1})
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has Property D, set

n —_— e
ki_1+1 - )
& = Zm € H,, wheren; = (’\k;_i+1,k;_1+1) ex,_,+1 € K,

=1
define f, € H* by fn(€) =< &, € >, then u, € K(H) is the projection onto H, and

d and Q, are given by the following equations;
§(x) = M~ (Ig ® T,
@n(z) = (Ig ® fa)z.

Question. Suppose that T has Property D. Does T determine {K,} and {ex,_,+1}
uniquely?
The following theorem shows the relation between the coring structures and the

multiplicative unitary operator W defined above:

Theorem 5.4. Let (6, {Qn}, {un}) be a coring structure on (E,$,v) and let T be
the operator which corresponds to (6,{Qn},{un}) by Theorem 5.3. Put z, = Tu,.
Then x, is an element of E and satisfies Property E1. Let 6, be the coproduct of
(E, ®) defined by

on(z) = W(zp ®y ).

Then the following equation holds;

6 = lim 6,

n—o00

with respect to the strict topology on L4(E,E @4 E).
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