<table>
<thead>
<tr>
<th>Title</th>
<th>Caloric morphisms on $\mathbb{R}^n \setminus {0}$ with respect to radial metrics (Potential Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>下村 勝孝</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2002: 1293: 150-153</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42568</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Caloric morphisms on $\mathbb{R}^n \setminus \{0\}$
with respect to radial metrics

Katsunori Shimomura
Faculty of Science
Ibaraki University

ここでは、$M = \mathbb{R}^n \setminus \{0\}$ ($n \geq 2$) 上に radial な Riemann 計量を入れた多様体上で caloric morphism を考える。

$
\rho$ を $(0, \infty)$ 上の正值 C^∞-関数とする。$\mathbb{R}^n \setminus \{0\}$ の各点 x に対して、$ds^2 = \rho(|x|)(dx_1^2 + \cdots + dx_n^2)$ を radial な Riemann 計量とする。$\mathbb{R} \times M$ 内のある領域上でこの Riemann 計量に関する熱方程式

$$Hu = \frac{\partial u}{\partial t} - \Delta_{\rho} u = 0$$

を満たす関数 u を caloric function と呼ぶ。但しここで Δ_{ρ} は M のラプラスアン

$$\Delta_{\rho} u = \sum_{i=1}^{n} \frac{1}{\rho(|x|)^{n/2}} \frac{\partial}{\partial x_i} \left(\rho(|x|)^{n/2-1} \frac{\partial u}{\partial x_i} \right)$$

$$= \frac{1}{\rho(|x|)} \Delta_{x} u + \frac{n - 2}{2} \frac{\rho'(|x|)}{\rho(|x|)^2} \sum_{i=1}^{n} \frac{x_i}{|x|} \frac{\partial u}{\partial x_i}$$

である。

D を $\mathbb{R} \times M$ 内の領域とし，

$$f(t, x) = (f_0(t, x_1, \ldots, x_n), f_1(t, x_1, \ldots, x_n), \ldots, f_n(t, x_1, \ldots, x_n))$$

を D から $\mathbb{R} \times M$ への C^∞-写像，φ を D 上の正值 C^∞-関数とする。

$f(D)$ 上の任意の caloric function $u(\tau, y)$ に対して，$\varphi(t, x)(u \circ f)(t, x)$ が D 上の caloric function になるとき，(f, φ) を caloric morphism と呼ぶ。

M は Riemann 多様体であるから，[5] の特徴付けにより，(f, φ) が caloric morphism であるための必要十分条件は，以下の (E-1) ～(E-4) で与えられる。

(E-1) \[H\varphi = 0, \]
(E-2) \[\frac{\partial f_i}{\partial t} = \Delta_{\rho} f_i + 2g(\nabla_{\rho} \log \varphi, \nabla_{\rho} f_i) - \frac{df_0}{dt}(t)[(\Delta_{\rho} x_i) \circ f], \]
(E-3) \[\nabla_{\rho} f_0 = 0, \]
(E-4) \[g(\nabla_{\rho} f_i, \nabla_{\rho} f_j) = \delta_{ij} \frac{df_0}{dt}(t)(\frac{1}{\rho} \circ f), \]
但しここで ∇_ρ は M の gradient

$$\nabla_\rho u = \frac{1}{\rho(|x|)} \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial}{\partial x_i}$$

$i, j = 1, \ldots, n$ である。

この特徴付けを用い，以下では，$\mathbb{R} \times \mathbb{R}^n$ 上の Appell 変換

$$f(t, x) = (-\frac{1}{t}, \frac{x}{t}), \quad \varphi(t, x) = \frac{1}{|t|^{n/2}} \exp\left(\frac{-|x|^{2}}{4t}\right)$$

の直接の拡張として，f が原点を固定，または原点を無限遠点に写す変換

$$f(t, x) = (f_0(t), \nu(t)R(t)x), \quad \text{または} \quad f(t, x) = (f_0(t), \nu(t)R(t)\frac{x}{|x|^{2}}),$$

$(\nu(t) > 0, R(t)$ は直交行列) になっている caloric morphism と，その場合の ρ の形を調べる。

Riemann 計量が radial であるから，\mathbb{R}^n の回転及び \mathbb{R} の平行移動

$$f(t, x) = (t + a, Rx), \quad \varphi(t, x) = C$$

$(a \in \mathbb{R}, R$ は直交行列，$C > 0)$ は caloric morphism になる。

それ以外に，言わば自明でないものには以下のものがある。何か他 metric ρ に強い制限が付く。

1. (Appell transformation) $p > 0, k \in \mathbb{R}$ $(k \neq -2)$，$\rho(r) = pr^k$ とする。その時

$$f(t, x) = \left(\frac{at+b}{ct+d}, \frac{R}{|ct+d|^{2/(k+2)}}x\right),$$

$$\varphi(t, x) = \frac{C \exp\left[\frac{-p|x|^{k+2}}{(k+2)^2|ct+d|}\right]}{|ct+d|^{n/2}}$$

(但し $a, b, c, d \in \mathbb{R}$ s.t. $ad - bc = 1, C > 0, R$ は直交行列) は caloric morphism.

$k = -2$ の場合は，この形の変換は存在しない。一方，$k = -2$ の場合には Euclidean metric の場合には無かった型の変換が存在する。
2. (Kelvin transformation) \(\nu > 0 \), \(\rho(r) \) は \(\rho\left(\frac{\nu^2}{r^2}\right) = \frac{r^4}{\nu^2} \rho(r) \) を満たす (例えば \(\rho(r) = \frac{\nu^2}{r^2} \)) 正值 \(C^\infty \)-関数とする。その時

\[
f(t, x) = (t + a, \nu R \frac{x}{|x|^2}), \quad \varphi(t, x) = C
\]

(但し \(C > 0 \), \(R \) は直交行列) は caloric morphism.

3. (The dilation) \(\nu > 0 \), \(\rho(r) \) は \(\rho(\nu r) = \nu^k \rho(r) \) を満たす (例えば \(\rho(r) = r^k \)) 正值 \(C^\infty \)-関数とする。その時

\[
f(t, x) = (\nu^{k+2} t + a, \nu Rx), \quad \varphi(t, x) = C
\]

(但し \(a \in \mathbb{R} \), \(C > 0 \), \(R \) は直交行列) は caloric morphism.

\(k = -2 \) の場合は \(t \) の係数が 1 になってしまい、

4. \(p > 0 \), \(\rho(r) = pr^{-2} \) とする。その時

\[
f(t, x) = (t + a, e^{\alpha t + \beta} Rx), \quad \varphi(t, x) = C|x|^{\alpha p/2} e^{1_{{}_{4}\alpha^{2}t}},
\]

\[
f(t, x) = (t + a, e^{\alpha t + \beta} \frac{Rx}{|x|^2}), \quad \varphi(t, x) = C \frac{1}{|x|^{\alpha p/2}} e^{1_{{}_{4}\alpha^{2}t}}
\]

(但し \(a, \alpha, \beta \in \mathbb{R} (\alpha \neq 0) \), \(C > 0 \), \(R \) は直交行列) は caloric morphism.

\(n = 2 \) の場合は特別で、\(R(t) \) が定数でない、つまり \(t \) につれて \(f \) が回転する型の変換が存在する。

5. \(n = 2 \), \(p > 0 \), \(\rho(r) = pr^{-2} \) とする。その時

\[
f(t, x) = (t + a, \nu e^{\alpha t} R(bt + c)x), \quad \varphi(t, r, \theta) = C r^{\alpha p/2} e^{1_{{}_{2}\beta \theta}} e^{1_{{}_{4}\alpha^{2}t}},
\]

\[
f(t, x) = (t + a, \nu e^{\alpha t} R(bt + c) \frac{x}{|x|^2}), \quad \varphi(t, r, \theta) = C \frac{1}{r^{\alpha p/2}} e^{1_{{}_{2}\beta \theta}} e^{1_{{}_{4}\alpha^{2}t}}
\]

(但し \(a, b, c, \alpha, \in \mathbb{R} (\alpha \neq 0) \), \(\nu, C > 0 \), \(R(s) = (\cos s, -\sin s, \sin s, \cos s) \), (r, \theta) は \(\mathbb{R}^2 \) の極座標) は caloric morphism.
REFERENCES

