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ISOTROPY REPRESENTATION AND
PROJECTION TO THE PRV-COMPONENT

HIROSHI YAMASHITA (IUF {#)

1. INTRODUCTION

The notion of isotropy representation is attributed to Vogan ([14], [15]), and it gives a
refinement of the associated cycle attached to Harish-Chandra modules for real reductive
groups. In fact, the multiplicities in the associated cycle are not just positive integers, but
they can be interpreted as the dimension of the corresponding isotropy representations.
An approach to the isotropy representation has been made in [18], [19] and [20], by means
of the invariant differential operators of gradient-type on Riemannian symmetric spaces.

The purpose of this paper is to describe the isotropy representation W, attached to
every singular unitary highest weight module L()). To be precise, let g = ¢ @ p be
a symmetric decomposition of a complex simple Lie algebra g. We assume that the
reductive Lie subalgebra € of g is not semisimple, or equivalently, (g, ¢) is assumed to be
the complexification of an irreducible Hermitian symmetric pair (go, ) (see [13]). We
write K¢ for the connected, and simply connected Lie group with Lie algebra & Let
g = py D Edp_ be the triangular decomposition of g which arises from the €j-invariant
complex structure on po. Then, L()) in question is the irreducible, unitarizable (g, Kc)-
module with highest weight A, such that its associated variety V), is strictly contained in
p.. As is well-known, V), is the closure of a single nilpotent Kc-orbit O (depending on \)
in p4, which is an irreducible affine algebraic cone. We take an element X in O. Then
W, is a finite-dimensional representation of the isotropy subgroup K¢(X) of X in K¢
(see (2.2) for the definition), and the associated cycle of L()\) turns to be dim Wj - [O).

If (g, €) corresponds to the irreducible Hermitian symmetric space of type AIII or CI
(resp. DIII), all (resp. almost all) unitary highest weight modules are obtained by de-
composing tensor products of the oscillator (Segal-Shale-Weil) representation. In this
oscillator setting, it has been already shown in [17], [18] (see also [12] for the multiplicity)
that the assignment W} <> L()) essentially coincides with the Howe duality correspon-
dence with respect to a reductive dual pair in the stable range, where the smaller member
of the pair is compact. In this paper, we focus our attention on the remaining singular
L()\)’s which can not be realized by the Howe correspondence (non oscillator setting). By
using the projection onto the PRV-component, the isotropy representations are explicitly
determined for such highest weight modules. This together with our previous work [18]
in the oscillator setting establishes the following theorem, which is the main result of this

paper.
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Theorem 1.1. The representation W) of f(C(X ) is irreducible for every singular uni-
tary highest weight module L()), and it is explicitly described in Theorems 8.1 and 4.7
(infinitesimally in the non oscillator setting).

Our results for DI and EVII give a clearer understanding of some multiplicity formulae
obtained by Kato and Ochiai ([9], [8]). It should be mentioned that, for the case EVII,
a representation isomorphic to our Wj of By (the semisimple part of the Lie algebra of
Kc¢(X)) in Theorem 4.7, appears in the work [3] of Dvorsky and Sahi on tensor products
of singular unitary representations.

We organize this paper as follows. Section 2 shows how to characterize the dual Wy
of the isotropy representation for any (not necessarily singular) unitary highest weight
module L()), in terms of the projection to the PRV-component (Proposition 2.1). This
PRV-projection gives the principal symbol of an invariant differential operator of gradient-
type whose (Kc-finite) kernel realizes the dual of L()). By looking at the weights of the
f(c-modl{les in question, we can provide ourselves an effective method for constructing a
nonzero K¢ (X)-submodule of W} (Proposition 2.4). In Section 3, we specify after [18] the
Kc(X)-module W in the oscillator setting (Theorem 3.1). The last section, Section 4, is
the principal part of this paper. In the non oscillator setting, the isotropy representation
W, is explicitly determined for every singular unitary highest weight module L(A) of non
scalar type (Theorem 4.7). Such L())’s are listed in table (4.1) by virtue of Joseph’s
result [11, Section 7], and we can examine each L()) in the list, separately.

This article is based on a joint work with Akihito Wachi at Hokkaido Institute of
Technology. An enlarged version of this article with complete proofs will appear elsewhere.
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2. ISOTROPY REPRESENTATION FOR UNITARY HIGHEST WEIGHT MODULE

2.1. A characterization of W;. We fix once and for all a Cartan subalgebra t of &.
Let A be the root system of (g,t). The totality of compact (resp. noncompact) roots
will be denoted by A, (resp. by A,). We choose a positive system At of A so that
p+ equals the sum of root subspaces corresponding to noncompact positive roots. Set
At :=A.NA* and A} := A, N A*. Construct a maximal family fi,... , 8, of strongly
orthogonal noncompact positive roots as in [4, 1.4] (cf. [18, 2.1]), where § := §, is the
highest root of A*, and r is the rank of the symmetric pair (g, €).

Weset pj := 1 +---+ 5 (j=1,...,r). Then p; is Af-dominant and integral, and a
result of Schmid says that the symmetric algebras S(p.) of p+ decompose as €-modules
(Kc-modules) in the following way:

(2'1) S(p:l:) = @ V:t(llu1+---+€r#r)'

4 yeos obr EZZO
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Here, V, stands for the irreducible finite-dimensional &-module with extreme weight v.
Note that V4, occur in the homogeneous components S7(p..) of degree j, respectively.

Let L()\) be the irreducible unitary (g, Kc)-module with A*-highest weight A € t*.
Such L(A)’s have been classified first by Enright, Howe and Wallach [5]. Asin Section 1,
let V\ = O C p, denote the associated variety of L()). In this section, we do not assume
that L()\) is singular. Fix an element X in the Kc-orbit @, and let m(X) be the maximal
ideal of S(p_) generated by the elements

Y - B(X’ Y) (Y € p_),

where B is the Killing form of g. Under the identification S(p-) = C[p,] (Clp,] is
the polynomial ring on p,) through B, the maximal ideal m(X) C C[p,] determines
the one point variety {X} in p;. Then it follows from [18, Cor. 3.9] that the isotropy
representation W, for L(A) turns to be

(2:2) Wy = L(A)/m(X)L(}),

where the isotropy subgroup Kc(X) acts on the quotient space L(A)/m(X)L()) in the
canonical way. Note that W), never vanishes because dim W, is equal to the multiplicity
in the associated cycle of L()A). If (€x,C¢,) denotes the one-dimensional representation
of abelian Lie algebra p_ defined by {x(Y') := B(X,Y) (Y € p_), the dual space W; of
W, is naturally isomorphic to the space of p_-homomorphisms from L()) to Cg,:

(2.3) W5 ~ Hom,_(L()), Ce, ).

We are going to look at the dual K¢(X)-module W; instead of the original W,.
For this, we need more detailed structure on the (g, Kc)-module L(}). Let M()) :=
U(g) ®u(e+p,) Va be the generalized Verma module induced from irreducible Kc-module
V), where U(r) denotes the universal enveloping algebra of a Lie algebra r, and the p..-
action on V) is defined to be null. As a Kc-module, M()) is decomposed into a direct
sum of homogeneous components as

oo

M) =Sp-)eV= @ (87(p-) ® V2).

§=0

Further, M()) has a unique maximal (g, K¢)-submodule N()), and L()\) is realized as
the irreducible quotient of M(A) by N()):

L(A) = M(A)/N(}).

Let Areq denote the set of reduction points consisting of highest weights A of L(\) with
reducible M () : Apeq := {A |N(X) # {0}}. For A € A,eq, let ¢ be the smallest positive
integer such that

NN (S'(p-) @ V3) # {0}
This integer i is called the level of reduction of L()\). By Enright-Joseph [4] one gets

1 < i <r, and the maximal submodule N(A) is generated over S(p_) (= U(p-)) by the
PRV-component V,_,,; of the tensor product V_,, ® Vj:

(2.4) N()\) = S(p-)Va-,, with Vi_,, C S'(p-) ® Vi
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Note that V_,, is viewed as a K¢-submodule of Si(p_) through the isomorphism (2.1).
The above inclusion Vj_,, into S*(p_) ® V) gives rise to a surjective Kc-homomorphism

P:S(p,) ® VY — Vi,

by taking the dual, where S'(py) ® V;* = (S*(p-) ® Vi)* through the Killing form B
restricted to p4 X p_. As shown in [18], P gives rise to the principal symbol of a differen-
tial operator of gradient-type (on Hermitian symmetric space) whose kernel realizes the
maximal globalization of the dual L(A)* of L()).

The following proposition allows us to characterize W5 by means of the projection P.

Proposition 2.1 (cf. [18, Section 3.3]). The natural map
Vi = M(X) = L(A\) = W, = L(A)/m(X)L(A)
from V) to W, is surjective, and it induces a f{C(X )-isomorphism
Wi = { {v' € V¥ | P(X'®0") =0} (A€ Arad),
Vx (A & Area)-

So, we get dim Wy, < dim V), for any L()\). Moreover, the associated variety V5 of L(A)
s characterized as

(2.6) Vi={Zep: | KerP(Z'® -) # {0}

Remark 2.2. (1) f A € Ayeq, then L()) is not singular: V), = p,, and the above proposition
says that W5 is just V) viewed as a R'C(X )-module by restriction.

(2) L()) is called of scalar type of dimV, = 1. In this case also, W is the one-
dimensional character of K¢(X) acting on V.

(2.5)

Remark 2.3. It has been shown in [18] that W* is isomorphic to the space of generalized
Whittaker vectors for L()) with respect to the (C*°-induced) generalized Gelfand-Graev
representation I, attached to the Cayley transform Og of O:

Homg,f(c( ()‘)71-‘03) - WA'

Here, Ok is the nilpotent orbit in go corresponding to O through the Kostant-Sekiguchi
correspondence (see also [7]).

2.2. Observations on tensor product U ® V;*. In order to find a nonzero Kc(X)-
submodule of W5, let us now make simple observations on tensor products of finite di-
mensional K¢-modules. Let U be any finite-dimensional Kc-module with a weight u.
Suppose that there exists a nonzero Kc-homomorphism P : U ® VY = Vy_,. We take an
element sq in the Weyl group W, for (&, t) so that so(A — p) is AF-dominant. Put

Ucsou = @D U(9),
d<sop

where U(6) denotes the weight space for 4, and < is a lexicographic order on t* such that
v > 0 for all v € Af. )
For an = € Uy, we define a subset N (z) of K¢ as follows:

(2.7) N(z):={k € Kc | k-1 € Ucsu}-
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Let R@(x) be the isotropy subgroup of z in Kc. We denote by v; , a nonzero weight
vector in Vy* with extreme weight —soA. Clearly, NV (z) is right K¢ (z)-stable, and so,

U :=(N(z)™'-v;,)c (the complex linear span of N'(z)™" - v; ,)

forms a K¢ (z)-submodule of V.
Then we readily obtain

Proposition 2.4. One gets P(z ® v*) = 0 for every v* € U*. Namely, U* is a K¢(z)-
submodule of Ker P(z ® - ).
Proof. Let y = Y 5,95 (ys € U(d)) be an element of Uy, Note that ys @ vj, has

weight § — soA, which is smaller than the lowest weight —so(A — ) of Vy_,. Then, one
sees that P(ys ® v} ,) can not be a nonzero weight vector of Vy_,. This implies that

(2.8) Ply®v;,,) =0 for y € Ucsys.
For each k € N (z). We deduce from the above equality that
Piz®k™-vl,)=k"'-Plk-z®v},) =0,
since k - x € Ucyyr. This proves the lemma. O
In Section 4, we will apply this proposition for U = p, and u = 8, and give a nonzero

submodule of Wy attached to each singular unitary highest weight module of non oscillator
and non scalar type (see Proposition 4.4).

Remark 2.5. A similar argument can be used to construct a nonzero quotient of the
isotropy representation for (not necessarily holomorphic) discrete series representation
(see [16] and [20]).

3. OSCILLATOR SETTING [18]

This section gives a brief summary of our previous work [18, Section 5] concerning the
isotropy representations W), for L(\) in the oscillator setting.
Let (G, G},) be one of the reductive dual pairs

(SU(p, q),U(k)), (Sp(n,R),O(k)) and (SO*(2n), Sp(k)) with k=1,2,....
Then, the corresponding (complexified) symmetric pairs (g, ) are of the form
(sl(n,C), sl(p,C) @sl(g,C) ®C), (sp(n,C), gl(n,C)), and (s0(2n,C), gl(n,C)),

respectively. They have rank r = min(p,q), n, [n/2]. We set ¢ = 1 for G = SU(p, q)
and Sp(n,C), and € = 2 for G = SO*(2n). Let us consider the oscillator representation
(wk, C[Mp k) (Fock model) of g x Gy, acting on the polynomial ring C[M, «] over the
space M, ¢ of complex matrices of size n x ek (see [18, 5.1] for the precise definition). Note
that the elements of p_ act on C[M,, ] by multiplication of homogeneous polynomials of
degree 2.

The oscillator representation wy of g X G, decomposes into irreducibles without multi-
plicity as follows.

(3.1) ClMnil ~ € L) ®0.
oe€X(k)



Here, ¥ (k) is a subset of Cﬁ}c (the set of equivalence classes of irreducible finite-dimensional
representations of the compact group G}), and L(),) is the unitary (g, Kc)-module with
highest weight \,. The assignment o — L(},) is one to one, and L(),) is called the theta
lift of 0.

The associated variety V), = O does not depend on o € Z(k) so far as we fix k. The
highest weight module L(),) is singular if and only if ¥ < r. Note that (k) equals the
whole G, if the pair (G, G}) is in the stable range: k < r.

Let us now assume that k < r, since we are interested in singular unitary representations
in this paper. Then, it is shown that the reductive part of the isotropy subgroup K¢ (X)
(X € O) contains a factor, which is a covering group of the complexification (G})c of G.
This yields a natural group homomorphism

Y/ Rc(X) — (G;c)c
Theorem 3.1 (cf. [18, Th. 5.14]). The isotropy representation W, for L(\,) (0 €
L(k) = G}, with k <) is described as
(3.2) Wy, ~ 0 ® (c* o),

where 0 15 a one-dimensional character of K¢ (of determinant type). In particular, Wy,
is an irreducible Kc(X)-module.

This theorem says that W5« L(),) sets up the Howe duality correspondence, up to

a central character of K¢. Note that W,, can be described also for the case £ > r. We
refer to Theorems 5.14 and 5.15 in [18] for the precise statement.

4. NON OSCILLATOR SETTING

In this section, we determine the isotropy representation W, (infinitesimally) for ev-
ery singular unitary highest weight module L()\) which can not be realized through the
oscillator representation.

4.1. A list by Joseph. In view of Remark 2.2 (2), it is enough to consider such L(})’s
of non scalar type. By virtue of [11, Section 7], they are enumerated as follows:

(g,8) r {(g,a) A(k=1,2,...) dim O
BI 2 | (Bnya1) |wn+((1/2) — n)m 2n — 2
DI 2 | (Dp,01) |kwn+©2—k—-—n)w |2n-3

kwy,_1+(2—-k—n)w; |2n -3
DIII (tube) | n | (Dan,2n) | kwy + (2 — k — 2n)wa, {202 —n —1
EVII 3 (E7, CV7) kwog + (—'Qk - 8)‘607 26

Here we use the standard notation of Bourbaki [1, Planches II, IV, VI] on irreducible root
systems (e.g., w; is the fundamental weight associated to a simple root ¢;), and a denotes
the unique noncompact simple root.
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Remark 4.1. The above representation L(w,+((1/2) —n)w,) for BI is somewhat special in
the classification theory of unitary highest weight modules. Namely, after the terminology
of [5], this is in “Case III” , where two associated root systems Q()\¢) and R()\y) with
Ao = @y + (1 — 2n)w; do not coincide with each other.

Four cases in (4.1) have some properties in common. First, the level of reduction i of
L(}) is equal to 1 for each case. This means that ) is at the last unitarizable place. (X is
also at the first reduction point except for EVII.) Second, every (g, ) in (4.1) is of tube
type, and the dense Kc-OI'blt (9 in V, has codimension 1 in p,. Third, the highest weight
A is of the form

(4.2) A= kw, + u(k)( with 2u(k) € Z,

where , (resp. ¢) is the fundamental weight attached to some compact simple root a,
(resp. the noncompact simple root o). The irreducible ¢-module V,,, with highest weight
™, is a basic representation identified (up to a central character of &) as follows.

(9,8) ¢ Ve
BI ~ | o(2n - 1,C) ® C | spin representation
(4.3) DI o(2n — 2,C) @ C | two half-spin representations
DIII (tube) | gi(2n,C) natural representation
EVII EsapC 27 dimensional representation on p_

4.2. Explicit formula for W,. To specify the representations W, for \’s in (4.1), we
begin with the following lemma, which is shown by case-by-case analysis.

Lemma 4.2. There erists an sy € W, with the following properties (1)—(3):
(1) soA = A, (2) so(A — B) is AF-dominant, (3) O N (p+)<sos # 0-

Remark 4.3. Set Ac(A) := {y € A. | (A\,7) = 0}. Decomposing A.(}) into a disjoint
union of simple root systems, let @'()) be the simple component of A.()\), connected to
—@ in the extended Dynkin diagram. Except for BI, the longest element sy of the Weyl
group of Q’()\) has the propertles (1)—(3) (see [2, Prop. 6.8]).

By virtue of the property (3), we can take an element X € O N (P+)<sos- Then,
Proposition 2.4 can be applied to get a nonzero K¢(X)-submodule of W3, as follows.

Proposition 4.4. Let Uy be the Kc(X )-submodule of V' generated by the lowest weight
vector vy € VY. Then one gets Uy C Wj;.

Now one has f(c-isomorphismsv
VX = Vi, ®Coupye and Vg > Vi, 05 ® Couryg,

where Cy denotes the central character of K¢ defined by b¢ (b € R). Note that Viw, is the
k-fold Young product (V3 )* of V2_, which is realized on the irreducible K¢c-submodule of



69

Sk(Vz.) (= the k-fold symmetric tensor of V% ) generated by lowest weight vector
k
—N——
(v3,)F =s, vl € SH(VZ).

In this way, W5 is looked upon as
(4.4) Wi C V¥ =(V2) ®Clumy C S¥(Va,) ® Cougryc-

With the help of Proposition 4.4 we can prove the following fact, which reduces our
task of describing W; to the special case k = 1.

Proposition 4.5. Let W}, denote the Kc(X)-submodule of V% defined by Wy, := {v* €
V. | Po(X ® v*) = 0} through the PRV-projection P, : p. ® V5 — Vg _5. Then we
deduce

(4.5) Wi = Ve 0 (S*(Ws,) ® Courye) = Wi, ) ® Cougryc-

Remark 4.6. The first equality in (4.5) follows from a standard argument on tensor
(Young) products, while we need a case-by-case study to prove the second equality.

Finally, we arrive at the following theorem, by investigating W}, in detail through the
PRV-projection P, : p, ® Vs — Vs _, 5 =V5 5 given by a kind of contraction ([6]).

Wa

Theorem 4.7. (1) It holds that Uy = Wy. )
(2) Let ¥(X),, denote the semisimple part of the Lie algebra of Kc(X). Then, W is
irreducible as a €(X)ss-module, and it is described ezplicitly as

V,f:_ 2 (Case BI),
Ve, o Ve, (Case DI),

(4.6) Wi = kanllxxc(;n- (Case DIII),
ka1 (Case EVII).

For instance, the above isomorphism for BI reads that €(X),s is of type B;, 2, and that
W, is an irreducible module over the simple Lie algebra o(2n — 3,C) of type B, 2 with
highest weight w,_, (i.e., the spin representation).

This together with Theorem 3.1 establishes Theorem 1.1, the main result of this paper.

Remark 4.8. (1) For Cases DI and EVII, the multiplicity dim W), has been computed by
Kato and Ochiai ([8], [9]), by a completely different method. They rely on the Poincaré
polynomial of L()) and on a decomposition formula of Kazhdan-Lusztig type. Proposition
4.4 together with their result would give a shorter proof of the isomorphism (4.6) for these
two cases. Nevertheless, we can prove (4.6) directly by means of the PRV-projection F,.

(2) For Case EVII, the direct sum of V,:;‘l (k=0,1,2,...) is isomorphic to the quasi-
regular representation of SO(9) on the sphere S® ~ SO(9)/SO(8). This compact sym-
metric space of rank 1 appears in the work of Dvorsky and Sahi [3, Section 2], where
they give an extension of the theta correspondence by using tensor products of singular
unitary representations (see also [5, Lemma 13.6]).
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We end this paper by illustrating how to describe W, = W, for the most interesting
case.

Example 4.9 (Case EVII). In this case, one gets Kc-isomorphisms:
(4.7) Vae =29+ ®C_g, and Vg, _g=~p. with (=
So, the PRV-projection P, = Ps turns to be

Po:py ®(p: ®Cz¢) = p.

We consider the gradation of g defined by the adjoint action of Hs € t corresponding to
the highest root § = €g — €7. Then, the Lie algebra g decomposes as

g=9(-2)0g(-1) ®g(0) ®g(1) ® 8(2),

where g(j) denotes the j-eigenspace for ad Hg. This naturally induces eigenspace decom-
positions of ¢ and py by ad Hg, respectively as follows:

t=t-1)t0)®t1), pi=p:(0)Dps(£l) ®ps+(£2).

Note that the semisimple part of €(0) is of type Ds, and that p.(0), &(£1) ~ p,(+1), and
p+(£2) give irreducible representations of ¢(0), isomorphic to the natural representation,
two half spin representations, and the trivial representation, respectively.

Now we can choose an X € O Np,(0). Then the centralizer €(X) of X in &, the Lie

algebra of K¢(X), is expressed as
B(X)=8(-1) Dt X)rea With B(X)req :=8(X)N¥0) =~ B,y ®C (see also [10, §6]).

Using these structural facts, we can deduce that W;, C V5 =~ p, ® C_y is the 9
dimensional &(X)-submodule of p. (0), which is isomorphic to the natural representation
of B4.
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