<table>
<thead>
<tr>
<th>Title</th>
<th>Enbeddings of derived functor modules into degenerate principal series (Representations of noncomutative algebraic systems and harmonic analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matumoto, Hisayosi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2002, 1294: 72-75</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42581</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Enbeddings of derived functor modules into degenerate principal series

Hisayosi Matumoto
(松本久義)
Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Tokyo
153-8914, JAPAN
(東京大学 大学院 数理科学研究科)
e-mail: hisayosi@ms.u-tokyo.ac.jp

§ 1. Formulation of the problem

Let G be a real linear reductive Lie group and let $G_{\mathbb{C}}$ its complexification. We denote by g_0 (resp. g) the Lie algebra of G (resp. $G_{\mathbb{C}}$) and denote by σ the complex conjugation on g with respect to g_0. We fix a maximal compact subgroup K of G and denote by θ the corresponding Cartan involution. We denote by \mathfrak{f} the complexified Lie algebra of K.

We fix a parabolic subgroup P of G with θ-stable Levi part M. We denote by N the nilradical of P. We denote by p, m, and n the complexified Lie algebras of P, M, and N, respectively. We denote by $P_\mathbb{C}$, $M_\mathbb{C}$, and $N_\mathbb{C}$ the analytic subgroups in $G_\mathbb{C}$ with respect to p, m, and n, respectively.

For $X \in m$, we define

$$\delta(X) = \frac{1}{2} \text{tr} (\text{ad}_g(X)|_n).$$

Then, δ is a one-dimesional representation of m. We see that 2δ lifts to a holomorphic group homomorphism $\xi_{2\delta} : M_{\mathbb{C}} \to \mathbb{C}^\times$. Defining $\xi_{2\delta}|_{N_{\mathbb{C}}}$ trivial, we may extend $\xi_{2\delta}$ to $P_{\mathbb{C}}$. We put $X = G_{\mathbb{C}}/P_{\mathbb{C}}$. Let \mathcal{L} be the holomorphic line bundle on X corresponding to the canonical divisor. Namely, \mathcal{L} is the $G_{\mathbb{C}}$-homogeneous line bundle on X associated to the character $\xi_{2\delta}$ on $P_{\mathbb{C}}$. We denote the restriction of $\xi_{2\delta}$ to P by the same letter.

For a character $\eta : P \to \mathbb{C}^\times$, we consider the unnormalized parabolic induction $\text{Ind}_P^G(\eta)$. Namely, $\text{Ind}_P^G(\eta)$ is the K-finite part of the space of the C^∞-sections of the G-homogeneous line bundle on G/P associated to η. $\text{Ind}_P^G(\eta)$ is a Harish-Chandra (g, K)-module.

If G/P is orientable, then the trivial G-representation is the unique irreducible quotient of $\text{Ind}_P^G(\xi_{2\delta})$. If G/P is not orientable, there is a character ω on P such that ω is trivial on the identical component of P and the trivial G-representation is the unique irreducible quotient of $\text{Ind}_P^G(\xi_{2\delta} \otimes \omega)$.

Let \mathcal{O} be an open G-orbit on X. We put the following assumption:
Assumption 1.1 There is a \(\theta \)-stable parabolic subalgebra \(q \) of \(g \) such that \(q \in \mathcal{O} \).

Under the above assumption, \(q \) has a Levi decomposition \(q = l + u \) such that \(l \) is a \(\theta \) and \(\sigma \)-stable Levi part. In fact \(l \) is unique, since we have \(l = \sigma(q) \cap q \).

For each open \(G \)-orbit \(\mathcal{O} \) on \(X \), we put

\[
\mathcal{A}_{\mathcal{O}} = H^{\dim \mathfrak{u}\otimes}(O, \mathcal{L})_{K\text{-finite}}.
\]

Namely, in the terminology in [Vogan-Zuckerman 1984], we have \(\mathcal{A}_{\mathcal{O}} = \mathcal{A}_q = \mathcal{A}_q(0) \).

We consider the following problem:

Problem 1.2 Is there an embedding: \(\mathcal{A}_{\mathcal{O}} \hookrightarrow \text{Ind}^{G}_{P}(\xi_{t\delta}) \) or \(\mathcal{A}_{\mathcal{O}} \hookrightarrow \text{Ind}^{G}_{P}(\xi_{t\delta} \otimes \omega) \)?

§ 2. Complex groups

Let \(G \) be a connected real split reductive linear Lie group. Here, we consider Problem 1.2 for the complexification \(G_{\mathbb{C}} \) rather than \(G \) itself. Embedding \(G_{\mathbb{C}} \) into \(G_{\mathbb{C}} \times G_{\mathbb{C}} \) via \(g \mapsto (g, \sigma(g)) \), we may regard \(G_{\mathbb{C}} \times G_{\mathbb{C}} \) as a complexification of \(G_{\mathbb{C}} \). Each parabolic subgroup of \(G_{\mathbb{C}} \) is the complexification of a parabolic subgroup of \(G \). Let \(P \) be a parabolic subgroup of \(G \).

Then, the complexification of \(P_{\mathbb{C}} \) can be identified with \(P_{\mathbb{C}} \times P_{\mathbb{C}} \) via the above embedding \(G_{\mathbb{C}} \hookrightarrow G_{\mathbb{C}} \times G_{\mathbb{C}} \). Hence, the complex generalized flag variety for \(G_{\mathbb{C}} \) is \(X \times X \). We fix a \(\theta \) and \(\sigma \)-stable Cartan subalgebra \(\mathfrak{h} \) of \(g \) such that \(\mathfrak{h} \subseteq p \). We denote by \(w_0 \) (resp. \(w_p \)) the longest element of the Weyl group with respect to \((g, \mathfrak{h}) \) (resp. \((m, \mathfrak{h}) \)).

We easily have:

Proposition 2.1. \(X \times X \) has a unique \(G_{\mathbb{C}} \)-orbit (say \(\mathcal{O}_{\mathbb{C}} \)). \(\mathcal{O}_{\mathbb{C}} \) satisfies the Assumption 1.1 if and only if \(w_0 w_p = w_p w_0 \).

We consider \(\xi_{t\delta} \) for \(G \). Then the character \(\xi_{t\delta} \otimes \xi_{t\delta} \) on \(P_{\mathbb{C}} \times P_{\mathbb{C}} \) is the \(\xi_{t\delta} \) for \(G_{\mathbb{C}} \).

For characters \(\mu \) and \(\nu \) of \(P_{\mathbb{C}} \), we denote the restriction of \(\mu \otimes \nu \) to \(P_{\mathbb{C}} \) realized as a real form of \(P_{\mathbb{C}} \times P_{\mathbb{C}} \) as above by the same letter.

For the complex case, we have:

Theorem 2.2. ([Vogan-Zuckerman 1984])

\[
\mathcal{A}_{\mathcal{O}_{\mathbb{C}}} \cong \text{Ind}^{G_{\mathbb{C}}}_{P_{\mathbb{C}}}(\xi_{t\delta} \otimes 1) \cong \text{Ind}^{G_{\mathbb{C}}}_{P_{\mathbb{C}}}(1 \otimes \xi_{t\delta}).
\]

Therefore, Problem 1.2 reduced to the problem of the existence of intertwining operators.

For \(t \in \mathbb{C} \), we define the following generalized Verma module:

\[
M_p(t\delta) = U(g) \otimes_{U(p)} \xi_{t\delta}.
\]

The following result is well-known.

Proposition 2.3. For \(t_1, t_2 \in 2\mathbb{Z} \),

\[
\text{Ind}^{G_{\mathbb{C}}}_{P_{\mathbb{C}}}(\xi_{t_1\delta} \otimes \xi_{t_2\delta}) \cong (M_p(-t_1\delta) \otimes M_p(-t_2\delta))^{K_{\mathbb{C}}\text{-finite}}
\]

So, our Problem 1.2 is seriously related to the existence of homomorphisms between generalized Verma modules. In fact, the following result is known.
Theorem 2.4. ([Matumoto 1993])

Let \(t \) be a non-negative even integer. Then we have

\[
M_p(-(t + 2)\delta) \leftrightarrow M_p(t\delta)
\]

if and only if \(w_0w_p \) is a Duflo involution in the Weyl group for \((\mathfrak{g}, \mathfrak{h})\).

If \(w_0w_p \) is a Duflo involution, using Proposition 2.2 we have:

\[
\begin{align*}
\text{uInd}_{P_{\mathbb{C}}}^{G_{\mathbb{C}}}(1 \otimes 1) & \rightarrow \text{uInd}_{P_{\mathbb{C}}}^{G_{\mathbb{C}}}(1 \otimes \xi_{2\delta}) \\
\text{uInd}_{P_{\mathbb{C}}}^{G_{\mathbb{C}}}((\xi_{2\delta} \otimes 1) & \rightarrow \text{uInd}_{P_{\mathbb{C}}}^{G_{\mathbb{C}}}((\xi_{2\delta} \otimes \xi_{2\delta})).
\end{align*}
\]

In fact, we have:

Theorem 2.5. \(A_0 \leftrightarrow \text{uInd}_{P_{\mathbb{C}}}^{G_{\mathbb{C}}}((\xi_{2\delta} \otimes \xi_{2\delta})) \) if and only if \(w_0w_p \) is a Duflo involution in the Weyl group for \((\mathfrak{g}, \mathfrak{h})\).

§ 3. Type A case

As we seen in the case of complex groups, the statement in Problem 1.2 is not correct in general. However, for type A groups, we have affirmative answers.

3.1 \(\text{GL}(n, \mathbb{C}) \)

We retain the notation in §2. We fix a Borel subalgebra \(b \) such that \(\mathfrak{h} \subseteq b \subseteq p \). We denote by \(\Pi \) the basis of the root system with respect to \((\mathfrak{g}, \mathfrak{h})\) corresponding to \(b \). We denote by \(S \) the subset of \(\Pi \) corresponding to \(p \). Assumption 1.1 holds if and only if \(S \) is compatible with the symmetry of the Dynkin diagram. For a Weyl group of the type A, each involution is a Duflo involution. Hence, we have:

Theorem 3.6. Under Assumption 1.1, we have \(A_0 \leftrightarrow \text{uInd}_{P_{\mathbb{C}}}^{G_{\mathbb{C}}}((\xi_{2\delta} \otimes \xi_{2\delta})) \).

3.2 \(\text{GL}(n, \mathbb{R}) \)

Speh proved any derived functor module of \(\text{GL}(n, \mathbb{R}) \) is parabolically induced from the external tensor product of some so-called Speh representations and possibly a one-dimensional representation. Using this fact, we can reduce Problem 1.2 to embedding Speh representations into degenerate principal series. More precisely, we consider \(G = \text{GL}(2n, \mathbb{R}) \) and let \(P \) be a maximal parabolic subgroup whose Levi part is isomorphic to \(\text{GL}(n, \mathbb{R}) \times \text{GL}(n, \mathbb{R}) \). Then, \(X = G_{\mathbb{C}}/P_{\mathbb{C}} \) contains a unique open \(G \)-orbit (say \(O \)). In this setting, Assumption 1.1 holds. The fine structure of degenerate principal series for \(P \) has already been studied precisely. ([Sahi 1995], [Zhang 1995], [Howe-Lee 1999], [Barbasch-Sahb-Speh 1988]) From their results, we have:

\[
A_0 \leftrightarrow \text{uInd}_{P}^{G}((\xi_{2\delta}) \quad \text{if } n \text{ is odd},
A_0 \leftrightarrow \text{uInd}_{P}^{G}((\xi_{2\delta} \otimes \omega) \quad \text{if } n \text{ is even}.
\]

We can deduce an affirmative answer to Problem 1.2 from this.
3.3 $\text{GL}(n, \mathbb{H})$

In this case, we also have an affirmative answer to Problem 1.2. The argument is similar to (and easier than) the case of $\text{GL}(n, \mathbb{R})$.

3.4 $\text{U}(m, n)$

Let $G = \text{U}(m, n)$ and let P be an arbitrary parabolic subgroup of G. In this case, Assumption 1.1 automatically holds. We denote by V the set of open G-orbits on $X = G_{\mathbb{C}}/P_{\mathbb{C}}$. In fact, we have:

\[
\text{Socle}(\text{Ind}^{G}_{P}(\xi_{2\delta})) = \bigoplus_{\mathcal{O} \in V} \mathcal{A}_{\mathcal{O}}.
\]

References

