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The Elliptic Representation of the Painlevé 6 Equation

Davide Guzzetti — RIMS

1 Introduction

We review our results, to be found in [10] [11], on the elliptic representation of the sixth Painlevé equation
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Though the elliptic representation of PVI has been known since R.Fuchs [7], in the literature there is
no general study of its analytic implications. To fill this gap, we studied in [11] the analytic properties
of the solutions in elliptic representation for all values of a, 3,7, 6 and we derived their critical behavior
close to the singular points z = 0,1, c0. Moreover, we solved the connection problem for generic values
of a,3,7,6 and in [10] for the special (non-generic) case 8 = v = 1 — 2§ = 0, which is important in 2-D
topological field theory.

The first analytical problem with Painlevé equations is to determine the critical behavior of the
transcendents at the critical points' z = 0,1, 00. Such a behavior must depend on two parameters, which
are integration constants. The second problem, called connection problem, is to find the relation between
the couples of parameters at different critical points. The method of isomonodromic deformations
developed in [14] [15] was applied to the Painlevé 6 equation in [13], to solve such problems for a class
of solutions of PVI with generic values of the parameters. The non-generic case 8 =7=1-2§ =0 is
studied in [6] [19] [10] for its applications to topological field theory. Studies on the critical behavior can
be also found in [25].

Here we show that the elliptic representation is a valuable tool to study the critical behavior of
the Painlevé 6 transcendents. In [10] [11] we obtained results which include the results of [13] [6]
and extend the class of solutions to which they apply. On the other hand, we needed to use the
isomonodromic deformation theory to solve the connection problem, to be formulated below, for the
elliptic representation.

The elliptic representation was introduced by P. Painlevé in [22] and R. Fuchs in [7]. Let
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be a linear differential operator and let p(z;w;,w2) be the Weierstrass elliptic function of the independent
variable z € P, with half-periods w;, wy. Let us consider the following independent solutions of the
hyper-geometric equation Lw = 0:
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(4)1(.’12) = —2—F (5,5,1,1‘) s wz(z) = 2"2-F (5,5,1,1—1) ,
where F' (%, %, 1; a:) is the standard notation for the hyper-geometric function. Here z is in the universal
covering of P*\{0,1, 00}, so that at this stage we do not worry about the choice of branch-cuts. It is
proved in [7] that the Painlevé 6 equation is equivalent to the following differential equation for a new

function u(z):
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The connection to Painlevé 6 is given by the following representation of the transcendents:

) = o (i) wn(a)) + 5

The algebraic-geometrical properties of the elliptic representations where studied in [18]. Nev-
ertheless, the analytic properties of the function u(z) were not studied, except for the special case
a=pf=v=1-2§=0. In this case the function u(z) is a linear combination of w; and w,. This case
was well known to Picard [23], and the critical behavior was studied in [19].

In [11], we studied the analytic properties of u(z) for any value of a,3,v,5. As a result, given a
Painlevé 6 equation specified by a choice of «, 3,7, 8, we found the critical behavior of its transcendents
belonging to a class which contains almost all possible solutions of the equation. The meaning of “almost”
will be clear later. A transcendent in the class vanishes as z (as as variable in the universal covering
of P1\{0,1,00}) approaches a critical point. Nevertheless, along some particular paths approaching the
critical point, the transcendent does not vanish: it has oscillatory behavior. Qualitatively speaking,
the oscillations are due to the existence of (movable) poles close to the particular paths having an
accumulation point in the critical point. In [10] we found analogous results for the special case 8 = v =
1 - 26 =0 and o any complex number

As remarked above, our class of solutions include “almost” all transcendents, but there are some
transcendents which are not singed out by our method. This is for example the case of the Chazy
solutions, whose critical behavior is different from ours (see [19]).

2 Our results

2.1 Local Representation

The equation £(u) = 0 has a general solution ug(r) = 2v1w; () + 2v2wa(z), 11,v2 € C. We look for a
solution of (1) of the form u(z) = 2vyw1(z) + 2vowa(z) + 2v(z), where v(z) is a perturbation of ug. Let
Co := C\{0}, Co the universal covering and let 0 < r < 1. We define the domains
iy

_z"2

16~z

—imyvy

16—

1—!12

<T,

< r} (2)

D(r;v1,1v2) = {m € Co such that |z| <,

Do(r) := {:c € Co such that |z| < 'r} (3)
We observe that the translations »; — v; + 2N;, ¢ = 1,2, N; € Z do not change a transcendent in the
elliptic representation

¥(z) = 0 (e (a) + vawa(2) + v(z);n (2),wa(2)) + T2

This is a consequence of the periodicity of the p-function. Therefore, one can take 0 < Ry; < 2,¢ =1,2.
Nevertheless, we don’t need to suppose such a range explicitly. Only in the case S, = 0 we need to
suppose that 0 < v, < 2. Finally, let us introduce the following expansion:

v(z; v, 1e) 1= Zanx" + Z bpmz” [e—iwl (f_ﬁ)l‘"z]m n Z CnmT™ [eimzl (lz_s)""]m (4)

n>1 n>0,m2>1 n>0,m>1
Theorem 1: Let vy, vy be two complex numbers.

I) For any complez v1, vo such that Svy # 0 there exist a positive number v < 1 and a transcendent

y(z) = P(Vlwl (z) + vowa(x) + v(z; 11, V2); wl(z),W2(1;)) + 1 _; d

such that v(z; vy, v2) is holomorphic in the domain D(r;v1,v2) and it is given by the ezpansion (4) which
is convergent in D(r;vy,v2). The coefficients an, bnm, Cam, @ = 1,2, are certain rational functions of
vy. Moreover, there erists a positive constant M (v;) such that

—imiy 1)1—”2 i (1)”2
€ (16 M ANT

[v(z; v, v2)| < M(v2) <|z| + ) in D(r;v1,0s) (5)
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II) For any complez vy and real vy, with the constraint 0 < vo < 1 or 1 < vy < 2, there exists a
positive r < 1 and a transcendent

14z
3 )

y(z) = @(Vlwl(x) + vowa(x) + v(z;v1,v2); Wi (I),wz(m)) + if0<ry <1

or
1+
y(z) = P(wal(x) + vowa(x) + v(z; —v1,2 — 17); m(z),wz(m)) + —B—I- fl<wvy <2

such that v(z;v1,v2) and v(z; —v1,2 — 1v2) are holomorphic in Dy(r), with convergent expansion (4) and
bound (5) (for 1 < vy < 2 substitute vy — —vy, Vo — 2 — 1)

Note that in the theorem
vy # 0, 1

We stress that in case II), if vo is greater that 2 or less then 0, we can always make a translation
Vs — 1o + 2N to obtain 0 < v5 < 2 (on the other hand, if —2N < v, < 2 — 2N, the formulae of case IT)
hold with the substitution vs +— v5 + 2N). Note also that 14 and v, play asymmetric roles.

Observation 1: As a consequence of the theorem, for any IV € Z and for any complex 14,77 such that
Svy # 0, there exists ry < 1 and a transcendent y(z) = p(ulwl (z) + [v2 + 2N)wa(z) + v(z; 01,02 +

2N); wl(z),wg(x)) -+ % in D(r;11,v2 + 2N). By periodicity of the p-function we re-write the tran-

scendent as follows:

1
y(z) = p(ulwl(a:) + vowa(z) + v(z;v1,v2 + 2N); wl(x),wg(z)) + —;—f in D(r;vy,ve + 2N).

Moreover, we showed in [11] that if a transcendent has the elliptic representation

1+2
3

y(z) = p(1101(2) + vawn() + v(zi v, 12); wi(2),wa(e)) +
in D(r,v1,v2) for some vy, va, Svz # 0, then for any integer NV there exists v (depending on vy, v, and
N) such that the transcendent has also the representation
l1+zx

3

y(2) = p(Viw1(2) + vaws(@) + V(g v, 2 + 2N); (@), wa(e)) +

in D(r,v],v2 + 2N). v; can be explicitly computed.

Observation 2: Another consequence of the theorem is that for any complex iy, v, such that Sve # 0
there exists y(z) = go(—ulwl(z) + [2 — vp) wa(z) + v(z; —11,2 — 1y); wl(z),wz(a:)) + 12, Again we use
the fact that the p-function is periodic w.r.t. 2w, and it is an even function. Therefore the transcendent
becomes

1
y(@) = p(1r01(@) + vawa(e) = v(z; —01,2 — )i wi(2),wa(2)) + 5, in D(r; —11,2 — 2)

Note that the series —v(x; —v1,2 — 12) is of the form
m
n n -ty i 2wz n | irv z \¥2-1
Zan:c + Z bamT {e ‘(16) + Z CamZ" |e l(fé)
n>1 n>20,m2>1 n>0,m>1
where we have re-named the constants a,, bnm, Chm-
The domain D(ry;v1, V2 + 2N) can be written as follows:

1zl

(?Rl/z + 2]\7) In Té

- 781 —Inry < Srpargz <

<(?Rl/g—l-}—?N)ln%—rri‘wlelnrN, lz] < rn
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Imv,argx+[ntImv,

+(Rey,+2N)In 16 ]

-Inr+1In1l6

In ||

-lnr

Inr+2In16

-Inr-In16

Inr+In16

-Inr-21In16
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Inr-In16
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D, (v,+2[N+1])

Figure 1: The domains D (r; v1,v2+2N) := D(r; 11, v2+2N), Da(r; 11,12 +2N) := ’D(‘r; —-v1,2-v3—-2N)
and D (r;vy,ve + 2[N + 1)), Da(r;v1,v2 + 2[N + 1]) for arbitrarily fixed values of 11, v2, N. They are
represented in the plane (In|z|, Svpargz + [7S1 + (Rvz + 2N)1n 16]).

Therefore the domain D(ry, —11,2 — v, — 2N) is

(R — 1+ 2N)ln|Tx6| — 781 —InTy < Swreargz <
l=|
. 16
We can draw their picture in the (In|z|, Sv; arg z)-plane. See figure 1.

It is remarkable that the elliptic representation allows us to conclude that the same transcendent has
different representations on the union of the domains D(ry,—v1,2 —v2 — 2N), D(rn;v1,v2 + 2N). The
movable poles of the transcendent are outside the union.

<(Rvy —2+2N)In = — 7Sy +Inry, |z <7N

2.2 Critical Behavior

It is possible to compute the critical behavior for z — 0 of a transcendent of Theorem 1. For simplicity,
we consider z — 0 along the paths defined below. Let Sv, # 0 and V € C. We define the following
family of paths joining a point =g € D(r;v;,12) tox =0 .

|z|

B Vi 2L ocv<n - ()

argr = argxg + Svs EN

The paths are contained in D(7; v, v2). If Svp = 0 any regular path contained in Dy(r) can be considered.
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Theorem 2: Let v, v» be given.

If Sy # 0, the critical behavior of the transcendent y(z) = p(viwr + vowe + v(z;v1,v9);wr,we) +
(1 + z)/3 when z — 0 along the path (6) is:

For0<V <1: .
1 el ” y v
y(z) = -1 [16—”;—1—] 2 (1 + O(|z*2| + |=* D). )
ForV =0:
_:_B_ =2 _sre el 1’:1_ urul_yzm
y(z) = 5 t+sin z 2 In + +"§co [ (16) ] (1+ O(z)). (8)
ForV =1:
. 1 bt —imw 1—py 1™
y(z) =z sin® |4 2V21 16 + % + Z bom [ i (11_6) 2] (1 + O(x)). (9)
m21

For v, real we have two cases. For0 < vy < 1, the transcendent y(z) = p(riwy +vawa+v(z; V1, v2); w1, ws )+
(1 + z)/3 defined in Do(r) has behavior
1 ei"wl 12 v 1-v
y(z)=-z [W] 2 (1+0(|z2| +|z'72])), O0<wm <1 (10)
For 1 < v; < 2, the transcendent y(z) = p(riwr + vews + v(z; —11,2 — V) wy,w2) + (1 + z)/3 defined
in Do(r) has behavior

; -1
1 8%
@) =-7 [1‘36—,,2_;] 272 (1+0(|z* 72| +)227Y)), 1< <2 (11)

Note that for V = 0 the transcendent has oscillatory behavior with no limit as  — 0. The oscillations
are due the existence of poles that lie outside the union of the domains of figure 1. They have an
accumulation point in the critical point £ = 0. In [11] we showed the existence of such poles in one
example fora=8=v=1-26 =0.

2.3 The Critical Points z = 1,00

Theorems 1 and 2 deal with the point z = 0. We now turn to the other critical points. Let us use the
notation w( )= = w, wgo) := ws; they are a basis of solutions for the hyper-geometric equation at z = 0.
Let us define w(l) .— wa, w( ) .= = wy: they are a basis of solutions for the hyper-geometric equation at
z = 1. Finally, let wl ) = Wy + w2, wg ) = wy: they are a basis of solutions for the hyper-geometric

equation at z = co. We construct solutions

u(z) = sV (1)
—- = (@) + v s (2) + vV (z)

in a neighborhood of z = 1, and solutions

_u(;) = r{™u{® (@) + vfwf) (2) + v()(z)
in a neighborhood of z = co. For the computation of the critical behaviors of u(z) we need the connection
formulas for the three bases of solutions of the hyper-geometric equation (see [20]). Thus, it is necessary

to specify branch-cuts in the above definitions. We choose |argz| < 7 for w | arg(l —z)| < = for w(l)
—7 < argz < 0 for wg and |argz| < 7 for w§°°). Once they are so defined, they are continued on the
universal covering of P1\{0, 1, c0}.

We refer to [11] for the analogous of Theorems 1 and 2 at z = 1, oo.
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2.4 Connection Problem

The elliptic representation allows us to obtained detailed information about the critical behavior of the
Painlevé transcendents. On the other hand, the local analysis does not solve the connection problem.
This is the problem of determining the critical behavior of a given transcendent at £ = 0, z = 1 and
T = co. In our framework, we ask if a transcendent may have, at the same time, three representations

y(z) = (u(o)w ° 4 V(O) (0) +0@) 4+ 1tz
1
= p(ufl)wg) + uél)wél) +0vM) + —; ad
1
= (1w 4 () 4 () 4 Tz
Moreover, we look for formulae which connect the three couples of parameters (u§°),u§°)), (u§1),u§1)),
N7

The connection problem may be solved using the method of isomonodromic deformations, as it was
first done in [13]. The PVI is the isomonodromy deformation equation of a Fuchsian system of differential

equations
Ai(z
L )y
b4 Z—T z—1

dY [Ao(z) , Az(x)
=

The 2 x 2 matrices A;(z) (: = 0,z,1 are labels) depend on z in such a way that the monodromy
of a fundamental solution Y (z,z) does not change for small deformations of z. They depend on the
parameters a, 3,v,6 of PVI as follows:

Ao(z) + A1 (z) + Az (z) = —% (68" _2 ) ,  eigenvalues of A;(z) = :i:%ﬂ,-, i=0,1,x

Ll e g Yp 1l o 1o
0—2(000 1)1 ﬂ_ 2007 7—201) 6—2(1 0::)

In [11] we solved the connection problem for the elliptic representation for generic values of a, 8, 7,
6 . More precisely, by generic case we mean:

#1080 £6, £0, 10 +6, 26,
2 ’ 2

v, 6o, 6z, 61, b & Z; ¢z (12)
The signs + vary independently. This is a technical condition which can be abandoned (except for
1/2’) ¢ Z) at the price of making the computations more complicated. For example, the non-generic case
B =7=1-26 =0 and o any complex number was analyzed in [10] for its relevant apphcatlons to
Frobenius manifolds and quantum cohomology.

To summarize the results for the generic case, we first observe that the critical behaviors provided
by the elliptic representations along regular paths (except special directions for V = 0,1, see Theorem
2) at z =0, z =1 and z = oo respectively (see [11] for z = 1, 00) are ‘

y(z) = NOPEY (1 + higher orders in z), z — 0 (13)
y(z)=1-aM(1 - 1;)";1) (1 + higher orders in (1 -z)), z —1 (14)
y(z) = a1~ (1 + higher orders in z7!), z — o0 (15)

(3)

and the parameters v; ' are given by

. (0) (0) _ (1) (1) _ . (<) (2c)
et = --40,(0 16¥2 — e~ ™ = _4a(1) 162 1’ et — _4a(oo) 16%2

-1
If VZ” is real, the behavior is as above when 0 < 1/2’) < 1. Otherwise, when 1 < 14 < 2 it is:

y(z) = a'Vz? vy’ (1 + higher orders in z), z — 0 (16)
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Figure 2: The order of the basis of loops of the Fuchsian system.

y(z)=1-aV(1 - z)z_”gl)(l + higher orders in (1 — z)), z —1 (17)
y(z) = a(w)z”ém)”l(l + higher orders in z71), £ — oo (18)
with o
e_"”’i = —4a® 161_”5 emi” = _ga® 161 "m, e~ = _gq() 161-4 (19)
Note that the ambiguity u( 9 )+ 2k, k integer, is natural, because v(*)(z) does not change and the

p-function is periodic.

Let My, M;, M, be the monodromy matrices at z = 0,1,z, for a given basis in the fundamental
group of P1\{0,1,z,00}. Such basis is chosen as in figure 2. :
If
00; oza 01: ooo ¢Z

there is a one to one correspondence between a given choice of monodromy data 6y, 0, 61, o, tr(MoM,),
tr(MyM,), tr(M1 M) and a transcendent y(z) (see[13] [6], [10]). Namely: :

y(:r) =’y(.’t; 00,91,01,000, (Mo ) tI‘(MoMl) tl‘(MlM )) (20)

We proved that such a transcendent has elliptic representations at z = 0,1, 00, provided that (12) is
satisfied. The three sets of parameters (u§ ), Véz)) 1t = 0,1, 00 are functions of the monodromy data 8,

0z, 61, 0o, tr(MoM,), tr(MoMy), tr(MyM;). Namely, we showed that
2cos(7ru20)) = —tr(MoM,), 2cos(7ru§ )) = —tr(M1 M), 2005(7ru§°°)) = —tr{MoM,) (21)

a® = a® (ugﬂ; 80,0z,01, 000, tr(MoMy), tr(Mo My ), tr(M1 M), i=0,1,00 (22)

The formulas of a{) are quite long, so we do not write them here. They depend on the monodromy
data through rational, trigonometric and I'-functions. In particular, . ( ) enters explicitly. The procedure

for computing such formulae is given in the Appendix of [11] We note that the condition V2 ¢ Z is
equivalent to tr(M;M;) # £2.

Conversely, we proved that a transcendent y(z) given by its elliptic representation, under the condi-
tions of Theorem 1 (and Theorem 3 of [11]), is a transcendent (20). This follows from the consideration

that the couple (ufl), V;)) is given at the critical point z = i, and 6y, 6, 61, 8 are fixed by the equation

PVI we are considering. From these data we can compute tr(Mo M), tr(MiM,), tr(MoM,;). One of

the traces is —2 cos(m/é )) the others depend on VY), 1/2 , 0o, 0z, 61, B through rational, trigonometric

and I'-functions. The formulae are rather long, so we refer the reader to the Appendix of [11]. In this

way the transcendent (20) is obtained. From the monodromy data we compute the couples (ul’) é )
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at the other two critical points and we get the the elliptic representation of the initial transcendent at
the other critical points. Therefore, the connection problem is solved.
Note that if we start from the elliptic representation at one critical point, say for example z = 0, then

uio), uéo) are given. As explained above, we can compute the monodromy data and from them we compute

9 and a¥) (then v{’) at the other two critical points. As already observed, the ambiguity A
2 1 1

V;j) + 2k (k integer) does not change the elliptic representation. On the other hand, the ambiguities
v i) + 2N (N integer), v —» —15? and the ambiguity in the choice 0 < i) <lorl<

§R1/£j ) < 2. which results from the cosines in (21), is due to the fact that the same transcendent has

different elliptic representations in different domains (the choice of Véj ) determines the representation

and the domain!).
To summarize the results, we say that :

In the generic case (12) there is a one-to-one correspondence between monodromy data and transcen-
dents (20). If tr(M;M;) # £2 they have elliptic representation whose parameters (Vﬁ’),uél) ) are given
by the formulae (21), (22), (19). Conversely, a transcendent whose elliptic representation satisfies the

conditions of Theorem 1 (and Theorem 3 of [11]) is a transcendet (20). The connection between its three
pairs (Vf‘), ué’)) is ezplained above. This solves the connection problem.

To conclude the discussion of the generic case, some comments about our extension of previous known
results are in order. The critical behavior for a class of solutions to the Painlevé 6 equation was found
by Jimbo in [13] for generic values of e, 8, v 8. A transcendent in this class has behavior:

y(z) = a2 77 (1 + 0(l2l’)), =z -0, (23)
y(@) =1-aV(1 -2 1 +0(1-2/)), z-1, (24)
y(z) = a2 1+ 02| %), - oo, (25)

where § is a small positive number, a(® and ¢(9) are complex numbers such that a® # 0 and
0< R < 1. (26)

We remark that z converges to the critical points inside a sector with vertex on the corresponding critical
point. The connection problem, i.e. the problem of finding the relation among the three pairs (¢(9,a(?),
i = 0,1, 00, was solved in [13] for the above class of transcendents using the isomonodromy deformations
theory. Actually, a transcendent in the class above coincides with a transcendent (20). In particular

2 cos(no(®) = tr(MoM,), 2cos(moV) = tr(M1 M), 2 cos(mo (™)) = tr(MoM;) (27)

and
a® = oW (0;80,8,,01,000, tr(Mo M), tr(Mo M), tr(M1 M), i =0,1,00

For the formulas of a(?) we refer to [13]. The monodromy data are restricted by the following condition,
equivalent to (26):
[tr(M;M;)| <2, R{tr(M:M;)} # -2 (28)

As explained above, we have shown that the transcendents (20) have elliptic representation. There-
fore, Jimbo’s transcendents are included in our class of transcendents obtained by the elliptic represen-
tation. Observe that the behaviors (23)~(25) are included in the behaviors (13)—(15) with o9 =1 — uéi)
(and (16)—(18) with o(¥ = uéi) —1). We proved in [11] that the condition (26) is extended to any o ecC
such that 0(® ¢ (—o0,0]U[1, +00) (as we must expect, if we observe that u;i) ¢ (—00,0]U{1}U[2,+00)
and that (27) defines 0 up to 0¥ — £0(¥ + 2n, n integer). Therefore we have solved the connection
problem for any complex value of tr(M;M;) with the only constraint tr(M;M;) # £2. This condition
extends (28).

To be more precise, the condition uéi) # 1 is equivalent to tr(MoM,) # 2 at £ = 0; to tr(M; M) # 2
at z = 1; to tr(MoM;) # 2 at z = co. Nevertheless, in the case tr(M;M;) = 2 the critical behavior
and the solution of the connection problem were achieved by Jimbo. Unfortunately, the condition
ué’) # 1 which we had to impose to study the elliptic representation (except for non-generic cases like
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B =v=1-26 =0) does not allow us to know the analytic properties and the critical behavior of the
elliptic representation in this case. We expect that the properties of u(z) are such to exactly produce
the critical behavior found by Jimbo for tr(M;M;) = 2, but we still have to cover this case.

The condition V;) # 0 (and 2), implies that we can not give the critical behaviors (and the elliptic
representation) of (20) at z = 0 for tr(MyM;) = —2; at ¢ = 1 for tr(MiM,;) = —2; at £ = oo for
tr(MoM;) = —2. To our knowledge, these cases have not yet been studied in the literature.

To conclude, the results of [13] together with our extension provide the critical behaviors and the
solution of the connection problem for the transcendents (20) in the generic case for

any value of tr(M;M;) # -2
which corresponds to exponents

o € C such that () ¢ (—o0,0) U [1, 4+00).

We turn now to the special case 8 = v = 1 — 26 = 0, important for its applications to topological
filed theory, Frobenius manifolds [4] and quantum cohomology [17] [12]. This case is fully studied in
[10]. We can give a representation of u(z) in a domain which is wider than the generic case. Namely, at

z = 0, the domain is
e (ZY7 o, foomn (2)”] <
16 16
In this domain v(z) is holomorphic with convergent expansion

=Tt s =t [ (G 5 o (2)7

n>1 n>0,m>1 n>0,m>1

D(r;v,ve) := {:1: €eCollzl <,

<r,

If v, is real, the value 1, = 1 is now allowed, namely, the constraint is v» & (—00,0]U[2, +00). Therefore,
by periodicity of the p-function we can assume 0 < Rv, < 2, 1, # 0. A similar result holds at z = 1
and z = oo.

According to [6], we define 2 — 23 := tr MoM,, 2 — z? := tr My M,, 2 — 22 := tr MyM,. There
is a one to one correspondence between triples (2o, Z1,Z) (defined up to the change of two signs) and
Painlevé transcendents, provided that at most one z; is zero and not all the z; are +£2 at the same
time. Therefore we write y(z) = y(z;20,%1,%Z). We show that one such transcendent has elliptic
representations (half-periods are understood)

1+
y(; 20,21, Zoo) = (K7 (2) + V0wl (z) + v (a; v, 1)) + Tz
1
= p(ugl)wgl)(:v) + Vgl)wgl)(x) + v (g; u{l), uél))) + % (29)
1
= p({w{™® () + i (@) + v (1%, ) + % (30)

The parameters V;i) are obtained from

costi =5 — 1, o<wf <1, UV #£0, i=0,1,00

|8,

Note that the condition z; # +2, ¢ = 0, 1, 0o, corresponds to Véi) # 0. The parameter u{o) is obtained
by the formula

(0)
. 12
ir(1- -
im(®
[ 1 =

- - — — [2(1 _
e (e D) (o)

(o)
ei™2 )_

. (0)
—f(x0,T1,To0 ) (T2, — €2 wf)] f(Zo,71,%c0)
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413 (2p — 1)?
2 2 y a=
T+ T2 — ToT1To 2

.f(zf'O’zl:xoo) =

Moreover, exp{—zm/1 )} exp{zm/ )} are given by an analogous formula with the substitutions (z0, %1, %o
(Z1,%0,ToT1 — ZToo)s go) é ) and (20,71, Too) — (Too, —T1,ZT0 — L1Too), u( ) 1/2 o) respectively.
The most general choice of 15 is 0 < Rv, < 2. This corresponds to the fact that the transcendent

y(Z; To,T1,To0) also has three representations

1
¥(; 70,71, 700) = (00 (@) + AV (@) + 0O (3 50, 54”)) + 27
(1) - 1+
= oV (@) + #Vuf @) + v (@ A0, %)) + 5=
_(00) - 1+
= p(A{w™ (@) + 5l (@) + 00 (@ 5, A)) + =5
where )
coswpg")=’”2—*’—1, 1<®) <2, i=0,1,00
The parameter & "( ) is obtained by the formula
0)
(0) ' 1F4 ( ) ;5 (0)
e—-urt'/ — [2(1 - e—urﬁz )_

2sm(7r1/ ))F2 ( - p+ —2—) r2(-i+p+%)

5(0)
'—f(x(], xlaxoo)(zgo e—‘l«ﬂ'uz xz)] f(IOazlaxoo)

exp{im?%l) }, exp{—z'7n7{°°)} are given by an analogous formula with the substitutions (zg,%1,Zx) —
(z1,%0,T0T1 — Too), 17%0) (1) and (To,Z1,%To0) — (Too, —Z1,%T0 — T1%00 ), ﬂéo) — 17;(,°°) respectively.

The formulae above have limits for v = 1,1 + 24 + 2m, m integer. They are listed in [10] and [11).

Conversely, a transcendent

1
y(z) = p(u1w1 )(z) + v w(o)(x) + v(O(g; v, 10)) + -;-a:’ catz=0 (31)
.coincides with y(z; o, 1, ), with the following monodromy data.
HO<Ry<1:
: ™
To = 2cos (51/2)
o = 42 2 giFn N G(va, )
= TG, ) T T 2 e
o - [4}—1/2 2 ei%(Vl—VZ) + G(l/z,,u,) ]
0 = F(va, 0)G(va, 1) 4-v2 2 gi¥(r1—v2)
where
2sin? (Zv;) r(1-2)°
3 = - ) G y =472 2
fwz,p) cos(mug) 4 cos(2mu) (v2, 1) FE-p-)T(3+u-%)
If1< Rvy < 2:

Tg = 2cos (gl/z)

e~ iFn . 4l-v2 9 Gl(uz,u)]
41-v2 2 f(VQa#')Gl(V'Zrll‘) e_i%m

I =



o ei5(ra—v1) + 4172 2 Gy(va, p)
o 41-v2 2 f(V2)iu‘)Gl(V2nu‘) ei%(l@“”l)
where 2
1 L%
GI(V2HU’) ( - )

TER AT Gt DT (R Ha D)

After computing the monodromy data, we can’ write the elliptic representations of y(x; zp,z1,Z) at
z =1 and z = oo, namely (29), (30). Since they are the elliptic representations at £ = 1, z = oo of (31),
we have solved the connection problem for (31).

We observed that there is a one to one correspondence between Painlevé transcendents and triples of
monodromy data (zo,Z1, T ), defined up to the change of two signs, satisfying z; # £2,7 = 0,1, 00, i.e.
) # 0 (and 2), and at most one ; = 0. The cases when these conditions are not satisfied are studied
in [19]. However, if z; = £2 (namely the trace is —2) the problem of finding the critical behavior at the
corresponding critical point = = 1 is still open (except when all the three z; are £2: in this case there is
a one-parameter class of solutions called Chazy solutions in [19]). We conclude that the results of our
papers [10] [11] plus the results of [19] cover all the possible transcendents, except the special case when
one or two z; are £2.

Finally, we expect that in all non-generic cases we can solve the connection problem and express the
parameters v, ¥o in terms of monodromy data. From the conceptual point of view nothing should change
with respect to [13] [6] [10] [11]; but the technical details may require a long time for computations.
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