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Abstract

In this paper, we research existence theorems of saddle points for
vector valued function and broadly classfy into two categories. One
of those classes has been investigated from the beginning of study-
ing about this field and is besed on some fixed point theorems or
scalar minimax theorems and are researched by Nieuwenhuis, Ferro,
Tanaka and so on. Another type of these theorems have been based
on Fan-KKM theorem. This type of theorems have been researched
since 2000 by Kazmi, Khan, Kimura and Tanaka and so on. We com-
pare these two types of theorems and consider about the distinction
between them.
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1Introduction
Studies on vector-valued minimax theorems or vector saddle point problems have
been extended widely; see [1, 3, 5, 6, 7, 9, 10] and references cited therein. Exis-
tence results for cone saddle points can be divided roughly into two categories.
First type is based on some fixed point theorems or scalar minimax theorems;
see $[10, 12]$ . This type has been started by Nieuwenhuis [5]. Afterwards ex-
istence theorems for cone saddle points have investigated moreover by Ferro,
Nieuwenhuis, Tanaka and so on. Second type is based on Fan-KKM Thoerem
by regarding the problem as akind of valiational inequality problem. This type
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was treated by Kazmi and Khan [3] and it has been researched by Kimura and
Tanaka [4]. The aim of this paper is introduction of some types of exisetance
theorems for cone saddle points and our resent results. Moreover we compare
those theorems.

2Preliminary and terminology
In order to consider saddle points of vector-valued functions, we give some ab-
stract settings for mathematics on vector optimization. Thorughout this section,
let $Z$ be an ordered real topological vector space with an ordering $\leq \mathrm{o}\mathrm{n}$ $Z$ defined
by apointed convex cone $C\subset Z$ , where ‘pointed’ means $C\cap(-C)=\{0\}$ . If
$C$ is solid, i.e., its topological interior int $C$ is nonempty, then we can consider
another ordering cone $C^{0}:=$ (int $C$) $\cup\{0\}$ . Now, we can define minimal and
maximal elements of asubset $A$ of $Z$ . An element $z_{0}$ of asubset $A$ of $Z$ is said
to be a $C$-minimal point of $A$ if $\{z\in A|z_{0}-z\in C, z\neq z_{0}\}=\phi$, and a
$C$-maximal point of $A$ if $\{z\in A|z-z_{0}\in C, z\neq z_{0}\}=\phi$. We denote the set
of such all $C$-minimal[resp., $C$-maximal]points of $A$ by $\mathrm{M}\mathrm{i}\mathrm{n}A$ [resp., $\mathrm{M}\mathrm{a}\mathrm{x}A$ ]. If
$C$ is $R_{+}^{p}$ then $\mathrm{M}\mathrm{i}\mathrm{n}A$ is the set of pareto solutions, where $R_{+}^{p}$ denotes the non-
negative orthant of $R^{p}$ and if $p=1$ then $R_{+}^{p}$ is writen by $R_{+}$ . Also, $C^{0}$ minimal
and $C^{0}$-maximal points of $A$ are defined similarly, and denoted by ${\rm Min}_{\mathrm{w}}A$ and
${\rm Max}_{\mathrm{w}}A$ , respectively.

Definition 2.1 A point $(x_{0}, y_{0})$ is said to be a $C$ -saddle point of $f$ with respect to
$X\cross \mathrm{Y}$ , if $f(x_{0}, y_{0})\in \mathrm{M}\mathrm{a}\mathrm{x}f(x_{0}, \mathrm{Y})\cap \mathrm{M}\mathrm{i}\mathrm{n}f(X, y_{0})$ , where $f(X, y)$ [resp., $f(x,$ $\mathrm{Y})$ ]
denotes $\bigcup_{x\in X}f(x, y)$ [resp., $\bigcup_{y\in Y}f(x,$

$y)$ ].

Definition 2.2 A point $(x_{0}, y_{0})$ is said to be a weak $C$ -saddle point of $f$ with
respect to $X\cross \mathrm{Y}$ , if $f(x_{0}, y_{0})\in{\rm Max}_{\mathrm{w}}f(x_{0}, \mathrm{Y})\cap{\rm Min}_{\mathrm{w}}f(X, y_{0})$ .

3First type existence results for cone saddle
points

In this section, we introduce some existence theorems of cone saddle points for
the first type.

Theorem 3.1 (See Theorem 3.1 in [5].) Let $X\subset R^{n}$ and $\mathrm{Y}\subset R^{m}$ be nonempty
convex compact sets. Let $f$ : $X\cross \mathrm{Y}arrow R^{p}$ be jointly continuous in $(x, y)$ , convex
in $x$ for every $y\in \mathrm{Y}$ and concave in $y$ for every $x\in X$ . Then, $f$ has at least
one $R_{+}^{p}$ saddle points
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Definition 3.1 Let $X$ be a topological space and $Z$ an ordered topological vector
space with an ordering defined by a pointed convex cone C. A vector-valued
function $f$ : $Xarrow Z$ is said to be low er level-closed if $f^{-1}(z-\mathrm{c}1C)$ is closed in
$X$ for each $z\in Z$ , where $\mathrm{c}1A$ stands for closure of a set $A$ .

Theorem 3.2 (See Theorems 3.1 and 3.2 in [11] and Theorem 4.1 in [12].) Let
$X$ and $\mathrm{Y}$ be nonempty compact sets in tuto topological spaces, respectively, an\’a
$Z$ an ordered topological vector space with an ordering defined by a solid pointed
convex cone $C$ in Z. A vector-valued function $f$ : $X\cross \mathrm{Y}arrow Z$ has at least weak
$C$ -saddle point if one of the following conditions holds:

(i) f is of the type $f(x, y)=u(x)+v(y)$ where uand-v are lower level-closed;

(ii) f is of the type $f(x, y)=u(x)+\beta(x)v(y)$ where tz is continuous, -v is
lower level-closed, and $\beta$ : X $arrow R_{+}$ is continuous.

If, in addition, C satisfies $clC+(C\backslash \{0\})\subset C$, then f has at least one C-saddle
point.

Definition 3.2 Let $X$ be a topological space and $Z$ an ordered topological vector
space with an ordering defined by a solid pointed convex cone C. A vector-valued
function $f$ : $Xarrow Z$ is said to be $C$ -lower semicontinuous on $X$ iffor each $x_{0}\in X$

and any open neighborhood $V$ of $f(x_{0})$ , there exists an open neighborhood $U$ of
$x_{0}$ such that $f(x)\in V+C$ for all $x\in U$ . $If-f$ is $C$ -lower semicontinuous then
$f$ is said to be $C$ -upper semicontinuous.

Definition 3.3 Let $X$ be a topological space and let $Z$ be a topological vector
space. A vector-valued function $f$ : $Xarrow Z$ is said to be demicontinuous on $X$ if

$f^{-1}(M):=\{x\in X|f(x)\in M\}$

is closed in $X$ for each closed half-space $M\subset Z$ .

Definition 3.4 Let $X$ be a convex set in a real vector space. A vector-valued
function $f$ : $Xarrow Z$ is said to be $C$ -naturally quasiconvex if

$f(\lambda x_{1}+(1-\lambda)x_{2})\in \mathrm{c}\mathrm{o}\{f(x_{1}), f(x_{2})\}-C$

for every $x_{1}$ , $x_{2}\in X$ and A6 $[0, 1]$ , where $coA$ denotes the convex hull of the set
A. Also, a vector valued function $f$ is said to be $C$ -naturally quasiconcave on $X$

$if-f$ is $C$ -naturally quasiconvex on $X$ .

Theorem 3.3 (See Theorem 3.1 in [9] and Theorem 3.3 in [10].) Let $X$ and $\mathrm{Y}$

be nonempty compact convex sets in two topological vector spaces, respectively,
and $Z$ an ordered topological vector space with an ordering defined by a solid
pointed convex cone $C$ in Z. If a vector-valued function $f$ : $X\cross \mathrm{Y}arrow Z$ satisfies
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(i) x $\vdasharrow f(x,$y) is either $C$ -lower semicontinuous or demicontinuous, and
$C$ -naturally quasiconvex on X for every y $\in \mathrm{Y}$ ;

(ii) $y\vdash\Rightarrow f(x, y)$ is either $C$ -upper semicontinuous or demicontinuous, and
$C$ -naturally quasiconcave on $\mathrm{Y}$ for every $x\in X$ ,

then the vector-valued function $f$ has at least one weak $C$ -saddle point.

Theorem 3.4 (See Theorem 4.1 in [8] and Theorem 3.1 in [8].) Let $X$ and $\mathrm{Y}$

be nonempty compact convex sets in trno locally convex spaces, respectively, and
$Z$ an ordered topological vector space with an ordering defined by a solid pointed
convex cone $C$ in Z. If a vector-valued function $f$ : $X\cross \mathrm{Y}arrow Z$ is continuous
and if the following sets

$T(y):=\{x\in X|f(x, y)\in{\rm Min}_{\mathrm{w}}f(X, y)\}$ ,
$U(x):=\{y\in \mathrm{Y}|f(x, y)\in{\rm Max}_{\mathrm{w}}f(x, \mathrm{Y})\}$

are convex for every $y\in \mathrm{Y}$ and $x\in X$ , respectively, then the vector-valued
function $f$ has at least one weak $C$ -saddle point.

4Second type existence results for cone saddle
points

In this section, we deal with the second type of existence thereoms.

Definition 4.1 Let $X$ be a convex set in a real vector space. A vector-valued
function $f$ : $Xarrow Z$ is said to be $C$ -convex if for each $x$ , $y\in X$ and A $\in[0,1]$ ,

$\lambda f(x)+(1-\lambda)f(y)-f(\lambda x+(1-\lambda)y)\in C$ .
Lemma 4.1 Let $X$ be a convex set in a real vector space. If a vector-valued
function $f$ is $C$ -convex[resp., $C$ -concave]then $f$ is also $C$ -naturally quasiconvex
[resp., $C$ -naturally quasiconcave].

Theorem 4.1 (See Theorem 2.3 in [3].) Let $X\subset R^{n}$ and $\mathrm{Y}\subset R^{m}$ be $a$

nonempty closed convex set and a nonempty compact set, respectively. Assume
that $f$ : $X\cross \mathrm{Y}arrow R^{p}$ is continuously Fk\’echet differentiable and $R_{+}^{p}$ convex in the
first argument; moreover assume that a multifunction $T:Xarrow 2^{\mathrm{Y}}$ is defined by
$T(x):={\rm Max}_{\mathrm{w}}f(x, \mathrm{Y})$ . Suppose that, for each fixed $(x, y)\in X\cross \mathrm{Y}$ , the function
$\langle f’(x, y), u-x\rangle$ is a $R_{+}^{p}$ -naturally quasiconvex function in $u\in R^{p}$ , where $f’(x, y)$

stands for h\’echet derivartive of $f$ with respect to first variable at $(x, y)$ . If there
exist a nonempty compact subset $B$ of $R^{n}$ and $x_{0}\in(B\cap X)$ such that for any
$x\in(X\backslash B)$ , there exists $y\in T(x)$ such that

$\langle f’(x,$y),$x_{0}-x\rangle\in$ -int $R_{+}^{p}$ ,

then the vector-valued function f has at least one weak $R_{+}^{p}$ -saddle point.
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Theorem 4.2 (See Theorem 2.3 in [4].) Let $X$ and $\mathrm{Y}$ be a nonempty closed con-
vex subset of a normed space $E$ and a nonempty compact subset of a topological
vector space $F$ , respectively, and $Z$ an ordered normed space with ordering de-
fined by a solid pointed closed convex cone $C$ in Z. Assume that the vector-velued
function $f$ : $X\cross \mathrm{Y}arrow Z$ is continuously Frechet differentiable and $C$ convex in
the first argument and $f’$ is continuous in both $x$ and $y$ , and let $T$ : $Xarrow 2^{Y}$

be the multifunction defined by $T(x):={\rm Max}_{\mathrm{w}}f(x, \mathrm{Y})$ . If there exist a nonempty
compact subset $B$ of $X$ and $x_{0}\in(B\cap X)$ such that for any $x\in(E\backslash (X\cap B))$

and $y\in T(x)$ ,
$\langle f’(x, y),x_{0}-x\rangle\in$ -int $C$

then the vector-valued function f has at least one weak $C$-saddle point.

Definition 4.2 Let $X$ be a convex subset of a normed space and $Z$ an ordered
normed space; let a vector-valued function $\eta$ : $X\cross Xarrow E$ . Suppose that $a$

vector-valued function $f$ : $Xarrow Z$ is Frechet differentiable on X. A vector-
valued function $f$ is said to be $C$ -invex with respect to $\eta$ if

$f(x)-f(y)-\langle f’(y), \eta(x, y)\rangle\in C$

for every $x$ , $y\in X$ .

Lemma 4.2 Let $X$ and $\mathrm{Y}$ be a nonempty closed convex subset of a normed space
$E$ and a nonempty compact subset of a topological vector space $F$ , respectively.
Assume that the vector-valued function $f$ is Fk\’echet differentiable and C-convex
with respect to $\eta$ in the first argument, where $\eta$ : $X\cross Xarrow E$ satisfies the
following three conditions: for all $x\in X$ ,

(i) $\eta(\cdot, x)$ is affine,

(ii) $\eta(x, \cdot)$ is continuous, and

(ii) $\eta(x, x)=0$ .

Moreover assume that Frechet derivative $f’$ is continuous in both $x$ and $y$ . If
there exist a nonempty compact subset $B$ of $E$ and $x_{0}\in(B\cap X)$ such that for
any $x\in(X\backslash B)$ and $y\in T(x)$ ,

$\langle f’(x, y)_{:}\eta(x_{0}, x)\rangle\in$ -int $C$,

then the vector-valued function $f$ has at least one weak $C$ -saddle point.

In order to prove Theorem 4.5, we need the following two theorems
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Theorem 4.3 Suppose that X $\subset R^{n}$ is nonempty convex, Y $\subset R^{m}$ is nonempty
and f : X $\cross \mathrm{Y}arrow R_{+}^{P}$ is subdifferentiable with respect to $\eta$ in the first ar-
gument. Moreover assume that a multifunction T : X $arrow 2^{Y}$ is defined by
$T(x):={\rm Max}_{\mathrm{w}}f(x,$Y). Then

{ ( $x_{0}$ , $y_{0})\in X\cross \mathrm{Y}|\langle A$ , $\eta(x_{0},$ $x)\rangle\not\in \mathrm{i}\mathrm{n}\mathrm{t}$ $R_{+}^{p}$ , $y_{0}\in T(x_{0})$ and $A\in\partial f(x_{0},$ $y_{0})$ }
$\subset\{(x_{0}, y_{0})\in X\cross \mathrm{Y}|{\rm Max}_{\mathrm{w}}f(x_{0}, \mathrm{Y})\cap{\rm Min}_{\mathrm{w}}f(X, y_{0})\}$

Theorem 4.4 (See [2]) Let $\mathrm{Y}$ be a subset of the topological vector space X. For
each $x\in \mathrm{Y}$ , let a nonempty closed set $F(x)$ in $X$ be given such that $F(x)$ is com-
pact for at least one $x\in \mathrm{Y}$ . If the convex hull of every finite subset $\{x_{1}, \ldots, x_{n}\}$

of $\mathrm{Y}$ is contained in the corresponding union $\bigcup_{\dot{l}=1}^{n}F(x:)$ , then $\bigcap_{x\in \mathrm{Y}}F(x)\neq\phi$ .

The mapping $F$ : $\mathrm{Y}arrow 2^{\mathrm{Y}}$ is called the KKM-map if $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{x_{1}, \ldots, x_{n}\}\subset$

$\bigcup_{\dot{l}=1}^{n}F(x:)$ for every finite subset $\{x_{1}, \ldots, x_{n}\}$ of $\mathrm{Y}$ , where conv $D$ denotes the
convex hull of the set $D$ .

Definition 4.3 Let $X$ be a convex subset of $R^{n}$ and a vector-valued function
$\eta$ : $X\cross Xarrow R^{n}$ . Assume that a multifunction $\partial f$ : $Xarrow L(R^{n}, R^{p})$ is defined
by

Elf (a) $:=$ { $A\in \mathcal{L}(R^{n},$ $R^{p})|f(x)-f(a)-\langle A$ , $\eta(x,$ $a)\rangle\in R_{+}^{p}$ for all $x\in X$ },

where $\mathcal{L}(R^{n}, R^{p})$ denotes the set of bounded linear operater from $R^{n}arrow R^{p}$ . $A$

vector-valued function $f$ : $R^{n}arrow R^{p}$ is said to be subdifferentiable on $X$ with
respect to $\eta$ if for every $x\in X$ , $\partial f(x)\neq\phi$.

Theorem 4.5 Let $X$ and $\mathrm{Y}$ be a nonempty closed convex subset and a nonempty
compact subset of $R^{n}$ and $R^{m}$ , respectively. Assume that the vector-valued func-
tion $f$ : $X\cross \mathrm{Y}arrow R^{p}$ is subdifferentiable with respect to $\eta$ in the first argument,
where y7 : $X\cross Xarrow R^{n}$ satisfies the following three conditions: for all $x\in X$ ,

(i) $\eta(\cdot, x)$ is affine,

(ii) $\eta(x$ , $\cdot$ $)$ is continuous, and

(ii) $\eta(x, x)=0$ .

Moreover assume that a multifunction $T$ : $Xarrow 2^{\mathrm{Y}}$ is defined by $T(x):=$
${\rm Max}_{\mathrm{w}}f(x, \mathrm{Y})$ . If there exist a nonempty compact subset $B$ of $R^{p}$ and $x_{0}\in(B\cap X)$

such that for any $x\in(X\backslash B)$ , $y\in T(x)$ , $A\in\partial f(x, y)$

$\langle A, \eta(x_{0}, x)\rangle\in$ -int $R_{+}^{p}$ ,

then the vector-valued function $f$ has at least one weak $C$ said point
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Proof. Define amultifunction $F$ : $Xarrow 2^{X}$ by

$F(u):=$ { $x\in X|\langle A, \eta(u, x)\rangle\not\in$ -int $R_{+}^{p}$ ,
for some $y\in T(x)$ and $A\in\partial L(x, y)\}$ , $u\in X$ .

In order to prove the theorem, it is sufficient to show that the set $\{(x_{0}, y_{0})\in$

$X\cross \mathrm{Y}|\langle A, \eta(x_{0}, x)\rangle\not\in \mathrm{i}\mathrm{n}\mathrm{t}$ $R_{+}^{p}$ , for some $y_{0}\in T(x_{0})$ and $A\in\partial f(x_{0}, y_{0})\}\neq\phi$

by Theorem 4.3. So we should show, by Theorem 4.4, the following three points:

(a) $F$ is aKKM-map;

(b) $F(x)$ is closed for each $x\in X$ ;and

(c) there exists $\hat{x}\in X$ such that $F(\hat{x})$ is compact.

First, we prove the condition (a). Suppose to the contrary that there exist
$x_{1}$ , $x_{2}$ , $\ldots$ , $x_{m}$ and $\alpha_{1}$ , $\alpha_{2}$ , $\ldots$ , $\alpha_{m}$ such that

$\hat{x}:=\sum_{\dot{l}=1}^{m}\alpha\dot{*}x:\not\in\bigcup_{\dot{l}=1}^{m}F(x_{i})$ , $\sum_{\dot{l}=1}^{m}\alpha:=1$ .

Then, $\hat{x}\not\in F(x_{i})$ for all $i=1$ , $\ldots$ , $m$ , and hence for any $y\in T(\hat{x})$ , $A\in\partial L(\hat{x}, y)$ ,

$\langle A, \eta(x:,\hat{x})\rangle\in$ -int $R_{+}^{p}$ ,

for all $i=1$ , $\ldots$ , $m$ . Since int $R_{+}^{p}$ is convex, we have

$. \cdot\sum_{=1}^{m}\alpha_{i}\langle A, \eta(x_{i},\hat{x})\rangle\in-\mathrm{i}\mathrm{n}\mathrm{t}R_{+}^{p}$ .

Since $A$ is alinear operater and $\eta$ is an afHne operater, we have

$\{A$ , $\eta(\sum_{i=1}^{m}cxi,\sum_{i=1}^{m}\alpha_{i}\hat{x})\}\in$ -int $R_{+}^{p}$ .

Therefore
$\langle A, \eta(\hat{x},\hat{x})\rangle=0\in$ -int $R_{+}^{p}$ ,

which is inconsistent. Thus, we deduce that

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{x_{1}, x_{2}, \ldots, x_{m}\}\subset\bigcup_{\dot{\iota}=1}^{m}F(x:)$.

Next, we show that the condition (b) holds. For each $u\in X$ , let $\{x_{n}\}\subset F(u)$

such that $x_{n}arrow x\in X$ . Since $x_{n}\in F(u)$ for all $n$ , there exist $y_{n}\in T(x_{n})$ and
$A_{n}\in\partial L(x_{n}, y_{n})$ such that

$\langle A_{n}, \eta(u, x_{n})\rangle\in W$,
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where W $:=R^{p}\backslash$(-int $R_{+}^{p}$ ). As $\{y_{n}\}\subset \mathrm{Y}$ , without loss of generality, we can
assume that there exists y $\in \mathrm{Y}$ such that $y_{n}arrow y$ . Now T is closed, so y $\in$

$T(x)$ . Because of the closedness of W, the upper semicontinuity of $\partial L$ and
$\langle A_{n}, \eta(u,x_{n})\rangle\in$ ( $R^{p}\backslash$ -int $R_{+}^{p}$ ) for all n, there exists A $\in\partial L(x,$y)

$\langle A, \eta(u, x)\rangle\in$ ( $R^{p}\backslash$ -int $R_{+}^{p}$ ).

Hence $x\in F(u)$ . As aresult the condition (b) holds.
Finally we prove the condition (c). Since $F(\overline{x})$ is closed and $B$ is compact,

it is sufficient to show that $F(\overline{x})\subset B$ . Suppose to the contrary that there
exists $\hat{x}\in F(\overline{x})$ such that $\hat{x}\not\in B$ . Since $\hat{x}\in F(\overline{x})$ , there exist $\hat{y}\in T(\hat{x})$ and
$\hat{A}\in\partial L(\hat{x},\hat{y})$ such that

$\langle\hat{A}, \eta(\overline{x},\hat{x})\rangle\not\in$ -int $R_{+}^{p}$ . (1)

Since $\hat{x}\not\in B$ , by the hypothesis, for any $y\in T(\hat{x})$ and $A\in\partial L(\hat{x}, y)$ ,

$\langle A, \eta(\overline{x},\hat{x})\rangle\in$ -int $R_{+}^{p}$ ,

which contradicts condition (1). Hence $F(\overline{x})\subset B$ . Since $B$ is compact and $F(\overline{x})$

is also closed, $F(\overline{x})$ is compact, i.e., the condition (c) holds. Consequently by
Fan-KKM Theorem, it follows that $\bigcap_{x\in X}F(x)\neq\phi$ . Thus, there exists $x_{0}\in X$

and $y_{0}\in T(y_{0})$ such that

$\langle A, \eta(x, x_{0})\rangle\not\in$ -int $R_{+}^{p}$ ,

for all $x\in X$ . As aresult the vector-valued function $f$ has at least one weak
$C$-saddle point. 1
Definition 4.4 Let $f$ : $Xarrow R$ be a lower semi-continuous function, where $X$

is a nonempty convex set in $R^{n}$ . Then the convex envelope of $f(x)$ taken over $X$

is a function $F(x)$ such that

(i) $F(x)$ is convex on Xj

(ii) $F(x)\leq f(x)$ for all x $\in X,\cdot$

(ii) If $h(x)$ is any convex function defined on X such that $h(x)\leq f(x)$ for all
x $\in X$ , then $h(x)\leq F(x)$ for all x $\in X$ .

Geometrically, $F(x)$ is precisely the function whose epigraph coincides with the
convex hull of the epigraph of f.
Definition 4.5 Suppose that vector-valued functions $f$ and $h$ consist of $p$ real-
valued functions $f_{1}$ , $\ldots$ , $f_{p}$ and $h_{1}$ , $\ldots$ , $h_{p}$ on $X\cross \mathrm{Y}$ , respectively. If each of
components of $h$ are the convex envelope of $f_{1}$ , $\ldots$ , $f_{p}$ , respectively, then $h$ is
called the vector convex envelope of $f$ .
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Assumption A. For f : X $arrow R^{p}$ and its vector convex envelope h, the
following condition holds:

$\{x\in X|h(x)-h(y)\not\in \mathrm{i}\mathrm{n}\mathrm{t}R_{+}^{p}\forall y\in X\}$

$\subset\{x\in X|f(x)-f(y)\not\in \mathrm{i}\mathrm{n}\mathrm{t}R_{+}^{p}\forall y\in X\}$ .

Corollary 4.1 Let $X$ and $\mathrm{Y}$ be a nonempty closed convex subset and a nonempty
compact subset of $R^{n}$ and $R^{m}$ , respectively. Suppose that a vector-valued function
$H$ : $X\cross \mathrm{Y}arrow R^{p}$ is the convex envelope of $L$ : $X\cross \mathrm{Y}arrow R^{p}$ in the first argument
and that $H$ satisfies the conditions on $L$ in Theorem4-5. If $h(x):=H(x, y)$ and
$f(x):=L(x, y)$ satisfy AssumptionA for each $y\in \mathrm{Y}$ , then $L$ has at least one
solution.

Proof. Since $H$ satisfies the conditions on $L$ in TheOrem4.5, $H$ has at least one
weak $R_{+}^{p}$-saddle point by TheOrem4.5. Since $H$ satisfies Assumption $\mathrm{A}$ , then $L$

has at least one solution. $\mathrm{I}$

5Conclusions
We have seen existence theorems which are classified roughly into two types. In
the first type of theorems, each payoff function is asaddle function, which has
some dualities, e.g., convexity of $f(\cdot, y)$ for every $y\in \mathrm{Y}$ and concavity of $f(x$ , $\cdot$ $)$

for every $x\in X$ , lower-semicontinuity of $f(\cdot, y)$ for every $y\in \mathrm{Y}$ and upper-
semicontinuity of $f(x, \cdot)$ for every $x\in X$ and so on. Those theorems seem to be
much polished. For the second type theorems, though those required conditions
are anti-duality and there are some stronger conditions than the first type of
theorems, there seems to be aroom for evolution.
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