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On A Dynamic Fractional Game

Hang-Chin Lai !
In Memory of Professor Kensuke Tanaka 2

Abstract Consider a two-person zero-sum game constructed by a dynamic
fractional form. We establish the upper value as well as the lower value of a
dynamic fractional game, and prove that the dual gap is equal to zero under
certain conditions. It is also established that the saddle point function exists
in the fractional game system under certain conditions so that the equilibrium
point exists in this game system.

1. Introduction

In 1953 Fun [5] proved minimax theorems for a function f defined on the product set
X x Y of two arbitrary sets X,Y (not necessary topologized and need not be hnear)
That is the equality

mip max f(z, y) max mip f(z,y)

holds under certain conditions. Fun’s results were widely applied to many directions.
By the above idea on minimax identity, we will constitute a two-person zero-sum dynamic
game for fractional type :

_ f(=9)
d(z,y) = o)’ (x,y) € X x Y.
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Several types of game systems have been discussed and investigated by Lai and Tanaka
in [12-19] and [24]. See also the related work in [7], [20, 21, 25]. These games involved n-
person noncooperative dynamic systems in various spaces (cf. [12-17], [19] and [25]) and
two-person zero-sum games (see [7], [20-21], [24]). Recently, many authors investigated
fractional programming; see for example [3, 4, 6, 9, 10, 11], [22] and [23]. Lai et al.
investigated minimax fractional programming in [9, 10, 11] and propose that a minimax
theory for fractional objective f(z,y)/g(z,y) could be applied to two-person zero-sum
game theory.

Following this approach, we consider a two-person zero-sum dynamic fractional game
in this paper, and investigate an existence theorem for the saddle value function in a
fractional game system.

2. Preliminaries

In a two-person zero-sum game, we will investigate whether two persons will attain a
saddle point in the game system, that is we want to find a value function such that the
two persons can obtain an equilibrium point.

A two-person zero-sum dynamic game with a parameter 6 at a discrete time n € N,
denoted briefly by the game (DGPy), includes the following seven elements:

(Sna An’ Bn, tn-{-la Uny Un, 0)

where each element is defined as follows, and for convenience of the mathematical analysis,
the assumptions below are made.

1) S, is the state space at time n € N, which is assumed to be a separable
complete metrizable Borel space, so that the Borel functions defined on S, are
integrable over such a space.

2) A, and B, are, respectively, the action spaces at time n € N for players I and
IT in which each player chooses his (or her) actions in the game system. Here A,
and B, are always assumed to be Borel spaces.

3) {tn41} is a sequence of transition probabilities from time n to time n + 1
in the law of motion for the game system. When the two players have finished
their actions at time n, denoted by H,A,B,, then the system is moved to state

Sny1. Here H, stands for the histories up to time n, thus H; = S, H, =

S1A1B152A2B5 - - Sp—1An-1Bp_1S,, n = 2,3, and H., stands for the set of
infinite histories of the game system.
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4) u, : H,A,B, — R and v, : H,A,B, — R™ are bounded Borel measurable
functions, and as the time n goes to infinity, they have the limits as follows

lim u, = u € R, nlLI&Un:veR+.

n—oo

Of course u, and v, are also regarded as functions on H.

5) 6:8; — R is a given parameter function on which the loss function of player I
at time n € N is given by
7 = Uy, — Ov,

and the gain (loss) function of player II at time n € N is given by
—T.
Then the sum of the two values is always zero.

We denote by F,(resp. G,,) the set of all universal measurable transition probabilities
from history H, to A.(resp. B,), and consider the sequence f = {f.} (resp. g = {gn})
with f, € F, (resp. gn € G,) for each time n € N.

Let Ey,, E,,, E, ., denote the conditional expectation operators with respect to
fn € F, gn € G, and t,41, respectively. Then each pair of strategies f = {f,} and
g = {gn}, together with the law of motion {t,}, defines a unique universally measurable
transition probability by

Psg( - |- ) from S; — A1B1S3A2B583 - - -
such that, for two bounded Borel measurable functions u,, v, defined on H,A,B, (n €
N), and for s, € S; and h € Hy,, we have

B(un, £,9)(s1) = [, un(h)Pry(dhlsy)
= Ep Eq By, - - - Ey,_ By, By, Ef, Eqg, un(s1)

and

Evn, £,9)(s1) = [ va()Pyo(dhlsy)
= EpBEg By, --- By, By, By Ef, Eg,vn(s1).

Under our assumptions, by the dominated convergence theorem and the Fubini theorem,
we infer that, for each s; € Sy, f = {f.} € F and g = {¢.} € G, it would have

U(f,g)(Sl) = Jl_)ngoE(un7 f7g)(31) .
= lim By, Eg Ey, - By, Eqg, By, Ef, Eg un(s1)

n—0o0

= hm EglEflEt2 Tt Egn—lE.fn—lEtnEgnEfnun(sl)

n—oo
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and

V(f’ g)(31) - nli_.r{.loE(Un, fa g)(sl)
= nl'Lngo EflEglEt2 e Efn—lEgn—lEt'nEangnv"(Sl)
= ]‘im EglEflEt2 toe Egn—lEfn—lEtnEgnEfnvﬂ(sl)‘

n—o0

Then, for given s; € S1, f = {fn} € F and g = {g-.} € G, we can evaluate the total loss
function

To(f,9)(s1) = lim E T3 (f,9)(s1)
= U(f,9)(s51) — 0(s1)V (£, 9)(s1),

together with the upper value function of the game
To(s1) = }Ielg‘gszlelg To(f, 9)(s1),
and the lower value function of the game
To(s1) = sup inf To(f, 9)(s1)-

We call the interval [Tg(s1),To(s1)] the dual gap of (DGPy), and say that the game
system has a saddle value function, (or shortly, a value function) if

To(sl) = Ig(sl) = T;(Sl), for 81 € Sl.

In this paper, we will consider the fractional dynamic game of the form

U(f) g)(sl)
V(f,9)(s1)’

and investigate the upper value function

W(f,g)(s1) = (f,9) eFxG
6(s1) = fnf sup W (£, 9)(s1)

and the lower value function
8(s1) = sup inf W(f, 9)(s1).

Furthermore, it is natural to ask whether a zero duality gap exists in the game system.
That is, under what conditions one can get a common value function for upper value
function and lower value function, that is,

0(s1) = 0(s1) = 0*(s1), for s; € 8.
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3. A Two-Person Zero-Sum Dynamic Fractional Game

According to the arguments given in Section 2, we define a two-person zero-sum

dynamic fractional game (DFG) as the following set of elements:
(STH An7 B‘m tn—i—l, Un,y VUn, é, Q), n € N.

In this game system, all notation and symbols are used as introduced in section 2. Recall
the state space Sy, a separable complete metrizable Borel space; A, and B,, the action
spaces of players I and II respectively, at time n € N; {t,;1} the sequence of transition
probability regarded as the law of motion in the game system; the functions

Un: H,Ap,B, > R and v,: H,A,B, — Rt = (0,0)

which are bounded Borel measurable, respectively, and letting time n goes to infinity,
they converge to
limu,=u€R and nlLr&vnzveR+;
For each s; € S1, f = {fa} € F and g = {g.} € G, we assume that the limits of
expectations
U(f,9)(s1) = Im E(un, f, g)(s1)
and

V(.f: g)(sl) = ,}LIEOE(Umfa g)(sl) >0

exist, so that the fraction

_ U(f,9)(s1)
Wf9)(s0 = ZF o0

is well defined. For an initial state s; € S;, we define, the upper and lower value
functions of the game (DFG) by

0(s1) = ;ggggg W(f,9)(s1)

and
0(s1) = sup nlf, W(f,9)(s1)

act Je
respectively.
Of course 0(s;) > 0(s;) for all s; € Sy, and call the interval [@(s1),0(s1)] as the duality
gap of the game (DFG).

Definition 3.1 The game (DFG) is said to have a value function if the duality
gap is equal to zero, and we call the common value function the value function

0(s1) = 8(s1) = 6*(s1).
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Furthermore, if there exists g* € G such that
0(s1) = inf sup W (f, g)(s1) = inf W(f,g")(s1),
fEF gGG

then we call g* a maximizer [of W(f,g)(s1)] over g € G for each f € F in the game
(DFG).
Similarly, if there exists f* € F such that

6(s1) = sup inf W(f, g)(s1) = sup W(f*, g)(s1),
geG fE€F geG

then f* € F is called a minimizer [of W(f, g)(s1)] over f € F for each g € G in the game
(DFG).

Next, we analyze some relationships between the upper as well as the lower value
functions of (DGPy) and (DFG). Then we can state some properties for Ty(s;) as well as
Tp(s;) in the following propositions.

Proposition 3.1.

(1) For two parameter functions 0,(s1) and 63(s1), if 61(s1) > 62(s;) > 0, then
T, (51) < Toa(s1)-

(2) If Ty(s1) <O, then 6(s;) > 0(s1).
(3) If Tp(s1) >0, then 6(s;) < 6(sy).
(4) If 6(s1) > 0(s1), then Tp(s;) < 0.
(5) If 6(s1) < 6(sy), then Ty(s;) > 0.

Proof. A brief proof is given here.
(1) If 6,(s1) > 62(s1) > 0, then for all (f,g)

61(s1)V(f, 9)(51) > 02(s1)V (£, 9)(s1),
U(f,9)(s1) — 01(s1)V (£, 9)(s1) < U(f,9)(s1) — O2(s1)V (f, 9)(51),

or
To,(£,9)(s1) < To,(f, 9)(s1),
so To,(s1) = Inf sup Ty (£,9)(s1) < fnf supTo, (1,9)(51) = Ton(51)-

(2) If Tp(s1) < 0, then there exists f € F such that
supTe(f,9)(s1) < 0. It follows that
9€G

To(f,9)(s1) = U(f,9)(s1) — 6(s1)V(f, 9)(s1) < 0.
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and

F ey = U 9)(51)
W59 = 75 o6

Therefore 0(s1) = inf fep supyee W ([, 9)(s1) < 0(s1).
(3) If Ty(sy) > 0, it can be proved as the same line in the proof of (2) to get

< 4(s1),

6(s1) > 9(s1)-
(4) If 0(s;) > 0(s1), then there exists f € F such that
B(s1) > sup W(f, g)(s1).
geG
So 8(s1) > W(f,g)(s1) forall geQG.
To(f,9)(s1) = U(f, 9)(s1) = 0(s1)V(f, 9)(s1) <O.
Hence 0> sup Ty(f, g)(s1) > inf sup To(f, g)(s1) = To(s1)-
N geG fEF gei
(5) If 8(s1) > 6(s1), the proof is similar to the case of (4), and get
To(s1) = inf zlelgTo(f, g9)(s1) 2 0.

O

Next we can state some properties for Ty(s;) by following similar arguments as for
Ty(s1) in the above proposition.

Proposition 3.2.
(1) If 61(s1) > 62(s1) > 0, then Ty (s1) < Ty, (s1).

(2) If Ty(s1) <O, then 0(s1) > 8(s1).
(3) If Ty(s1) > 0, then 0(s1) < 0(s1).
(4) If 6(s1) > 0(s1), then Ty(s1) <O.
(5) If 6(s1) < 0(s1), then Ty(s1) > 0.

Proof. Using Ty(s:) and 6(s;) instead of Tp(s;) and 6(s;) respectively, we can
prove this proposition by similar arguments as in the previous proof. a

4. The Saddle Value Function of the Game (DFG)

Now we can prove the existence theorem for saddle value function in the game (DFG),
and the relationship between the games (DFG) and (DGPy).

Theorem 4.1. Suppose that g* € G is a maximizer in the game (DFG). Then
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(1) 9(31) = 0(s1) = 0*(s1), and

(2) if Ty-(s1) <0, then g* is a maximizer in the game (DGPj.).

From Theorem 4.1, we can easily derive the following result.
Corollary 4.2. Suppose that (f*,g*) € F' x G is a saddle point of (DFG). Then

(1) T« (f*, g*)(s1) = 0, and

(2) (f*,g*) is a saddle point of the game (DGP4-).
A theorem similar to Theorem 4.1 is given as follows.
Theorem 4.3. Suppose that f* € F is a minimizer in (DFG). Then,
(1) 6(s;) = 6(s;) = 6*(s1), and

(2) if Ty«(s1) > 0, then f* is also a minimizer in the game (DGPg- ).
Combine Theorems 4.1~4.3, we can state the main results as follows.

Theorem 4.4. Suppose that 0(s;) = 8(s1) = 6*(s;).
(1) If g* € G is a maximizer for W(f, g) in the game (DGP+) with

}rellfs,To*(fag )(81) = T+ (s1) > 0,

then, g* is also a maximizer for W(f, g) in the game (DFG).

(2) If f* € F is a minimizer for W(f,g) in (DGPy.) with

ss]}:_lgTe»-(f",g)(sl) = T (51) <0

then f* is also a minmizer of W(f, g) in the game (DFG).

Corollary 4.5. Suppose that 0(s;) = 8(s;) = 0*(s;), and that (f*,¢*) € F x G is

a saddle point of the game (DGPe+) with Tp-(f*, g*)(s1) = 0. Then (f*,g*) is a saddle
point of the game (DFG).

The proof of the corollary is easily obtained from Theorem 4.4.

5. A Remark for further Development

The objective function of a fractional dynamic game is of the form

(*) W(z,y)= g—g—%, re€X,y€ey.
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Our problem is to show that (x) has zero gap under certain conditions. That is,

1nf sup W (z,y) = sup mf W(z,y),

z€X yey yeY €
where X and Y denote the universal strategy spaces in the sense of measurable transition
probabilities. If X and Y are assumed to be non-discrete compact strategy spaces for
players I and II, then a question arises in the mathematical analysis for deterministic
situations that under what conditions on the denominator and the numerator functions,
V(z,y) and U(z,y), the fractional function W (x,y) will have a saddle point? There are
many authors who investigated this problem deriving minimax theorems with respect to
a two-variable function in z and y; see for example [5], [9], [10] and [11]. One can see that
these papers in minimax fractional programming are taking x to be discrete as counting
functions of y. Further problems are implicit in the fractional function W (z,y).
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