CAR系での状態の拡張可能性と量子相関について
(On the State Extension and Quantum Correlations for CAR Systems)

守屋 創 Hajime Moriya

高エネ研

1 Introduction

A quantum system is described by a C*-algebra \mathcal{A} and its state is given by a normalized positive linear functional φ of \mathcal{A}. Subsystems of \mathcal{A} are described by C*-subalgebras $\mathcal{A}(\{i\})$, $i = 1, 2 \cdots$. If the subalgebras $\mathcal{A}(\{i\})$ generate \mathcal{A} as a C*-algebra, then \mathcal{A} is called a total system \mathcal{A}.

Let φ be a state of φ. Then the restrictions of φ to $\mathcal{A}(\{i\})$ are given by

$$\varphi_i(A) = \varphi(A),$$

for $A \in \mathcal{A}(\{i\})$. Each φ_i is a state of $\mathcal{A}(\{i\})$.

Conversely, suppose that states φ_i of $\mathcal{A}(\{i\})$, $i = 1, 2 \cdots$, are first given. If the restriction of the total state φ to $\mathcal{A}(\{i\})$ is equal to the given state φ_i for each i, then this state φ is called a joint extension of states φ_i of $\mathcal{A}(\{i\})$, $i = 1, 2, \cdots$.

For spin lattice or Boson systems, algebras $\mathcal{A}(\{i\})$ of subsystems with mutually disjoint localization mutually commute and form a tensor product system. Here the total system \mathcal{A}
is generated by the tensor product of $\mathcal{A}(\{i\}), i = 1, 2, \cdots$ as follows.

\[\mathcal{A} = \bigotimes_i \mathcal{A}(\{i\}). \quad (1) \]

Let a set of states φ_i of $\mathcal{A}(\{i\})$ ($i = 1, 2, \cdots$) be given. For tensor product systems, we have obviously a state extension as the tensor product of states φ_i:

\[\varphi = \bigotimes_i \varphi_i. \quad (2) \]

(In general, there are many state extentions of φ_i other that this product state extention. Note that if all φ_i are pure states, then the joint extension is uniquely given by the product state extension and is a pure state.)

Let us consider the different situations where the subsystems $\mathcal{A}(\{i\})$ are not commutative for any distinct indices i. (We assume that intersections of subsystems of disjoint regions do not have non-trivial elements, i.e., $\mathcal{A}(\{i\}) \cap \mathcal{A}(\{j\}) = c1$ ($c \in \mathbb{C}$) for $i \neq j$.) Assume that the total system \mathcal{A} is algebraically generated by $\mathcal{A}(\{i\})$ $i = 1, 2, \cdots$ as

\[\mathcal{A} = \bigvee_i \mathcal{A}(\{i\}). \quad (3) \]

Here there arises the natural question on the state extention from subsystems to the joint system for non-tensor product systems as follows.

Does a state extension of the total system \mathcal{A} exist for a set of given states φ_i of $\mathcal{A}(\{i\})$? What kind of state extentions are possible or impossible for φ_i? When is a state extension to be a product state? Is it possible to make a product state extention for given φ_i?

Fermion systems are typical examples for non-tensor product systems. It is obvious that algebras of subsystems with mutually
disjoint regions do not mutually commute due to the anticommutativity of Fermion creation and annihilation operators and satisfy $\mathcal{A}(\{i\}) \cap \mathcal{A}(\{j\}) = c1 (c \in \mathbb{C})$.

Our article [3] deals with the problems about joint extension of states for Fermion systems generalizing some of results in [5]. The setting of [5] is restricted to a finite-dimensional bipartite CAR system and all the results about state extentions in [5] are reduced to the special cases of those given in [3]. However, the methods of proof are different from each other and [3] relates the quantum entanglement for Fermion systems to the state extension; this is a new perspective. Therefore, before we are going to the general case in Section 5, we show some restricted results in Section 4 by using a entropy method which was obtained earlier by the author and is due to the finite-dimensionality of the systems.

2 The Fermion Algebra

We consider a C*-algebra \mathcal{A}, called a CAR algebra or a Fermion algebra, which is generated by its elements a_i and a_i^*, $i \in \mathbb{N}$ ($\mathbb{N} = \{1, 2, \cdots \}$) satisfying the following canonical anticommutation relations (CAR).

\[
\{a_i^*, a_j\} = \delta_{i,j} 1 \\
\{a_i^*, a_j^*\} = \{a_i, a_j\} = 0,
\]

where $\{A, B\} = AB + BA$ (anticommutator) and $\delta_{i,j} = 1$ for $i = j$ and $\delta_{i,j} = 0$ otherwise. For finite subset I of \mathbb{N}, $\mathcal{A}(I)$ denotes the C*-subalgebra generated by a_i and a_i^*, $i \in I$.

For finite I, $\mathcal{A}(I)$ is known to be isomorphic to the tensor product of $|I|$ copies of the full 2×2 matrix algebra $M_2(\mathbb{C})$ and hence isomorphic to $M_{2|I|}(\mathbb{C})$. Then

\[
\mathcal{A}_\infty = \bigcup_{|I|<\infty} \mathcal{A}(I)
\]
has the unique C*-norm. The C* algebra \mathcal{A} together with its individual elements $\{a_i, a_i^*| i \in \mathbb{Z}\}$ is uniquely defined up to isomorphism and is isomorphic to the UHF-algebra $\overline{\otimes}_{i \in \mathbb{Z}} M_2(\mathbb{C})$, where the bar denotes the norm completion. \mathcal{A} has the unique tracial state τ as the extension of the unique tracial state of $\mathcal{A}(I)$, $|I| < \infty$.

A crucial role is played by the unique automorphism Θ of \mathcal{A} characterized by

$$\Theta(a_i) = -a_i, \quad \Theta(a_i^*) = -a_i^*$$

for all $i \in \mathbb{N}$. The even and odd parts of \mathcal{A} and $\mathcal{A}(I)$ are defined by

$$\mathcal{A}_\pm \equiv \{A \in \mathcal{A}| \Theta(A) = \pm A\},$$

For any $A \in \mathcal{A}$ (or $\mathcal{A}(I)$), we have the following decomposition

$$A_\pm = A_+ + A_-,$$

for all $i \in \mathbb{N}$. The even and odd parts of \mathcal{A} and $\mathcal{A}(I)$ are defined by

$$\mathcal{A}_\pm \equiv \{A \in \mathcal{A}| \Theta(A) = \pm A\},$$

A state φ of \mathcal{A} or $\mathcal{A}(I)$ is called even if it is Θ-invariant:

$$\varphi(\Theta(A)) = \varphi(A)$$

for all $A \in \mathcal{A}$ (or $A \in \mathcal{A}(I)$).

For a state φ of a C*-algebra \mathcal{A} ($\mathcal{A}(I)$), $\{\mathcal{H}_\varphi, \pi_\varphi, \Omega_\varphi\}$ denotes the GNS triplet of a Hilbert space \mathcal{H}_φ, a representation π_φ of \mathcal{A} (of $\mathcal{A}(I)$), and a vector $\Omega_\varphi \in \mathcal{H}_\varphi$, which is cyclic for $\pi_\varphi(\mathcal{A})$ ($\pi_\varphi(\mathcal{A}(I))$) and satisfies

$$\varphi(A) = (\Omega_\varphi, \pi_\varphi(A)\Omega_\varphi)$$

for all $A \in \mathcal{A}$ ($\mathcal{A}(I)$). For any $x \in B(\mathcal{H}_\varphi)$, we write

$$\overline{\varphi}(x) = (\Omega_\varphi, x\Omega_\varphi).$$
3 Product State Extension

As subsystems, we consider $\mathcal{A}(I)$ with mutually disjoint subsets I's. For a pair of disjoint subsets I_1 and I_2 of \mathbb{N}, let φ_1 and φ_2 be given states of $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$, respectively. If a state φ of the joint system $\mathcal{A}(I_1 \cup I_2)$ (which is the same as the \mathcal{C}^*-subalgebra of \mathcal{A} generated by $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$) coincides with φ_1 on $\mathcal{A}(I_1)$ and φ_2 on $\mathcal{A}(I_2)$, i.e.,

$$\varphi(A_1) = \varphi_1(A_1), \quad A_1 \in \mathcal{A}(I_1),$$

$$\varphi(A_2) = \varphi_2(A_2), \quad A_2 \in \mathcal{A}(I_2),$$

then φ is called a joint extension of φ_1 and φ_2. As a special case, if

$$\varphi(A_1A_2) = \varphi_1(A_1)\varphi_2(A_2) \quad (4)$$

holds for all $A_1 \in \mathcal{A}(I_1)$ and all $A_2 \in \mathcal{A}(I_2)$, then φ is called a product state extension of φ_1 and φ_2. It is a simple generalization of the product state (3) to the general (i.e., not necessarily commutative) systems.

4 Finite-Dimensional Case

4.1 State Extension for the Bipartite System

We first consider a finite dimensional bipartite Fermion systems establishing the following Theorem 1 on the product property of the states with given pure marginal states. The corresponding result of this theorem can be generalized to the more general cases where the number of subsystems is arbitrary (including infinity), and each of subsystem is not necessary finite-dimensional. Nevertheless, the proof of Theorem 1 making use of von Neumann entropy cannot be generalized to the infinite-dimensional systems and may be of some interest by itself. It is
also a crucial tool for the characterization of "quantum entanglement" in Subsection 4.2.

Theorem 1. Let $\mathcal{A}(\{1\})$ and $\mathcal{A}(\{2\})$ be a pair of Fermion systems generated by one-particle Fermions $\{a_1, a_1^*\}$ and $\{a_2, a_2^*\}$, respectively. Let ω be a state of \mathcal{A}. Suppose that its restrictions to $\mathcal{A}(\{1\})$ and $\mathcal{A}(\{2\})$ are both pure states. Then ω is a pure state of \mathcal{A} and has the following product property over $\mathcal{A}(\{1\})$ and $\mathcal{A}(\{1\})'$,

$$\omega(AB) = \omega(A)\omega(B), \tag{5}$$

for every $A \in \mathcal{A}(\{1\})$ and $B \in \mathcal{A}(\{1\})'$. The restriction of ω to $\mathcal{A}(\{1\})'$ is also a pure state.

We shall state the proof of this theorem so as to explain the motivation of the present investigation. (As for the other theorems in this note, see [3].)

Proof

Let ω_1 be the restriction of ω to $\mathcal{A}(\{1\})$ and ω_2 be the restriction of ω to $\mathcal{A}(\{2\})$. By the assumption that ω_1 and ω_2 are pure states, both von Neumann entropies vanish:

$$S(\omega_1) = S(\omega_2) = 0$$

The strong subadditivity property of entropy for finite-dimensional Fermion systems holds (6), the subadditivity property of entropy holds a fortiori.

$$S(\omega|_{\mathcal{A}}) \leq S(\omega_1) + S(\omega_2) = 0 + 0 = 0.$$

Thus the positivity of entropy implies

$$S(\omega|_{\mathcal{A}}) = 0.$$

We note that

$$\mathcal{A} = \mathcal{A}(\{1\}) \lor \mathcal{A}(\{2\}) = \mathcal{A}(\{1\}) \otimes \mathcal{A}(\{1\})'.$$
By this vanishing result of entropy of \(\omega \), we conclude that \(\omega \) is a pure state of \(\mathcal{A} \). Since \(\mathcal{A} \) is a full matrix algebra, every pure state is a vector state. Therefore, for this \(\omega \), there exists a unique normalized vector \(\eta(\omega) \) in \(\mathcal{H} \) up to a phase factor satisfying

\[
\omega(A) = (A\eta(\omega), \eta(\omega))_{\mathcal{H}}
\]

for any \(A \in \mathcal{A} \).

The product property (5) follows from the well-known Lemma IV.4.11 of [9]. By this product property and the tensor-product structure between \(\mathcal{A}(\{1\}) \) and \(\mathcal{A}(\{1\})' \), the purity of \(\omega \) implies that of the restriction of \(\omega \) to \(\mathcal{A}(\{1\})' \).

\[\square \]

4.2 Von Neumann Entropy and Quantum Entanglement

We collect some basic properties entropy for Fermion systems. The following inequality of von Neumann entropy is called the SSA property and can be shown based on some results on the conditional expectation (see [2]). (The SSA for the tensor-product systems is shown by Lieb and Ruskai in [4].)

Theorem 2 (SSA). For finite subsets \(I \) and \(J \), the following strong subadditivity of von Neumann entropy \(S \) holds for any state \(\varphi \):

\[
S(\varphi_{I \cup J}) - S(\varphi_I) - S(\varphi_J) + S(\varphi_{I \cap J}) \leq 0.
\]

(6)

Let \(I \) and \(J \) be two disjoint finite regions. For tensor-product systems, the so-called "triangle inequality of entropy" holds for any state \(\varphi \) [1]

\[
|S(\varphi_I) - S(\varphi_J)| \leq S(\varphi_{I \cup J}).
\]

However, this inequality fails to hold for Fermion systems. The violation of the triangle inequality describes the characteristic
feature of quantum entanglement for Fermion systems which cannot exist in any tensor-product systems.

Theorem 3. Let $A(\{1\})$ and $A(\{2\})$ be as Theorem 1. For any positive number $x \in [0, \log 2]$, there exists a pure state φ such that

$$|S(\varphi|_{A(\{1\})) - S(\varphi|_{A(\{2\})})| = x$$

If the above x is strictly positive, we say that the pure state φ has “half-sided entanglement”. (See [5] for details.)

5 General Case (arbitrary numbers of subsystems of arbitrary dimensions)

We go back to the problem of state extension. For an arbitrary (finite or infinite) number of subsystems, $A(I_1), A(I_2), \cdots$ with mutually disjoint I’s and a set of given states φ_i of $A(I_i)$, a state φ of $A(\cup I_i)$ is called a product state extension if it satisfies (4) for any distinct i and j.

We give the following Lemmas.

Lemma 1. For disjoint I_1 and I_2, let φ be a state of $A(I_1 \cup I_2)$ with its restrictions φ_1 and φ_2 to $A(I_1)$ and $A(I_2)$. Then the representation π_φ of $A(I_1)$ is quasi-equivalent to $\pi_{\varphi_1} \oplus \pi_{\varphi_1 \Theta}$.

Lemma 2. If π_{φ_1} and $\pi_{\varphi_1 \Theta}$ are disjoint, then

$$H_{\varphi^+} \perp H_{\varphi^-},$$

and π_φ restricted to H_{φ^\pm} are quasi-equivalent to π_{φ_1} and $\pi_{\varphi_1 \Theta}$.

We have the following Theorem.

Theorem 4. Let I_1, I_2, \cdots be an arbitrary (finite or infinite) number of mutually disjoint subsets of \mathbb{N} and φ_i be a given state
of $\mathcal{A}(I_i)$ for each i.

(1) A product state extension of φ_i, $i = 1, 2, \cdots$, exists if and only if all states φ_i except at most one are even. It is unique if it exists. It is even if and only if all φ_i are even.

(2) Suppose that all φ_i are pure. If there exists a joint extension of φ_i, $i = 1, 2, \cdots$, then all states φ_i except at most one have to be even. If this is the case, the joint extension is uniquely given by the product state extension and is a pure state.

Remark. In Theorem 4 (2), the product state property (3) is not assumed but it is derived from the purity assumption for all φ_i.

The purity of all φ_i does not follow from that of their joint extension φ in general. For a product state extension φ, however, we have the following two theorems about consequences of purity of φ.

Theorem 5. Let φ be the product state extension of states φ_i with disjoint I_i. Assume that all φ_i except φ_1 are even.

(1) φ_1 is pure if φ is pure.

(2) Assume that π_{φ_1} and $\pi_{\varphi_1\ominus}$ are not disjoint. Then φ is pure if and only if all φ_i are pure. In particular, this is the case if φ is even.

Remark. If I_1 is finite, the assumption of Theorem 5 (2) holds and hence the conclusion follows automatically.

In the case not covered by Theorem 5, the following result gives a complete analysis if we take $\bigcup_{i \geq 2} I_i$ in Theorem 5 as one subset of \mathbb{N}.

Theorem 6. Let φ be the product state extension of states φ_1 and φ_2 of $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$ with disjoint I_1 and I_2 where φ_2 is even and φ_1 is such that π_{φ_1} and $\pi_{\varphi_1\ominus}$ are disjoint.

(1) φ is pure if and only if φ_1 and the restriction φ_2+ of φ_2 to
\(\mathcal{A}(I_2)_+ \) are both pure.

(2) Assume that \(\varphi \) is pure. \(\varphi_2 \) is not pure if and only if
\[
\varphi_2 = \frac{1}{2}(\hat{\varphi}_2 + \hat{\varphi}_2\Theta)
\]
where \(\hat{\varphi}_2 \) is pure and \(\pi_{\hat{\varphi}_2} \) and \(\pi_{\hat{\varphi}_2}\Theta \) are disjoint.

Remark. The first two theorems are some generalization of results in [7] with the following overlap. The first part of Theorem 4 (1) is given in [7] as Theorem 5.4 (the if part and uniqueness) and a discussion after Definition 5.1 (the only if part). Theorem 4 (2) and Theorem 5 are given in Theorem 5.5 of [7] under the assumption that all \(\varphi_i \) are even.

6 Other State Extensions

The rest of our results concerns a joint extension of states of two subsystems, not satisfying the product state property (3). We need a few more notation. For two states \(\varphi \) and \(\psi \) of a \(\mathcal{C}^* \)-algebra \(\mathcal{A}(I_1) \), consider any representation \(\pi \) of \(\mathcal{A}(I_1) \) on a Hilbert space \(\mathcal{H} \) containing vectors \(\Phi \) and \(\Psi \) such that
\[
\varphi(A) = (\Phi, \pi(A)\Phi), \quad \psi(A) = (\Psi, \pi(A)\Psi).
\]
The transition probability between \(\varphi \) and \(\psi \) is defined ([10]) by
\[
P(\varphi, \psi) \equiv \sup |(\Phi, \Psi)|^2
\]
where the supremum is taken over all \(\mathcal{H} \), \(\pi \), \(\Phi \) and \(\Psi \) as described above. For a state \(\varphi_1 \) of \(\mathcal{A}(I_1) \), we need the following quantity
\[
p(\varphi_1) \equiv P(\varphi_1, \varphi_1\Theta)^{1/2}
\]
where \(\varphi_1\Theta \) denotes the state \(\varphi_1\Theta(A) = \varphi_1(\Theta(A)), A \in \mathcal{A}(I_1) \).

If \(\varphi_1 \) is pure, then \(\varphi_1\Theta \) is also pure and the representations \(\pi_{\varphi_1} \) and \(\pi_{\varphi_1}\Theta \) are both irreducible. There are two alternatives.
(α) They are mutually disjoint. In this case \(p(\varphi_1) = 0 \).
(β) They are unitarily equivalent.

In the case (β), there exists a self-adjoint unitary \(u_1 \) on \(\mathcal{H}_{\varphi_1} \) such that

\[
\begin{align*}
u_1\pi_{\varphi_1}(A)u_1 &= \pi_{\varphi_1}(\Theta(A)), & A \in \mathcal{A}(I_1), \\
(\Omega_{\varphi_1}, u_1\Omega_{\varphi_1}) &\geq 0.
\end{align*}
\]

For two states \(\varphi \) and \(\psi \), we introduce

\[
\lambda(\varphi, \psi) \equiv \sup\{\lambda \in \mathbb{R}; \varphi - \lambda\psi \geq 0\}
\]

Since \(\varphi - \lambda_n\psi \geq 0 \) and \(\lim \lambda_n = \lambda \) imply \(\varphi - \lambda\psi \geq 0 \), we have

\[
\varphi \geq \lambda(\varphi, \psi)\psi.
\]

We need

\[
\lambda(\varphi_2) \equiv \lambda(\varphi_2, \varphi_2\Theta).
\]

The next Theorem provides a complete answer for a joint extension \(\varphi \) of states \(\varphi_1 \) and \(\varphi_2 \) of \(\mathcal{A}(I_1) \) and \(\mathcal{A}(I_2) \), when one of them is pure.

Theorem 7. Let \(\varphi_1 \) and \(\varphi_2 \) be states of \(\mathcal{A}(I_1) \) and \(\mathcal{A}(I_2) \) for disjoint subsets \(I_1 \) and \(I_2 \). Assume that \(\varphi_1 \) is pure.

(1) A joint extension \(\varphi \) of \(\varphi_1 \) and \(\varphi_2 \) exists if and only if

\[
\lambda(\varphi_2) \geq \frac{1 - p(\varphi_1)}{1 + p(\varphi_1)}.
\]

(2) If eq. (8) holds and if \(p(\varphi_1) \neq 0 \), then a joint extension \(\varphi \) is unique and satisfies

\[
\varphi(A_1A_2) = \varphi_1(A_1)\varphi_2(A_2+) + \frac{1}{p(\varphi_1)}f(A_1)\varphi_2(A_2-),
\]

\[
f(A_1) \equiv \overline{\varphi_1}(\pi_{\varphi_1}(A_1)u_1)
\]
for $A_1 \in \mathcal{A}(I_1)$ and $A_2 = A_{2+} + A_{2-}$, $A_{2\pm} \in \mathcal{A}(I_2)_{\pm}$.

(3) If $p(\varphi_1) = 0$, (8) is equivalent to evenness of φ_2. If this is the case, at least a product state extension of Theorem 4 exists.

(4) Assume that $p(\varphi_1) = 0$ and φ_2 is even. There exists a joint extension of φ_1 and φ_2 other than the unique product state extension if and only if φ_1 and φ_2 satisfy the following pair of conditions:

(4-i) π_{φ_1} and $\pi_{\varphi_1\Theta}$ are unitarily equivalent.
(4-ii) There exists a state $\tilde{\varphi}_2$ of $\mathcal{A}(I_2)$ such that $\tilde{\varphi}_2 \neq \tilde{\varphi}_2\Theta$ and

$$\varphi_2 = \frac{1}{2}(\tilde{\varphi}_2 + \tilde{\varphi}_2\Theta).$$

(5) If $p(\varphi_1) = 0$, then corresponding to each $\tilde{\varphi}_2$ above, there exists a joint extension φ which satisfies

$$\varphi(A_1A_2) = \varphi_1(A_1)\varphi_2(A_{2+}) + \overline{\varphi_1}(\pi_{\varphi_1}(A_1)u_1)\overline{\varphi}_2(A_{2-}).$$

(9) Such extensions along with the unique product state extension (which satisfies eq. (9) for $\tilde{\varphi}_2 = \varphi_2$) exhaust all joint extensions of φ_1 and φ_2 when $p(\varphi_1) = 0$.

Remark. The eq.(8) is sufficient for the existence of a joint extension also for general states φ_1 and φ_2.

We have a necessary and sufficient condition for the existence of a joint extension of states φ_1 and φ_2 under a specific condition on φ_1.

Theorem 8. Let φ_1 and φ_2 be states of $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$ for disjoint subsets I_1 and I_2. Assume that π_{φ_1} and $\pi_{\varphi_1\Theta}$ are disjoint. Then a joint extension of φ_1 and φ_2 exists if and only if φ_2 is even.

7 Examples

Example 1

Let I_1 and I_2 be mutually disjoint finite subsets of \mathbb{N}. Let $\varrho \in$
\(\mathcal{A}(I_1 \cup I_2) \) be an invertible density matrix, namely \(\rho \geq \lambda I \) for some \(\lambda > 0 \) and \(\text{Tr}(\rho) = 1 \), where \(\text{Tr} \) denotes the matrix trace on \(\mathcal{A}(I_1 \cup I_2) \). Take any \(x = x^* \in \mathcal{A}(I_1) \) and \(y = y^* \in \mathcal{A}(I_2) \) satisfying \(\|x\| \|y\| \leq \lambda \). Let \(\varphi_1(A_1) \equiv \text{Tr}(\rho A_1) \) for \(A_1 \in \mathcal{A}(I_1) \) and \(\varphi_2(A_2) \equiv \text{Tr}(\rho A_2) \) for \(A_2 \in \mathcal{A}(I_2) \). Then

\[
\varphi'_\rho \equiv \text{Tr}(\rho' A), \quad \varphi' \equiv \rho + ixy.
\]

for \(A \in \mathcal{A}(I_1 \cup I_2) \) is a state of \(\mathcal{A}(I_1 \cup I_2) \) and has \(\varphi_1 \) and \(\varphi_2 \) as its restrictions to \(\mathcal{A}(I_1) \) and \(\mathcal{A}(I_2) \), irrespective of the choice of \(x \) and \(y \) satisfying the above conditions.

Example 2

Let \(I_1 \) and \(I_2 \) be mutually disjoint subsets of \(\mathbb{N} \). Let \(\varphi \) and \(\psi \) be states of \(\mathcal{A}(I_1) \) and \(\mathcal{A}(I_2) \) such that

\[
\varphi = \sum \lambda_i \varphi_i, \quad \psi = \sum \lambda_i \psi_i, \quad (0 < \lambda_i, \sum \lambda_i = 1),
\]

where \(\varphi_i \) and \(\psi_i \) are states of \(\mathcal{A}(I_1) \) and \(\mathcal{A}(I_2) \) which have a joint extension \(\chi_i \) for each \(i \).

\[
\chi = \sum \lambda_i \chi_i
\]

is a joint extension of \(\varphi \) and \(\psi \).

This simple example yields next more elaborate ones.

Example 3

Let \(\varphi \) and \(\psi \) be states of \(\mathcal{A}(I_1) \) and \(\mathcal{A}(I_2) \) for disjoint \(I_1 \) and \(I_2 \) with (non-trivial) decompositions

\[
\varphi = \lambda \varphi_1 + (1-\lambda) \varphi_2, \quad \psi = \mu \psi_1 + (1-\mu) \psi_2, \quad (0 < \lambda, \mu < 1)
\]

where \(\varphi_1 \) and \(\varphi_2 \) are even. Product state extensions \(\varphi_i \psi_j \) of \(\varphi_i \) and \(\psi_j \) yield

\[
\chi \equiv (\lambda \mu + \kappa) \varphi_1 \psi_1 + (\lambda(1-\mu) - \kappa) \varphi_1 \psi_2 + ((1-\lambda)\mu - \kappa) \varphi_2 \psi_1 + ((1-\lambda)(1-\mu) + \kappa) \varphi_2 \psi_2,
\]
which is a joint extension of φ and ψ for all $\kappa \in \mathbb{R}$ satisfying

\[- \min(\lambda \mu, (1 - \lambda)(1 - \mu)) \leq \kappa \leq \min((1 - \lambda)\mu, \lambda(1 - \mu)).\]

Example 4

Let φ_k, $k = 1, \cdots, m$ and ψ_l, $l = 1, \cdots, n$ be states of $\mathcal{A}(I_1)$ and $\mathcal{A}(I_2)$ for disjoint I_1 and I_2. Let

\[
\varphi = \sum_{k=1}^{m} \lambda_k \varphi_k, \quad \psi = \sum_{l=1}^{n} \mu_l \psi_l
\]

with $\lambda_k, \mu_l > 0$, $\sum \lambda_k = \sum \mu_l = 1$. Assume that there exists a joint extension χ_{kl} of φ_k and ψ_l for each k and l. Then

\[
\chi = \sum_{kl} (\lambda_k \mu_l + \kappa_{kl}) \chi_{kl}
\]

(10)

is a joint extension if

\[
(\lambda_k \mu_l + \kappa_{kl}) \geq 0, \quad \sum_l \kappa_{kl} = \sum_k \kappa_{kl} = 0.
\]

Since the constraint for mn parameters $\{\kappa_{kl}\}$ are effectively $m + n - 1$ linear relations (because $\sum_{kl} \kappa_{kl} = 0$ is common for $\sum_l \kappa_{kl} = 0$ and $\sum_k \kappa_{kl} = 0$), we have $mn - (m + n - 1) = (m - 1)(n - 1)$ parameters for the joint extension (10).

References

