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Abstract

Dual-intuitionistic logics are logics proposed by Czermak 1977, Goodman 1981 and Urbas
1996. We show a correspondence between Goodman’s dual-intuitionistic logic and Nelson’s
constructive logic N~. Moreover we introduce two types of cut-free sequent calculi for N™.

1 Introduction

Dual-intustionistic logics are logics proposed by Czermak 1977 {4}, Goodman 1981 [6] and Urbas
1996 [12]. Czermak [4] introduces a Gentzen-type sequent calculus in which sequents have the
restriction that whose antecedent contains at most one formula. This system is called by Czermak
the “dual-intuitionistic calculus DJ”. Goodman {6] introduces a logic which is called the “logic of
contradiction” or the “anti-intuitionistic logic”, and shows the completeness theorem (with respect
to complete Brouwerian algebras) for this logic. Goodman’s logic has a binary connective + named
the “psudo-difference”. We call here the logic, GJ and also call a +-less its sublogic, GJ~ . Urbas
[12] extends these logics of Czermak and Goodman, and moreover extends the cut-elimination
result of Czermak, and discusses decidability, paraconsistency and so on. These logics containing
Czermak’s, Goodman’s and Urbas’s logics are called by Urbas the “dual-intuitionistic logics”. Also
an interesting related work for dual-intuitionistic logics is in Goré 2000 [5].

Logics with strong negation are first introduced by Nelson 1949 [9] and independently by Markov
1951. A constructive logic N~, which is a variant of logics with strong negation, is posed by
Almukdad and Nelson 1984 [1]. The paper [1] shows a relationship among constructive logics N7,
N* and Cleave’s three-valued logic {3]. These logics such as N™, N and N* have been studied
by many logicians and computer scientists (e.g., [8, 10, 11, 13, 14]). For example, Wansing [14]
provides some cut-free display calculi for N~ and N, which calculi have four-placed display sequents,
and can derive the subformula property. In addition, Kamide [7] develops various kinds of cut-free
sequent calculi for a intuitionistic linear logic with strong negation.

Logics with strong negation and dual-intuitionistic logics have been studied in the completely
different fields and motivations. In this paper, we clarify a relationship among these different
logics. Moreover, applying the resulting technique in [7] we propose new sequent calculi for N™,
and prove the cut-elimination theorems for these calculi.

This paper is organized as follows. In section 2, we present the dual-intuitionistic logics: Good-
man’s GJ and GJ~, Czermak’s DJ and Urbas’s LDJ and LDJ*. In section 3, we introduce Nelson’s
constructive logic N~ and give a correspondence between GJ~ and N~. Using this correspondence
result, the cut-elimination theorem for GJ~ is proved. In section 4, we introduce a dual calculus



DC for N~, and prove the cut-elimination theorem for DC. This calculus has two kinds of sequents:
a positive sequent ' =71 v and a negative sequent I" =~ ~. This idea of using two sorts of sequents
is from Kripke-type semantics for logics with strong negation [11}, which semantics have two types
of valuations: =% (corresponds to provability) and =" (corresponds to refutability). We then
show that GJ~ corresponds to the negative part (using only negative sequents) of a fragment of
DC. In section 5, we introduce a subformula calculus SC for N7, and prove the cut-elimination
theorem and the subformula property for SC 1.

We assume here that the language of the negation-less fragment of the first-order predicate LJ
consists of logical connectives A, V. and — and quantifiers V and 3. Moreover we sometimes add
the following connectives to the language: T (“sentential constant” for GJ), + (“psudo-difference”
for some dual-intuitionistic logics) and — (“negation” for some dual-intuitionistic logics) and ~
(“strong negation” for N7). Lower case Greek letters o, 3, ... are used for formulas, and Greek
capital letters I, A, ... are used for finite (possibly empty) sequences of formulas. ~ I' denotes
the sequence (~ |y € T'). A sequent is an expression of the form I' = v for N~ or v =T for
dual-intuitionistic logics. Since all logics discussed in this paper are formulated as sequent calculi,
we will sometimes identify a sequent calculus with the logic determined by it.

2 Dual-intuitionistic logics

First, we give a precise definition of Goodman’s logic GJ [6]. In the following definitions, v in
expression v => I' for any I' means single formula.
Initial sequents of GJ are of the forms:

a=a, ¥y=T.

The cut rule is of the form:

Ty=>Aa a=X

Py N> (cut-d).
The inference rules of GJ 2 are as follows:
v=> Ao, ¥y=>A ¥v=A,6,a,T
vy=>Aa (co-d), y=Aa (we-d), v=A,a,68T (ex-d),
a—j“\-g—z-f—A (Aleft1-d), Ef—;j‘——A (Aleft2-d),
Ty=Aa y=A,8 . a=>A B=A
v=>AaAp F/\rlght-d), aVvVi=A (Vieft-d),
=Aa ) = A, .
m (Vl‘lghtl-d), "-Y—:Y;—A—a—eﬁ' (Vr1ght2-d),
r r )
=T =T aft
T @end), LIRS i)
a=>A8 . a+-Bf=>A
a+ﬂ:>A('left)a a=>A,[3 (leeft )

Here, a[z/z] (a[t/ z]) is the formula obtained from o by replacing all free occurrences of z in a by
an individual variable z (a term ¢, respectively), but avoiding the crash of variables. Also, in the

1The idea of showing subformula property was first appeared in [14].
2Strictly speaking, the original logic of Goodman has the quantifier rules which are slightly different forms.
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rules for quantifiers, t is an arbitrary term and z is an arbitrary individual variable not occurring
in the lower sequent.

Here we define GJ™ = GJ — (+left) — (<left™!) — (y = T).

In the following, we consider an expression v = I for any  where v denotes a single formula
or an empty sequence.

Czermak’s logic DJ [4] is defined as follows: DJ = GJ~ — (Jleft-d) — (3left-d) + (we-left-d) +
(—left-d) + (—right-d) where

= A (e left-d), ol

a= A ’ m (—deft—d), 'gﬂ (ﬂright—d).

= A, —a

Urbas’s logics LDJ and LDJ* [12] are defined as follows: LDJ = DJ + (Jleft-d) + (3right-d)
+ (—left-d) + (—rightl-d) + (—right2-d) and LDJ* = LDJ + (=left) + (<right) where

vy=>Aa =T ) = ANa =T
vy=AT,a+8 (+right), a—f = AT (—left-d),
a=>A 7=>Aa,g

(—right1-d), (—right2-d).

= A, a—0 v = A,a—f0

3 Nelson’s N™ and Goodman’s GJ~

We introduce Nelson’s constructive logic N~. In the following definitions, v in expression I' = v
for any I means single formula.
Initial sequents of N~ are of the form:

The cut rule of N~ is of the form:

The inference rules of ~-free part of N~ are as follows:

%‘?g&l (co-left), -&% (we-left), ‘%3 (ex-left),
% (Nleftl), %%;;7—7 (Nleft2),
1“_1_\=>_:>_&1;\_76>ﬂ (Aright), 2 A;C g’ Aﬁ ff T (Vieft),
Fl;f—aavﬂ (Vrightl), F%g_ﬁ (Vright2),

Pj—»g, r?izjf (—lef), T (ight),
% ('Vleft), %’Z—j] (Vright),
% Qett), Y righe).



The strong negation inference rules of N~ are as follows:

L2l ngh), 2221 ()
= a,NA(: /\Vﬁ),NAﬂ=’>A”r=> " (et
f‘iﬁﬁ (~ Arightl), EE?% (~ Aright2),
r e (jjﬂ')“ B (~ vright),
ey (e, TR (v igh)
NNQ\[;TfF:J (~ Vleft), %’% (~ Vright),
%I}J (~ Tleft), —F—E—:f—gj (~ right).

Here a[z/z] and a[t/z] denote the same meaning presented in section 2. We remark that this
system is in [13, 10] and is different from that in [1], but both the systems are essentially the same
thing. The system in [1] uses the multiple conclusion sequent, that is, the system is defined as
so-called the ”LJ’-style” formulation.

The following cut-elimination result is already presented in [10, 13].

Theorem 3.1 (Cut-Elimination Theorem for N~) The rule (cut) is admissible in cut-free
N-.

The following theorem is a main result of this paper.

Theorem 3.2 (Correspondence Between GJ~ and N~) Let I' be a sequence of ~-free for-
mulas, v be a ~-free formula. (1) v = T s provable in GJ~ if and only if ~ T =~ ~ is provable
in the —-free fragment of N=. (2) If ~ ' =~ 7 is cut-free provable in the —-free fragment of N~
then v = I is cut-free provable in GJ™.

Using this theorem, we can obtain the following 3.

Theorem 3.3 (Cut-Elimination Theorem for GJ~) The rule (cut-d) is admissible in cut-

free GI-.

Proof Suppose that v = T is provable in GJ~. Then ~ I" =~ 4 is provable in the —-free fragment
of N~ by Theorem 3.2 (1). By Theorem 3.1 and its subformula-property-like corollary 4, ~ ' =>~ 5
is cut-free provable in the —-free fragment of N~. Hence v = I is cut-free provable in GJ~ bi
Theorem 3.2 (2). ‘

3Goodman [6] does not discuss the cut-elimination theorems for GJ and GJ~. Maybe the cut-elimination theorem

does not hold for GJ.
4We remark that N~ has no subformula property, but similar property holds for N~.
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4 Dual calculus for N~

In this section, we introduce a dual calculus DC for N~. In the following, a sequent of the form

[ =7 «is calld a positive sequent, and a sequent of the form I' =~ 7 is called a negative sequent.

In the following definitions, v in expression I' =% v or I' =~ v for any I' means single formula.
The initial sequents of DC are of the forms:

a=ta, a="q.
The specific inference rules of DC are as follows:

~T A"« ~TVA=>"~7y

— (—/+1 — /42
NF,A:>+7 NP,A:}‘}'N"Y

BT T yym1), T8 Z T 49,
IN~A=2"~y (+/-1), N'~A="4« (+/-2)

The cut rules of DC are as follows:

=t Y=t - Y=
=>Ta o,X=>T1q (++cut), I's"«a a,_ ="y
L=ty rLE="v

(—cut).

The positive inference rules of DC are the same as that of ~-free N~ where we use =1 instead
of =.
The negative inference rules of DC are as follows:

ey v SEIEY e PR e,
= AjA*ﬂTAi’f j— T (- Aleft),
pl;:f—;;\‘ﬂ (— Arightl), Fg% (— Aright2),
S i), 2R (vien)
d =;—=f_ ;vzz_ b (- Vright),
%,_:J»TB(T_,AA::—:J (——left), - T,:Aﬂ =>_A::[;“ 2 (——right),
a[z/z]’—rzi_l (—Vieft), F—M (—Vright),
Vra,I' =~ v =~ Vza
%ﬁ% (—3left), I"Fz;‘—_cfzx/am_] (—=3right).

Here a[z/z] and aft/z] denote the same meaning presented in section 2.

Theorem 4.1 (Equivalence Between DC and N~) Let I' be a sequence of formulas, v be a
formula. (1) IfT =* v (x € {+, —}) is provable in DC, then the sequent I' = «y is provable in N~
if *x = +, or the sequent ~ T =~ ~ is provable in N~ if x = —. (2) If ' = « is cut-free provable
in N~ then the sequent I' =% « is cut-free provable in DC.
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Theorem 4.2 (Cut-Elimination Theorem for DC) The rules (+cut) and (—cut) are admis-
sible in cut-free DC.

Proof Suppose that a sequent I' =* v (x € {+, —}) is provable in DC. Then, by Theorem 4.1
(1), the sequent I' = v is provable in N~ if ¥ = +, or ~I' =~ v is provable in N~ if x = —.
Hence the sequent ' = v or ~I" =~ « is cut-free provable in N~ by Theorem 3.1. If I' = ~ is
cut-free provable in N~ then I' =% « is cut-free provable in DC by Theorem 4.1 (2). If ~T =~ v
is cut-free provable in N~ then ~ I' =%~ v is cut-free provable in DC by Theorem 4.1 (2), and

hence I' =~ ~ is cut-free provable in DC.

Theorem 4.3 (Correspondence Between GJ~ and DC) Let I' be a sequence of ~-free for-
mulas, ¥ be a ~-free formula. v = T" is provable in GJ~ if and only if I' =~ ~ is provable in the
—-free fragment of DC.

In the following, we assume the language of N by deleting 3. Let GBL be the predicate version
of Arieli and Avron’s logic [2] which is called the “logic of logical bilattices” ®, and N and N}
be the multiple conclusion sequent calculi for the —-free parts of Nelson’s logics N~ and N+t 6
presented in [1], and C be Cleave’s logic (3] 7. We can conclude the following fact:

GJ~ C~ —-free-DC = —-free-N~ C N C ®@-free-GBL C C C N}

where C~ denotes the result of Theorem 4.3, = denotes the results of Theorems 3.1, 4.1 and 4.2,
and C denotes the inclusion between the sets of provable sequents. We remark that the fact N
C C C N} above is established by Almukdad and Nelson [1}.

5 Subformula calculus for N—

In this section, we introduce a subformula calculus SC for N™. The sequent of SC is of the forms
F''A=0:vandI': A = ~:0 where+ is a formula, and I" and A are sequences of formulas. The
sequents

Y11 Ym P 01y ey O = 0:, Y1r o Ym 101y ey O => 7 1 0

(0 < m,n) in SC intuitively mean that
~ Ve ™ Yy 01y o0y O =7, ~ Y1y s ™ Yy 01y eey Oy =

in N~. In the following definitions, C means @ : -y or « : 0.
The initial sequents of SC are of the forms: ‘

P:a=20:a, . a:d=>a:0.
The specific inference rules of SC are as follows:

I''A=a:0 ''A=0:«a

(~r ),

I''A=0:~a I‘:A=>~a:(0(Nr_)'
a,l':A=>C a,A=C
Tmadsc W ToT.as¢ )

5Strictly speaking, the original GBL is a propositional logic, but section 3.5 in [2] proposes the quantifier rules
for GBL. We consider here the predicate extension. GBL has fusion and fission connectives ® and @. Also GBL is
regarded as ‘a logic with strong negation.

6N+ is first introduced by Thomason [11]. This logic is obtained from (a Hilbert-style system) N by adding the
constant domain axiom scheme: Vr(a(z)VB)—Va(z)V B where z is not free in 8. N is obtained from (a Hilbert-style
system) N~ by adding the axiom scheme: aA ~ a—g.

7The original logic of Cleave has no structural rules, and hence we must add the appropriate structural rules.
The logic with the structural rules is called C in the present paper.
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The cut rules of SC are as follows:

I':Ai1=a:0 oI'y:Ay=C (cut—)
Fl,FQZAl,A2=>C u !

F1:A1=>(D:a FQZQ,A2=>C

TT2: AR, = C (cut+).
The positive inference rules of SC are as follows:
T 00 TRRTE O Traresaac ¢
isbe hopsae L, ezt
T Fa 7\[? A =(>J c WIH, F 1101 iﬁA x =(: ¢ (M2H),
T ?z&ij wa v 5 Vi), § ?A:iz(; 0a 6 5 (ViZ+4),
T

The negative inference rules of SC are as follows:
I',g,a,l's:A=C

I':A=C a’a1F:A=>C ) (e_)
al AsC ™) ST A506 ) TLapl, AsC ’
ﬂ,F:a,A=>C F1:A1=>,3:0 VF21A2=>@Z(1(_)I‘_),

a—B,T:A=>C (=1-), [1,T2:A1,A=>a—0:0

al:A=>C BT:A=C (A=)
aANB,T:A=C ‘ ?

F:A=a:0 Fr:A=p35:0 o
I‘:A=>a/\,6:(0(/\r1—)’ F:A=>a/\ﬂ:(0(/\r2 )y
a,l''A=C B,T:A=C (\/12—),-

aviT asc V) SVET.AsC
F:A=a:0 T:A=06:0 (Vi=),

F:A=aVvp:0
alz/z),T:A=C F:A=alt/z]:0
Vza, T : A= C (v1-), I':A=Vza:0 (vr-),
aft/z],[: A= C I:A=oz/2]:0 _
Jza,T:A=>C (3-), r:A=3za:0 (3r-)-

Here a[z/z] and aft/z] denote the same meaning presented in section 2.



Theorem 5.1 (Equivalence Between SC and N7) Let I' and A be sequences of formulas, v
be a formula. (1) IfT: A= C (C is either 0 : v or 7 : ) is provable in SC, then the sequent
~T,A = C’ is provable in N~ where C' = v if C=0:vand C' =~y ifC =~ :0. (2) If
~T,A = C' (C’' is either v or ~ 7) is cut-free provable in N, then the sequent ' : A = C is
cut-free provable in SC where C=0:v ifC' =y and C=v:0 if C' =~ ~.

Theorem 5.2 (Cut-Elimination Theorem for SC) The rules (cut+) and (cut—) are admissi-
ble in cut-free SC.

Proof Suppose that a sequent I' : A = C is provable in SC. Then the sequent ~ ') A = C’ is
provable in N~ by Theorem 5.1 (1), and hence the sequent ~ I'; A = C’ is cut-free provable in N~

by Theorem 3.1. Therefere I' : A = C is cut-free provable in SC by Theorem 5.1 (2). |

Corollary 5.3 (Subformula Property for SC) The calculus SC has the subformula property,
that is, if a sequent S is provable in SC, then there is a proof of S such that any formula appearing
in it is a subformula of some formula in S.

Theorem 5.4 (Correspondence Between GJ~ and SC) Let I be a sequence of ~-free formu-
las, v be a ~-free formula. v = T is provable in GJ~ if and only if T : O = v : O is provable in the

—-free fragment of SC.

6 Notes

Russell’s paradox in some naive set theories based on dual-intuitionistic logics was discussed in
[6, 12]. In addition, the paper [12] remarks that Curry’s paradox cannot be reproduced in these
set theories. We mention, in the following, Russell’s paradox over N—.

Before the discussion for the case of N™, we consider a derivation in LJ. Let a =t € t where
t = {z|-(z € z)} and assume that the sequents ~a = o and a = —a are provable. Then we have
the following derivation:

_:'O(=>—a (—deft)

2% = (co-left)
iR e s )
—— ({TI1 — = (COo-le
= g = Q= (Cut).

This means that Russell’s paradox derives contradiction. It is well-known that, in this derivation,
the applications of the contraction rule (co-left) are the causes of the contradiction. However, in
this derivation, we feel that the applications of the rules (—left) and (-right) are the causes. Then,
in order to avoid the contradiction, we use N~ as a basis of naive set theory. In other words, we
adopt the strong negation ~ instead of the usual (intuitionistic or classical) negation —. Here we
remark that the language of N~ has no usual negation — and falsum constant 1. Hence we cannot
define ~a :=a—1.

We then have the following conjecture: the naive set theory (with unrestricted comprehension)
based on N~ is consistent (i.e., Russell’s paradox does not derive the fact that the empty sequent
= is provable).
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