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Discrete Mittag-Leffler function and its
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Abstract

Discrete and g-discrete analogues of Mittag-Leffler function are pre-
sented. Their relations to fractional difference are also investigated.
Applications of these functions to numerical analysis and integrable
systems are also made.

1 Fractional derivative

Fractional derivative goes back to the Leipniz’s note in his list to L’Hospital
in 1695 and we now have many definitions of fractional derivatives [11, 13].
In the last few decades, many authors pointed out that derivatives and
integrals of fractional order, especially 1/2-derivative, are very suitable for
the description of physical phenomena (See ref. [14] for example.).

We first define a fractional integral operator I as follows.

Definition 1 Let a be a nonnegative real number and u(t)(0 < t) be piece-
wise continuous on (0,00) and integrable on any subinterval [0,00). Then
fort >0, we call

t , '
Pu(t) = [ K(a;t - s)u(s)ds - m
0 . » 5
IPu(t) = u(t) R | (2)
the fractional integral of u of order a. K(a;t) is a monomial given by
K(a;t) = % (t>0, a>0). | (3)

Fractional derivatives of order a > 0 are defined by a combination of normal
derivative and fractional integral in the following two manners.
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Definition 2 Let m be a positive integer such as m — 1 < a < m and u(t)
be a given function which satisfies the conditions in the previous Definition
1 and is m times continuously differentiable. Then, its fractional derivative
of order a is defined by

D%u(t) = (I™*D™u)(t) = /0 t K(m —a;t — s)u(™(s)ds (4)

Definition 3 For the same a, m,u(t) in the previous Definition 2, its deriva-
tive of order a is defined by

D%u(t) = (D™I™%u)(t) = (éi—t)m -/(; t K(m —a;t — s)u(s)ds.  (5)

These two definitions are called Caputo and Riemann-Liouville fractional
derivatives, respectively. We here adopt Caputo’s definition 3.
The Mittag-Leffler function, ‘

E,,(z):jg;m—;:;l—) (@>0,2€C) (6)

was proposed by Mittag-Leffler [9] in 1903 as an entire function whose order
cah be calculated exactly. Afterwards, it was clarified that the Mittag-Leffler
function also plays an important role in fractional calculus (See refs. [8, 10]
for example). ,

The main purpose of this paper is to discretize the Mittag-Leffler func-
tion and to investigate its relation to fractional difference proposed by Hirota
in 1991 [6]. In section 2, we elaborate on the property of the Mittag-Leffler
function concerning its relation to fractional derivative. Especially, we re-
view Kametaka’s result [7] in which a solution to a certain fractional differ-
ential equation is given by means of the Mittag-Leffler function. Section 3
and 4 is devoted to discretization and g¢-discretizations of the Mittag-Leffer
function. It is also shown that they are eigen functions of a certain frac-
tional difference and g¢-difference operators, respectively. Two applications
are given in the final 2 sections. First is an application to numerical'compu-
tation of fractional differential equations and the second is to integrable sys-
tems, in which a new type of discrete nonlinear integrable equation equipped
with fractional difference is proposed.



2 Half-order differential equation and Mittag-LefHe
function

We start with a fractional differential equation,

{(D +aDV? £ b)u(t) = BK(1/2;¢) + f(t) (t > 0), "

u(0) = a,

or equivalently

u'(t) + a,‘/ot K(1/2;t — s)u'(s)ds + bu(t) = BK(1/2;t) + f(t) (t> 0_),‘

u(0) = a,
(8)

where p,q are positive constants and {o, 3, f(t)} are given data. Equa-
tion (7) describes a motion of a particle in a fluid and the unknown function
u(t) stands for a relative velocity of a particle with respect to its surrounding
fluid. It was known from experimental result that u(t) decays to 0 at the
order of O(1/4/t). However its mathematical proof had not been given.

In around 1986, Kametaka (7] gave a mathematical proof on the above
fact by considering the following expansion of u(t), f(¢).

u(t)—z K<]+2 )=u0+u1K(3/2;t)+u2K(2;t)+...
{ :
(t)—ZfJ (’ +2) fo+ FLK(3/28) + FK(258) +--

Substituting the above expression into eq. (7), we have
+2
u1 K(1/2;t) + E('U.Hz + aujyy + bu; )K (‘7 5 t)

j=0

-oka/mo+ 35k (L) @

7=0
and obtain the following linear difference equation.

Ujr2 +aujl +buj = fj, wo=0a, u1 =P ‘ (10)



Hence, the solution to eq. (7) is given by

—'CYA+A__
A — A
B

+ N (E1/2(/\+t1/2) - El/z()\—tl/z))

b (B8 -3 EaOE) 250 (1)

—a++va?—4b
Ay = o

u(t) = (AT B2 (A 8/2) = AT By (A8 )

The function E,; /2(Ait1/ 2) is the Mittag-Leffler function and is also expressed
as follows.

Bt = SOMKG/2 4 138), (z€C) (12)
=0

Itisa well—knbwn result that if 0 < @ < 2,a # 1 the Mittag-Lefller function
possesses the following asymptotic behavior [12].

o & 1 k am |
~ — —_— — <
E,(2) g T ak)z (|z| — 00, — < largz| < 7r) (13)

Noticing ReA+ < 0, one can conclude that u(t) decays to 0 at the order of
O(1/v%).

It can be confirmed through simple calculations that the Mittag-Leffer
function,

(o o]
u(t) =Y _ NK(aj+1;t) = E, (M%) (14)
j=0
is an eigen function of Caputo’s fractional derivative 8],
Dou(t) = Mu(t) (¢>0). (15)

In the next section, we consider discrete analogue of Mittag-Lefller function,
which preserves the property (15).

3 Fractional difference and discrete'MittagéLéfﬁer
- function ‘ | : ‘ |

We here give a definition of fractional difference operator and its eigenfunc-
tion. Before going to its definition, let us introduce fundamental functions



M (a;n) defined by

(16)

1 (a=1)
M(a;0) = 17
(;0) {0 oz (17)

where ¢ is an interval length and ( @ ) (a € R,n € Z) stands for a binomial
n

coefficient defined by

ala—1)---(a—n+1) I'(a+1)
. n! = Ta—n+TmsD >0
(n>= 1 (n=0)
| (n<0)

This function satisfies the following lemma.

Lemma 1 The following relations hold.

A_nM(a+1;n) = (M(a+1;n) —M(@+1;n—-1)) = M(a;n) (@ >0)

(18)

Proof of Lemma 1: This is proved by using the relation I'(z + 1) = zI'(z)
as follows.

e l(M(a+1;n) — M(a+1;n—1))
el m+a-1)Tn+a—-1 nm-1DI'(n+a-—1)
- Tla+1) ( I'(n) - L(n) )
_ae*! T'(n+a-1)
" T(a+1) T(n)

= M(a;n).

|

Next we go to the definition of fractional difference. Hirota [6] took the

first n terms of Taylor series of A%,, = ¢~%(1— E~1)® and gave the following
definition.



Definition 4 Let o € R. Then difference operator of order o is defined by

f n—1
a .
E_O‘Z ( ; ) (—1Yup—; a#1,2,---
=0

A% u, = J (19)

m m '
6_mz ( . ) (—l)Jun_j a=mE€ Ly
\ i=0 \ J

It should be noted that Diaz, Osler [4] gave another definition of fractional
difference,

A% ut) == ( > ) (~1Yult + (a - 5)e) (20)
i=o \ 7/

We here adopt another difference oparator AY_, by modifying Hirota’s
operator.

Definition 5 Let o € R and m be an integer such that m — 1 < a < m.
We define difference operator of order o, AS _,,, by

(A2 A™ u, |
n—1
a—m .

=gm@ (-1 A™ uglk=n—; (a>0)
AL _up = 4 ; ( j ) k ! 7 (21)

Un (a=0)

(A% u, (< 0)

We define a new function,
Fy(\n) = fj NM(pj + L;n). = f:,v'ew' Lin + pj) (22)
P —~ ’ =" TEi+1I(n)

Remark 1 Putting p = 1 in the above definition, we have a discrete expo-
nential function.

L'(n + j5)
(7 + 1)I'(n)

=i(/\€)j (n+g:—1)
§=0 J

=Yy ( 7 ) =(1-2)™ (23)
j=0

Fi(\n) =) Né&
j=0



Remark 2 In the limit of ¢ = 0,n — oo with t = ne fized, the function
F,(\,n) converges to the Mittag-Leffler function.

Fp(A,n) —>Z m+1) Ep(AtP). (24)

The following theorem states that F,();n) is an eigen-function of fractional
difference operator A} ..

Theorem 1 If p > 0, the function Fy(\,n) satisfies the following relation.
AY _ Fo(\,n) = AFp(\,n) (25)

Proof of Theorem 1: Let m be an integer such that m — 1 < p < m.
Then we have

_aFp(Am)=AZ_, (1 + > NMps+1; n))

=1

[0 ¢}
=A% _, Z N M (pj + 1;n)
=1

= p_mZ)\JA M(pj + 1;n)

oo

Z MAP-™M(pj + 1 — m;n) . (26)

Each summand in the above equation is given by

AP " M(pj + 1 — m;n) =§ (”_m) (-1)*M(pj +1—m;n — k)

k=0 k
_ p—m pj—m+n—k—1
S0 )er ()
lpm n—-1 _pj+m—1
—g( (1) ‘n—k—l

— n— p_pj_l
=(=1) 1( n—1 )

=("+’,’j_‘1”‘1)=M(pj—p+1;n), (27)



where we have employed an upper nagation rule twice and a Vandermonde
convolution rule of binomial coefficients. Therefore, substitution of eq. (27)
into eq. (26) gives

[o o]
AL Fp(A\n) =) NM(pj—p+1;n)
Jj=1
w .
=Y " M*IM(pj + 1;n) = AFp(\,n) (28)
—
which completes the proof. [

Remark 3 It should be noted that the Mittag-Leffler function satisfies more
abundant properties other that its relation to fractional derivative, as can be
observed in ref. [12]. However, it is unknown whether the function F,(\;n)
proposed here also satisfies such properties.

4 Fractional ¢g-difference and ¢-Mittag-LefHler func-
tion

4.1 Fractional ¢-difference

In this section, we present fractional g-addition and g-difference operators
and investigate their properties.

Before getting onto the main subject, we first give definitions of ¢-
number, g-binomial coefficient and g-difference operator, together with their
properties, which are required in this paper.! Let ¢ be a given complex num-
ber. Throughout this paper, we impose the assumption,

lg| > 1. (29)

We introduce g-number [a], defined by

-1
we here rewrite [a)q as [a] for the sake of simplicity. By making use of the
g-number, g-binomial coefficient is given as follows.

(31)

z| _lzllz—1---[z—n+1] [a]lz—1]---[z—n+1]
n [n]! [)[n —1]---[1]

tFor details of g-analysis, see ref. [2] for example.



We here list some important properties of g-number and ¢-binomial coeffi-
cient used in future.

(el = "] (32)
— n 'n,:z:—ln(n—l) r+n—1
(~1yrg e [ " (33
-:1:- (2 —1] a—n | T—1
— = 4
n n q [ n—1 ] (34)
[z (o —1] nlZ—1
- = 35
n n—1 1 [ n } (35)
T
T Yy k2—nk+kx __ [ T+y }
q = (36)
o Lnk ] [ k ] n
We here adopt backward g-difference operator A, defined by
_ f(@)— flg"'z)
A‘If(m) - (1 _ q_1)x (37) |
Through dependent and independent variable transformations
z=q", f(z) = f(q") = fa, (38)
the (j-difference operator in eq. (37) is rewritten equivalently as
Bofa= ol (39)

qn —- qn—l

We next introduce a fractional g-addition operator I defined as follows.

Definition 6 Let a be a non-negative real number and {f,} is a given com-
plex sequence. Then a q-addition operator of fractional order o for {fn} is
defined by

Ig‘fn = q(n—l)a(q - 1)~ Z( 1)k [ ] q%k(k—l)fn-—k (@>0,n>1)

k=0

Igfnzfn (n2>1)
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Substitution of a = 1 into eq. (40) gives

n—1
n— =1 | 1p4—
Lifa=1gq 1(q—l)Z[ " }qzk('“ D frk
k=0

n—1

— _1 1 _
=q¢" (g —1) ) _(-D)F(—1)kqakkHgzkk-N g,
. k=0

n—1
=(@-1D) ¢ " Ffak
k=0

n
= (q - 1) qu—lfky
k=1
which is a finite version of Jackson integral. This fractional g-addition op-
erator satisfies the following lemma.

Lemma 2 Let a,3 be non-negative real numbers, a,b be complex numbers
and {fn},{gn} be given complez sequences. Then q-addition operators satisfy
the following linearity and commutation rules.

I3 (afn + bgn) = a(I3 fn) + b(I3 gn) (42)
Ifffffn = IgI:fn = I;H-ﬂfn (43)

Proof of Lemma 2. Equation (42) is obvious. We prove a commutation
rule (43) by employing some properties of a ¢g-binomial coefficient.

218 f,

n—1
n—1)a «@ — — n—k—
=q" V(g - 1) Z(—l)"[ . Jq""‘ D/zgn—k18(g — 1)
k=0

n—k—1 ] —ﬂ .
X (—1)1[ ; ]Q"(J_l)/zfn—k—j
§=0 J ]
n—1
- —Q _ ¢/
-_—q(n 1)(a+ﬂ)(q_1)a+ﬁ Z(_l)k[ L qu(k 1)/2q Bk
k=0
n—k—1 ) "‘,B o
x 3 (=1 [ . ]q]“*”/?fn_k_j
—0 J
J
n—1
=q(n—1)(a+ﬂ)(q —1)oth Z(_l)k [ ka] g k—1)/24~Bk
k=0

n—k-—1 ,3 (
_1\n—k-1—j - (n—k—1—3)(n—k—2—35)/2 ¢.
" j=0( 1) [n—j_l—k]q f1+1



n—1
:q(n—l)(a+ﬂ) (q — 1)a+ﬂ Z(_l)n—j—lfj_H
j=0
n—j—1 o ,3 .
- - k(k—1)/24+(n—k—1—j)(n—k—2—j5)/2 —0Gk
2 iy P ;
=0
n—1
=q(n—1)(a+ﬁ) (g — 1)a+,6 Z(_l)n—j—lq(n——j—1)(n—j—2)/2fj+1
3=0
n—j—1 a ,B
- - k2—k(n—j—1)—Bk
) [ | M L

n—1
1N o i n—i—1)(n—i— - —
=gV (g — 1) BN N (_qyn-i-lgln—iDin=i=D 2, ln_j_l]

3=0
. n—1
n—1)(a a j (- —a—
=g~ 1)( +ﬁ)(q_1) +ﬂZ(_1)Jq7(J 1)/2fn—j [ ) ﬂJ
§=0 J
=I**Pf,,

which completes the proof. . n
Next we present a fractional g-difference operator Ag, which can be
regarded as a g-discrete version of Caputo’s fractional derivative operator.

Definition 7 Let o be a positive real number and m be a positive integer
which satisfies m —1 < a < m. Then a fractional q-difference operator of
order a > 0 1is given by

AL fn = I[P AT,

n—1

—(n-1)(a—m —(a—m a—m sk(k— m

= g~ (v=D(a=m) (g _ 1)~ )Z(_l)k[ . ]qék(k DA™ o s
k=0

(44)

Remark 4 Fractional q-difference operator was first proposed by Al-Salam [1]
in 1966. Let f(z) be a given function and a € R\{1,2,3,---}. Then a g-
difference operator K7 is given by

K;‘f(a:) — .’L'_a(l _ q)—a i(_l)k l:::l qk(k—l)/2-a(a—1)/2f(mqa—k) (45)
k=0

Fractional q-difference operator AgZ presented here is a slight modification of
Al-Salam’s operator Kg. The operator Kg' satisfies the commutative rule,

KKP = KPKZ = K (46)

11



for any a,, whereas the commutation rule for Ay does not always hold.
However, as is mentioned in the next section, the operator Ay possesses
an eigen function, which is regarded as a q-discrete analogue of the Mittag-
Leffler function.

4.2 ¢-Mittag-Leffler function

This section provides a g-discrete analogue of the Mittag-Lefller function and
its relation with the fractional g-difference operator Ag. We first introduce
a fundamental function M(a;n) defined by

My(a;n) = (g —1)*7! [n ::l—_l_ 2] (a>0,n €Zxy). (47)
)1 (e=1)
M,(a;0) = {0 @) (48)

Remark 5 In the limit ¢ = 1 and n — oo with t = (¢ — 1)n > 0 fized, the
above function converges to a monomial,

ta—l

My(a;n) = K(a;t) = @)’ (49)

It is a well-known fact that this function K(a;t) plays an essential role in
the theory of fractional derivatives.

The above fundamental function Mg(a; n) satisfies the following two lemmas
which states the relation between My(a;n) and g-difference (or fractional g-
addition) operator.

Lemma 3 If a > 0, we have
AgMy(a+1;n) = My(a;n) (n € Z1). (50)
Lemma 4 If a > 0 and a > 0, we have

I3 My(a;n) = My(a + o;n). (51)

12
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Proof of Lemma 3. This is proved essentially by using an addition rule
of g-binomial coefficient given by eq. (35).

My(a+1;n) — My(a+1;n— 1)

AgMy(a+1;n) =

qn — qn-—l
n+a-—1 n+a—2 1
= (g —1)® — S
(g-1) ( n—1 } [ n—2 ])qn—l(q—l)
_ +a-—2 1
— —1)%q" 1| n
(@—1)% n—1 ]qn—l(q_l)
_ _ a—1 n+a— 2
=-My(a;n)
which completes the proof. n
Proof of Lemma 4. If a = 0, it is obvious. We suppose a > 0.
n—1 —a L
IgMy(a;n) = " V(g - 1)* ) (-1)* [ . ] ¢3**"DMy(a;n — k)
k=0

-

= al 1 n—k+a—2
— g(n—Da¢, _ 1)a—1+a _N\k | zk(k—1) - -
q (¢-1) g( 1) [ k ]qz [ n—k—1

— q(n—-l)a(q _ 1)a—1+a .

n—1 i ' | 3
_1ye | T Lk(k—1)(_1\n—1—k (n—k—1)a+i(n—k—1)(n—k—2) —a
kgo( 1) Lk]qz (-1) q 2 ek 1

— q(n—l)a (q _ 1)a——1+aq(n—1)a+%(n—-l)(n—2)(_l)n-—l .

n—1

Z ~% | gFP-(n=1)k+k(—a) —a
k n—k—-1

k=0

= q(n—l)a(q _ l)a—1+aq(n—-1)a+%(n_1)(n_2)(_l)n_l [ —f?‘a;{—la) ]

— q(n-—l)a (q— 1)a—1+aq(n—1)a+-;-(n—l)(n—2)q—(n—1)(a+a)—%(n-—l)(n—z) [ n+a+ T -2 :I
n —
n+a+a—2

=. -1 a+a—1
(g-1) "1

] = My(a + o5n),

where we have employed an upper negation rule (33) twice and a Vander-
monde convolution rule (36). This completes the proof. |
We next introduce a g-analogue of the Mittag-Leffler function.



Definition 8 Let a be a positive real number. Then q-Mittag-Leffler func-
tion Fy q(A;n) is given by

S\ o i | n+aj—1
Foq(Ain) = Z/\JMq(aj +1;n) = Z,\J(q —1)% l: J .
n_

(52)

It can be verified easily from eq. (49) that the above function Fg¢(A;n)
converges to the Mittag-Lefler function E,(At%) in the limit ¢ — 1 and
n — oo with t = (¢ — 1)n fixed. The following main theorem states that
g-Mittag-Lefller function serves as an eigen function of the fractional g-
difference operator Ag.

Theorem 2 Ifa > 0, we have
AGFaq(A;n) = AFq,q(Aim) (53)

Proof of Theorem 2. Let m be a positive integer such asm—1 < a < m.
Operating A7* on F,4(A;n) and noticing AgMy(1;n) = Agl = 0, we have
from Lemma 3

o0

AT Faq(Ain) =) NATM,(aj + 1;n)
j=0
o0

=Y MMy(aj—m+1;n). - (54)
j=1

Operating fractional g-addition operator I;"~* on both sides of the above
equation and employing Lemma 4, we finally obtain

[o o]
= Z/\jl'm"“Mq(aj —m+1;n)

j=1
w .
= Z,\JMq(aj —a+1;n)
j=1
w .
=Y N+IM,(aj + 1;n) = AFaq(X;n), (55)
Jj=0

which completes the proof. |
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5 Numerical analysis of fractional differential equa-
tion

We here introduce an integrable discretization of eq. (7)

A-—n 1/2 = : -
{ (A-n+aBY2, +5) un = BM(1/2m) + f 56
Ug=o
or equivalently
n—1 1
Up — Up— a -3 ;
—el + 7 ,go ( j2 ) (1) (¥n—j — Un—j-1) + bua
=BM(1/2;n) + fa, (57)

The above discretization preserves the solution given by

= (AT Fie(Ay,m) — AZUFya(A-,n))

+ ﬂLiT (F1/2(A4,n) — Fyj9(A-,n))

n
8 ~ .
jRyEos kz:: i ('\+F‘/ oAy n—k+1) = A_Ey (A ,n—k+ 1))

Equation (56) gives an explicit and stable difference scheme. Its numerical
result is illustrated in Figure 1.
In order to investigate u(t) at large t, g-difference scheme,

{ (A,, +aAY? + b) un = BM,(1/2;7) + fa (58)

U =

gives a more powerful tool. Its numerical result is given in Figure 2.

6 An integrable mapping with fractional differ-
ence

This section provides a new type of integrable mappings equipped with
fractional difference. We first consider the mapping [5]

E"ilg'_'_“_’_‘ = atn(l — tny1) (a>0) (59)

15
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Figure 2: Numerical experiment of eq. (58)



which is a discrete Riccatti equation with constant coefficients. It is also
regarded as an integrable discretization of the logistic equation

;tu =au(l—u) (a>0). (60)
A solution to eq. (59) is given by
Up = =0 (61)

uo + (1 —up)(1 + ae)™™
In order to “fractionalize” the mapping (59), we start with
Uo
ug + (1 — ug)Fp(—a;n)
By making use of Theorem 1, u,, satisfies the following discrete equation,
1

1 p—1 1
1+ 1+ ae? { _Z( ) (= I)J (un—] - un—j—l)

(62)

Up =

'u,nz

(63)
Putting p = 1 in eq. (63), we have
(14 ag)up—
1+ (14 ag)up—1’
which recovers eq. (59). Figure 3 illustrates time evolutions of the fractional
mapping with order parameter p = n/4(n = 1,2,3,4). We have put uy =
0.1, a=1.0and € =0.1.

Considering the fact that the Mittag-Lefller function has an asymptotic
behavior [12],

(64)

N-1 y_k,p
B0 == 3 Fm SHOE, o< (6)

and that u, converges to

Uo
uo + (1 — uo) Ep(—atP)
as n — 00, — 0 with ¢ = ne fixed, we can observe that u, converges to 1
at the order of O(1/n?) if 0 < p < 1. Table I illustrates a numerical result
in which we apply a convergence acceleration algorithm, which is called the
p-algorithm [3],

Up — (66)

(k+n)P —nP
Pk+1 Pnﬂ o

+1_p;:
Po =0, p1 = tun

to the sequence {uy} in the case p = 1/4. This table shows that u, converges
to the value near 1.0 at the order O(1/n/4) as n tends to +oo.

17
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Figure 3: Time evolutions of the fractional mapping (63)

Table 1: The p-algorithm applied to the sequence {u,} in the case p =1/4

000 O U W NS

L (= tn)
0.10000
0.14791
0.16019
0.16764
0.17313
0.17752
0.18121
0.18442
0.18726

3
0.19745
0.23921
0.27802
0.31406
0.34778
0.37941
0.40908
0.43692
0.46304

P5
0.84609
0.86006
0.99118
1.07379
1.11866
1.14064
1.14968
1.15161
1.14970

p7
0.84288
1.30904
1.21129
1.17824
1.16134
11.15284
1.15045
1.15375
1.16376

P31
1.00145
0.99915
1.00131
1.00139
1.00112
1.00120
1.00120
1.00121
1.00122
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7 Concluding Remarks

We have presented discrete and g-discrete analogues of the Mittag-Lefller

function, together with their relations to fractional difference and g¢-difference.

However, the Mittag-Leffler function possesses more abundant properties
other than its relation to fractional derivative and it is not clear whether its
discrete analogues preserve such properties.

It is also interesting to find new types of integrable systems with frac-
tional derivative or difference. Since fractional differential equation describes
a system in which a value at ¢ = ¢t depends not only on its local data but
also on its historical data from ¢t = 0 to ¢t = t, it is expected to serve as a
model of some physical phenomenon.
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