Products of k-spaces, and questions

東京学芸大学 田中祥雄 (Yoshio Tanaka)

As is well-known, every product of a locally compact space with a k-space is a k-space, but not every product of a metric space with a k-space is a k-space. We consider characterizations or conditions for (finite) products of k-spaces to be k-spaces, and pose related questions. For other topics on the products of k-spaces, see [T3], [T4], for example.

We assume that spaces are regular T_1, and maps are continuous and onto.

1 Definitions and Preliminaries

Let X be a space, and let \mathcal{P} be a (not necessarily open or closed) cover of X. Then X is determined by a cover \mathcal{P}, \footnote{Following [GMT], we shall use "X is determined by \mathcal{P}" instead of the usual "X has the weak topology with respect to \mathcal{P}".} if $U \subset X$ is open in X if and only if $U \cap P$ is relatively open in P for every $P \in \mathcal{P}$. Here, we can replace "open" by "closed". Every space is determined by its open (or hereditarily closure-preserving closed) cover.

Let us recall that a space is a k-space (resp. sequential space) if it is determined by a cover of compact (resp. compact metric) subsets. Sequential space are k-spaces, and the converse holds if points are G_δ-sets. A space X is called a k_ω-space [M3] (resp. s_ω-space) if X is determined by a countable cover of compact (resp. compact metric) subsets.

A space X is called a bi-k-space (resp. bi-quasi-k-space) [M3] if, whenever a filter base \mathcal{F} accumulates at $x \in X$, then there exists a k-sequence (resp. q-sequence) $\{A_n : n \in N\}$ such that $x \in \bigcap \{A_n : n \in N\}$ for all $n \in N$ and all $F \in \mathcal{F}$. When the filter base \mathcal{F} is a decreasing sequence, then such a space X is a countably bi-k-space (resp. countably bi-quasi-k-space) [M3]. Here, a k-sequence (resp. q-sequence) is a decreasing sequence $\{A_n : n \in N\}$ such that $A = \bigcap \{A_n : n \in N\}$ is compact (resp. countably compact), and any open set $U \supset A$ contains some A_n ([M3]).

Let us recall that a space X is of pointwise countable type (resp. q-space) if each point has nbds $\{V_n : n \in N\}$ which is a k-sequence (resp. q-...
sequence). Also, a space is an \(M\)-space if and only if it is the inverse image of a metric space under a quasi-perfect map. The following diagrams hold.

(a) Locally compact spaces, or first countable spaces \(\rightarrow \) spaces of pointwise countable type \(\rightarrow \) bi-\(k\)-spaces \(\rightarrow \) countably bi-\(k\)-spaces \(\rightarrow \) \(k\)-spaces.

(b) Locally countably compact spaces, or \(M\)-spaces \(\rightarrow \) \(q\)-spaces \(\rightarrow \) bi-sequential \(\rightarrow \) countably bi-quasi-\(k\)-spaces.

A space \(X \) is called a Tanaka space [My2], if \(X \) satisfies the following condition (C) in [T2].

(C) Let \(\{ A_n : n \in N \} \) be a decreasing sequence of subsets of \(X \) with \(x \in \overline{A_n} \) for any \(n \in N \). Then there exist \(x_n \in A_n \) such that \(\{ x_n : n \in N \} \) converges to some point \(y \in X \). If \(y = x \), then such a space \(X \) is called countably bi-sequential [M3] (= strongly Fréchet [S]).

Sequentially compact spaces, or sequential countably bi-quasi-\(k\)-spaces are Tanaka spaces. But, every Tanaka space (actually, sequentially compact space) need not be sequential, not even a \(k\)-space\(^2\).

A space \(X \) is strongly sequential [M1] if, whenever \(\{ A_n : n \in N \} \) is a decreasing sequence of subsets of \(X \) with \(x \in \overline{A_n} \) for any \(n \in N \), then the point \(x \) belongs to the (idempotent) sequential closure of \(A \), where \(A \) is the set of all limit points of convergent sequences \(\{ x_n : n \in N \} \) with \(x_n \in A_n \). Namely, a space \(X \) is strongly sequential if and only if it is a sequential space such that if \(\{ A_n : n \in N \} \) is a decreasing sequence of subsets of \(X \) with \(x \in \overline{A_n} \) for any \(n \in N \), then the point \(x \) belongs to the (usual) closure of the above set \(A \). Strongly Fréchet spaces are strongly sequential. Every strongly sequential space is precisely a sequential Tanaka space ([My2]).

A map \(f : X \rightarrow Y \) is called bi-quotient [M2] if, whenever \(y \in Y \) and \(U \) is a cover of \(f^{-1}(y) \) by open subsets of \(X \), then finitely many \(f(U) \), with \(U \in U \), cover some nbd of \(y \) in \(Y \). If \(U \) is countable, then such a map \(f \) is called countably bi-quotient [S]. Open maps, or perfect maps are bi-quotient. Every product of bi-quotient maps is bi-quotient, hence quotient ([M2]). A map \(f : X \rightarrow Y \) is called a compact (resp. \(s\)-map) if every \(f^{-1}(y) \) is compact (resp. separable).

\(^2\)This is pointed out by Z. Dolecki or P. Nyikos.
In the following characterizations, (1) is well-known, (2) is routinely shown, and (3) is due to [M3].

Characterization: (1) X is a k-space (resp. sequential space) $\iff X$ is the quotient image of a locally compact (resp. locally compact, metric) space.

(2) (a) X is a k_{ω}-space (resp. s_{ω}-space) $\iff X$ is the quotient image of a locally compact Lindelöf (resp. locally compact, separable metric) space.

(b) X is a space determined by a point-finite cover of compact (resp. compact metric) subsets $\iff X$ is the quotient compact image of a locally compact paracompact (resp. locally compact metric) space. Here, we can replace “point-finite cover” by “point-countable cover”, but change “quotient compact image” to “quotient s-image”.

(3) (a) X is a bi-k-space (resp. bi-quasi-k-space) $\iff X$ is the bi-quotient image of a paracompact M-space (resp. M-space).

(b) X is a countably bi-k-space (resp. countably bi-quasi-k-space) $\iff X$ is the countably bi-quotient image of a paracompact M-space (resp. M-space).

In the following results, (1) is well-known (see [M1], for example). (2) (resp. (3)) is due to [M3] (resp. [M2]). (4) holds in view of [My1] and [M2], here note that every product of a first countable space with a strongly sequential space is strongly sequential ([M1]). (5) is due to [T1].

Result: (1) Every product of a locally compact space (resp. locally countably compact, sequential space) with a k-space (resp. sequential space) is a k-space (resp. sequential space).

(2) Every product of bi-k-spaces is a bi-k-space, hence a k-space.

(3) Every product of k_{ω}-spaces is a k_{ω}-space, hence a k-space.

(4) Every product of a first countable space with a sequential Tanaka space is a sequential space.

(5) For sequential spaces X and Y, $X \times Y$ is sequential if and only if

3This is an affirmative answer to the author’s question (when he prepared [T2]). F. Mynard obtained this result by use of categorical method ([My1] & [My2]). The result is also proved by use of *multisequences* method ([D]), or directly shown without these methods ([I]).
it is a \(k \)-space.

2. Questions and Comments

Question 1. ([T5]) Every product of sequentially compact (or countably compact) \(k \)-spaces \(X \) and \(Y \) is a \(k \)-space?

Comment: (1.1) Question 1 is affirmative if \(X \) or \(Y \) is sequential ([T1]). But, not every product of a countably compact first countable space with a \(k \)-space is a \(k \)-space.

(1.2) Every product of a \(k \)-and-\(q \)-space with a bi-\(k \)-space (or sequential \(q \)-space) is a \(k \)-space by (2.2) below. If Question 1 is affirmative, then every product of \(k \)-and-\(q \)-spaces is a \(k \)-space.

(1.3) Let \(X \) be sequentially compact (countably compact; \(q \)), and let \(Y \) be sequentially compact (resp. countably compact \(k \); \(q \)-and-\(k \)), then \(X \times Y \) is sequentially compact (resp. countably compact; \(q \)). Note that every sequentially compact space need not be a \(k \)-space.

Question 2. Let \(X \) be a \(k \)-space which is bi-quasi-\(k \). Let \(Y \) be a sequential space. Then the following are equivalent?

(a) \(X \times Y \) is a \(k \)-space.

(b) \(X \) is locally countably compact, or \(Y \) is a Tanaka space?

Comment: (2.1) Question 2 is affirmative if \(X \) is a bi-\(k \)-space by (2.2) & (2.4) below.

(2.2) In Question 2, (b) \(\Rightarrow \) (a) holds. In general, the following case (\(c_1 \)) or (\(c_2 \)) implies that \(X \times Y \) is a \(k \)-space ([T5]).

(\(c_1 \)) \(X \) is a \(k \)-space which is bi-quasi-\(k \), and \(Y \) is a sequential Tanaka space (in particular, a sequential countably bi-quasi-\(k \)-space).

(\(c_2 \)) \(X \) is a bi-\(k \)-space, and \(Y \) is a \(k \)-space which is countably bi-quasi-\(k \).

(2.3) Every product of sequential countably bi-\(k \)-spaces (actually, countably bi-sequential, countable spaces) need not be a \(k \)-space (not a Tanaka space) under \((2^{k_0} < 2^{k_1}) \) ([O]).

(2.4) In Question 2, (a) \(\Rightarrow \) (b) holds if \(X \) is a first countable space ([T2]), more generally, a bi-\(k \)-space ([TS], etc.).

(2.5) Every product of sequential Tanaka spaces (actually, countably bi-sequential, countable spaces) need not be a Tanaka space (hence, not strongly sequential). (Also, cf. (2.3)). But, every product \(X \times Y \) of
Tanaka spaces is a Tanaka space if X is bi-quasi-k. Thus, for sequential spaces X and Y, (c_1) or (c_2) in (2.2) implies that $X \times Y$ is a Tanaka space which is sequential by means of (2.2) and Result (5). In view of this and (2.3), the author has following question: For sequential spaces X and Y, if $X \times Y$ is a Tanaka space, then $X \times Y$ is sequential?

Let $S = \{\infty\} \cup \{p_n : n \in \mathbb{N}\} \cup \{p_{nm} : n, m \in \mathbb{N}\}$ be an infinite countable space such that each p_{nm} is isolated in S, $K = \{p_n : n \in \mathbb{N}\}$ converges to $\infty \notin K$, and each $L_n = \{p_{nm} : m \in \mathbb{N}\}$ converges to $p_n \notin L_n$. We recall the following canonical spaces; the Arens' space S_2, and the sequential fan S_ω. S_2 is not Fréchet, but S_ω is Fréchet.

$S_2 = S$, but $\bigcup\{F_n : n \in \mathbb{N}\}$ is closed in S for every finite $F_n \subset L_n (n \in \mathbb{N})$.

$S_\omega = S_2/(K \cup \{\infty\})$ (i.e., the space obtained from the topological sum of countably many convergent sequences by identifying all the limit points).

Question 3. ([TS]) Let X be a bi-k-space, and let Y be a sequential space. Then the following are equivalent?

(a) $X \times Y$ is a k-space.

(b) X is locally countably compact, or Y contains no (closed) copy of S_ω, and no (closed) copy of S_2?

Let us recall that a cover \mathcal{P} of a space X is a k-network for X if, for any compact subset K, and any open set V with $K \subset V$, $K \cup \mathcal{F} \subset V$ for some finite $\mathcal{F} \subset \mathcal{P}$. If K is a single point, then such a cover \mathcal{P} is called a network. Bases are k-networks, and k-networks are networks. Quotient s-images (or closed images) of metric spaces have point-countable k-networks. Paracompact M-spaces with point-countable k-networks are metrizable ([GMT]).

Comment: (3.1) In Question 3, (a) \Rightarrow (b) holds ([TS]).

(3.2) Question 3 is reduced to the following question in view of (2.1): For a sequential space X, X is a Tanaka space if and only if it contains no (closed) copy of S_ω, and no S_2 ? (The “only if” part holds).

(3.3) Question 3 is affirmative if the sequential space Y is one of the following spaces ([TS]).
(A₁) Fréchet space.
(A₂) Space in which every point is a $G_δ$-set.
(A₃) Hereditarily normal space.
(A₄) Space having a point-countable k-network.
(A₅) Closed image of a countably bi-k-space.
(A₆) Closed image of an M-space.

(3.4) The author does not know whether Question 3 is affirmative when the sequential space Y is the quotient s-image of a paracompact (countably) bi-k-space ([TS]). Question 3 is affirmative if the domain is metric by (A₄).

Question 4. ([T6]) For a k-space X, X is locally countably compact if and only if $X \times Y$ is a k-space for every quotient compact image Y of a locally compact metric space?

Let us recall that a space X is called symmetric if there exists a real valued, non-negative function d defined on $X \times X$ such that (a) $d(x, y) = 0$ iff $x = y$, (b) $d(x, y) = d(y, x)$, and (c) $F \subset X$ is closed in X iff $d(x, F) > 0$ for any $x \in X - F$. If we replace (c) by "$d(x, F) = 0$ iff $x \in \overline{F}$", then such a space X is called semi-metric. Semi-metric spaces, or quotient compact images of metric spaces (e.g., the space S_2) are symmetric. Symmetric spaces are sequential. Symmetric M-spaces are metrizable ([N]).

Comment: (4.1) In Question 4, the "only if" part holds.
(4.2) Question 4 is affirmative if X is one of the following spaces. For (B₁), see (5.2) below. For (B₄), we can replace "k-space" by "symmetric space" in Question 4.

(B₁) Bi-k-space.
(B₂) Space having character $\leq 2^\omega$ (in particular, locally separable space).
(B₃) Space having a point-countable k-network.
(B₄) Symmetric space.

(4.3) Question 4 is affirmative if we omit the locally compactness of the metric domain. Question 4 is also affirmative if we replace "metric space" by "Fréchet space"; or "quotient compact image" by "closed image".

(4.4) A k-space X is locally compact if and only if $X \times Y$ is a k-space for every quotient compact image Y of a locally compact, paracompact
space. Here, we can replace "quotient compact image" by "closed image".

Question 5. ([T6]) For a k-space X, X is a locally k_{ω}-space if and only if $X \times Y$ is a k-space for every k_{ω}-space Y?

Comment:

(5.1) In Question 5, the "only if" part holds by Result (3).

(5.2) If we replace "k_{ω}-space" Y by "s_{ω}-space" Y, then Question 5 is negative under $(\text{MA} + \neg \text{CH})$.

(5.3) A bi-k-space X is locally compact (resp. locally countably compact) if and only if $X \times Y$ is a k-space for every k_{ω}-space (resp. s_{ω}-space) Y. Here, the space Y can be chosen to be the quotient compact (or closed) image of a locally compact Lindelöf (resp. locally compact separable metric) space.

References

[D] Z. Dolecki, Strongly sequential convergences (pre-print).

[S] F. Siwiec, Sequence-converging and countably bi-quotient mappings,

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, KOGANEI, TOKYO, 184-8501, JAPAN

E-mail address: ytanaka@u-gakugei.ac.jp