<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Topologies of Hyperspaces (Problems and applications in General and Geometric Topology)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Yaguchi, Masato</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2003, 1303: 20-23</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42754</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Topologies of Hyperspaces
（巾空間のトポロジー）

筑波大学・数理物質科学研究科 数学専攻
矢口雅人 (Masato Yaguchi)
Graduate School of Pure and Applied Sciences,
University of Tsukuba

1 Introduction

In this note, we survey recent results on hyperspaces with the Wijsman topology and the Attouch-Wets topology.

For a metric space $X = (X, d)$, let $\text{Cld}(X)$ be the hyperspace of non-empty closed sets. By $\text{Fin}(X)$, $\text{Comp}(X)$ and $\text{Bdd}(X)$, we denote the subspaces of $\text{Cld}(X)$ consisting of finite sets, compact sets and bounded sets, respectively. Let $C(X)$ be the set of all continuous real-valued functions on X. By identifying each $A \in \text{Cld}(X)$ with the map

$$X \ni x \mapsto d(x, A) = \inf_{a \in A} d(x, a) \in \mathbb{R},$$

we can regard $\text{Cld}(X) \subset C(X)$, whence $\text{Cld}(X)$ has various topologies inherited from $C(X)$. The Hausdorff metric topology on $\text{Cld}(X)$ is the topology of uniform convergence, the Attouch-Wets topology on $\text{Cld}(X)$ is the topology of uniform convergence on bounded sets, and the Wijsman topology on $\text{Cld}(X)$ is the topology of point-wise convergence, which depend on the metric d for X.

It should be remarked that the Attouch-Wets topology and the Wijsman topology are equal to the Fell topology on $\text{Cld}(X)$ if X is a finite-dimensional normed linear space (cf. [2, p.142 & p.144]).

2 The Wijsman Topology

When we consider hyperspaces with the Wijsman topology, we denote $\text{Cld}_W(X)$, $\text{Fin}_W(X)$, $\text{Bdd}_W(X)$, etc. It is well-known that $\text{Cld}_W(X)$ is metrizable if and only if X is separable, whence we can define an
admissible metric d_W for $\text{Cld}_W(X)$ by using a countable dense set
$\{x_i \mid i \in \mathbb{N}\}$ in X as follows:

$$d_W(A, B) = \sup_{i \in \mathbb{N}} \min\{2^{-i}, |d(x_i, A) - d(x_i, B)|\}.$$

In [4], the following theorem is proved:

Theorem 2.1. If X is an infinite-dimensional separable Banach space, then $\text{Cld}_W(X)$ is homeomorphic to \approx the separable Hilbert space ℓ_2.

Also, for $\text{Fin}_W(X)$ and $\text{Bdd}_W(X)$, similar results are proved in [4]:

Theorem 2.2. If X is an infinite-dimensional separable Banach space, then

$$\text{Fin}_W(X) \approx \text{Bdd}_W(X) \approx \ell_2 \times \ell_2^f,$$

where $\ell_2^f = \{(x_i)_{i \in \mathbb{N}} \in \ell_2 \mid x_i = 0$ except for finitely many $i \in \mathbb{N}\}$.

To prove Theorems 2.1 and 2.2, we need characterizations of ℓ_2 and $\ell_2 \times \ell_2^f$. The following characterization of ℓ_2 is due to Toruńczyk [7] (cf. [8]):

Theorem 2.3. In order that $X \approx \ell_2$, it is necessary and sufficient that X is a separable completely metrizable AR which has the discrete approximation property, that is,

 GIVEN a map $f : \bigoplus_{n \in \mathbb{N}} I^n \rightarrow X$, there exist maps $g : \bigoplus_{n \in \mathbb{N}} I^n \rightarrow X$ arbitrarily close to f such that $\{g(I^n) \mid n \in \mathbb{N}\}$ is discrete in X.

To state the characterization of $\ell_2 \times \ell_2^f$ due to Bestvina and Mogilski [3], we need some notions. A metrizable space X is σ-completely metrizable if X is a countable union of completely metrizable closed subsets. A closed set $A \subset X$ is a (strong) Z-set in X if there are maps $f : X \rightarrow X \setminus A$ arbitrarily close to id (such that $A \cap \text{cl} f(X) = \emptyset$). A countable union of (strong) Z-sets is called a (strong) Z_{σ}-set. When X itself is a (strong) Z_{σ}-set in X, we call X a (strong) Z_{σ}-space. For a class C of spaces, X is strongly universal for C if the following condition is satisfied:
Given a map $f : A \to X$ of $A \in C$ such that $f|B$ is a Z-embedding of a closed set $B \subset A$, there exist Z-embeddings $g : A \to X$ arbitrarily close to f such that $g|B = f|B$.

In these definitions, the phrase 'arbitrarily close' is understood with respect to the limitation topology. In case $X = (X, d)$ is a metric space, given a collection \mathcal{M} of maps from a space Y to X, a map $f : Y \to X$ is arbitrarily close to maps in \mathcal{M} if for each $\alpha : X \to (0,1)$ there is $g \in \mathcal{M}$ such that $d(f(y), g(y)) < \alpha(f(y))$ for every $y \in Y$. The following is Corollary 6.3 in [3].

Theorem 2.4. In order that $X \approx \ell_{2} \times \ell_{2}^f$, it is necessary and sufficient that X is a separable σ-completely metrizable AR which is a strong Z_{σ}-space and is strongly universal for separable completely metrizable spaces.

3 The Attouch-Wets Topology

When we consider hyperspaces with the Attouch-Wets topology, we denote $\text{Cld}_{AW}(X)$, $\text{Fin}_{AW}(X)$, $\text{Bdd}_{AW}(X)$, etc. Without the separability of X, $\text{Cld}_{AW}(X)$ is always metrizable and has an admissible metric d_{AW} defined as follows:

$$d_{AW}(A, B) = \sup_{n \in \mathbb{N}} \min \left\{ \frac{1}{n}, \sup_{x \in X_n} \{|d(x, A) - d(x, B)|\} \right\},$$

where $x_0 \in X$ is fixed and $X_r = \{x \in X \mid d(x_0, x) \leq r\}$ for each $r \in \mathbb{R}$.

In [1], Banakh, Kurihara and Sakai showed the following theorem:

Theorem 3.1. If X is an infinite-dimensional Banach space with weight τ, then $\text{Cld}_{AW}(X) \approx \ell_{2}(2^{\tau})$, where $\ell_{2}(\gamma)$ is the Hilbert space with weight γ.

In [6], we have a following result which is analogous to Theorem 2.2:

Theorem 3.2. For every infinite-dimensional Banach space X with weight τ,

$$\text{Fin}_{AW}(X) \approx \text{Comp}_{AW}(X) \approx \ell_{2}(\tau) \times \ell_{2}^f$$

and

$$\text{Bdd}_{AW}(X) \approx \ell_{2}(2^{\tau}) \times \ell_{2}^f.$$
Theorem 3.2 is based on the following theorem, which is obtained in [5] as the non-separable version of Bestvina-Mogilski's characterization.

Theorem 3.3. In order that $X \cong \ell_2(\tau) \times \ell_2^f$, it is necessary and sufficient that X is a σ-completely metrizable AR with weight τ which is a strong Z_σ-space and is strongly universal for $\mathcal{M}_1(\tau)$, where $\mathcal{M}_1(\tau)$ is the space of all completely metrizable spaces with weight τ.

References

