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The construction of chaotic maps on dendrites which commute to
continuous maps with positive topological entropy on the unit
interval

AP BEH KT R —REFE FiHt Fth (Tatsuya Arai)
HEKRF BFFR ME ER (Naotsugu Chinen)

1 Introduction

The purpose of this note is to introduce some results in [AC]. In [ACKY], a new space Z and
the continuous map from Z to itself have been constructed by the geometrical method. The
structure of Z changes corresponding to the behavior of a continuous map f from a finite graph
to itself and the method of choosing an invariant subset of f. And it is shown that the space Z is
a regular curve. The pointwise P-expansiveness plays an important role to decide the structure
of the space Z. In this note, first we introduce that, for each continuous map f from the unit
interval to itself, f has positive topological entropy if and only if f is pointwise P-expansive for
some periodic orbit P of f.

The notion of chaos is important in the study of topological dynamical systems. The paper
in which the word “chaos” first appeared was written by Li and Yorke [LY]. The word “chaos”,
however, is described by various definitions. One of those definitions is proposed by Devaney [D]
as in Definition 1.1. Huang and Ye have showed that every chaotic map in the sense of Devaney
from a compact metric space to itself is chaotic in the sense of Li-Yorke [HY].

Definition 1.1 Let f be a continuous map from a compact metric space (X, d) to itself. This
map f is chaotic in the sense of Devaney if

(1) f is topologically transitive, that is, for any non-empty open sets U and V in X, there
exists some non-negative integer k such that f*(U)NV # 0,

(2) the set of all periodic points of f is dense in X, and

(3) f has sensitive dependence on initial conditions, i.e., there exists a number § > 0 such that
for every point = of X and every neighborhood V of z, there exists a point y of V and a
non-negative integer n such that d (f™(z), f*(y)) > 9.

In [BBCDS], it is shown that the above conditions (1) and (2) imply the condition (3).
Furthermore in [BV], it is proved that, for continuous maps from the unit interval to itself,
Condition (1) implies both Conditions (2) and (3), that is, continuous maps from the unit interval
to itself are topologically transitive if and only if those are chaotic in the sense of Devaney. Every
chaotic map in the sense of Devaney has positive topological entropy on the unit interval [BC].
However, the reverse is false, that is, every continuous map from the unit interval to itself with
positive topological entropy is not necessarily chaotic in the sense of Devaney. So the following
natural question arises : When f is a continuous map from the unit interval to itself having
positive topological entropy, does there exist a chaotic map g from some good space Z to itself
in the sense of Devaney which is semiconjugate to f and which has positive topological entropy?
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Sharkovsky’s theorem is the well-known and impressive results about the co-existence of
periods of periodic orbits of continuous maps from the unit interval to itself. The following is
Sharkovsky ordering for positive integers :

3<5<7<9<+--<2-3<2-5<---<22.3<22.5<...<23<22 42«1

Theorem 1.2 [S] Let f be a continuous map from the unit interval to itself. If f has a periodic
orbit of period n and if n < m in the above ordering, then f also has a periodic orbit of period
m. .

As for continuous maps from the unit interval to itself, it is known that those have positive
topological entropy if and only if there exists a periodic orbit with period except a power of
2 [BC,Theorem II.14 and Proposition VIII.34]. Hence the above question can be expressed as
follows : When f is a continuous map from the unit interval to itself having a periodic orbit with
period except a power of 2, does there exist a chaotic map from some good space to itself in the
sense of Devaney which is semiconjugate to f and which has positive topological entropy? In
this note, it is reported that if a continuous map f from the unit interval to itself has a periodic
orbit with odd period, then there exists a chaotic map from a dendrite to itself in the sense of
Devaney which is semiconjugate to f and which has positive topological entropy.

2 The elementary properties of pointwise P-expansive maps

A dendrite is a locally connected, uniquely arcwise connected continuum (see [N, Chapter X]
for properties of dendrites). Let Y be a subspace of a dendrite X. We denote the minimum
connected set containing Y by [Y]. Particularly, if Y = {z,y}, then express [Y] = [z,y]. Let
(z,y) = [z,9] \ {z,y} and [z,y) = [z,y] \ {y}. And write the closure of Y in X by CI(Y). We
denote the interior of Y in X by Int(Y) and Bd(Y) = CI(Y) \ Int(Y). For any set A, |A| means
the cardinality of A.

Topological entropy is one of methods to measure how complicated a dynamical systems is.
The definition is as follows :

Definition 2.1 Let f and (X, d) be as in Definition 1.1. And let n be a positive number, Y ¢ X
and £ > 0. Define a new metric d, on X by d,(z,y) = max{d(f*(z), f*(y))|0 < k < n}. A set
E C Y is said to be (n,¢,Y, f)-separated (by f) if do(z,y) > € for any z,y € F with ¢ # y.
Denote s,(¢,Y, f) the biggest cardinality of any (n,¢€,Y, f)-separated set in Y. Define

1
s(e,Y, f) = limsup — log s, (¢, Y, f).
n—oo T
Now we define the topological entropy of f on the set Y as
B(f,Y) = lim s(e, Y, ).
h(f) = h(f,X) is said to be a topological entropy of f.

Lemma 2.2 Let f and (X,d) be as in Definition 1.1 and let o > 0. If d(Yp, Y1) > €0 and
YouY: C f(Yo) N f(Y1) for some subspaces Yo, Y1 of X, then h(f) > log2.
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Denote I = [0,1]. Let f : I — I be a continuous map from I to itself with a periodic orbit
P. We denote the set of all components of I\ P contained in [P] by S(I, P).

Notice 2.3 In this note, we denote every periodic orbit P of f : I — I with period n by
P ={po,p1,--,pn—1} with 0 <pp <py <+-- <pp1 < 1.

Definition 2.4 A continuous map f : I — I is pointwise P-expansive if for every element
C = (pk,Pr+1) of S(I, P), there exists a positive integer £ such that (f*(px), fipx+1)) NP #0.
Note that if f is pointwise P-expansive, then |P| > 3.

Lemma 2.5 [BC, Lemma 1.4] Let f : I — I be a continuous map and let Jo,J1,...,Jm be
compact subintervals of I such that Jiy1 C f(Ji)(0 < k <m —1) and Jy C f(Jm). Then there
ezists a point T such that f™*(z) = z and f*¥(z) € Jy(0 < k < m).

The following lemma is derived from Lemma 2.5 and the definition of pointwise P-expansive.

Lemma 2.6 Let P be a periodic orbit of f : I — I as in Noti%e 2.3. If f is not pointwise
P-exzpansive, then there exists a periodic orbit of f with period 3 thus n is even. Hence, if

n s odd or the supremum in the Sharkovsky ordering except a power of 2, then f is pointwise
P-expansive.

By the above lemmas, we see the following theorem.

Theorem 2.7 Let f : I — I be a continuous map. The following statements are equivalent :
(1) f has positive topological entropy, and
(2) f is pointwise P-expansive for some periodic orbit P of f.

3 The constructions of the dendrite Z(f, P)

In [ACKY], a regular curve Z has been constructed from a continuous map f from a finite
graph to itself and an f-invariant subset of the finite graph. In this section, under some natural
restriction, the dendrite Z(f, P) is constructed from a continuous map f : I — I and a periodic
orbit P of f. Let P = {po,p1,---,Pn—1} be a periodic orbit of f as in Notice 2.3 and suppose
that f is pointwise P-expansive. Let C, C’ be elements of S(I,P). If C' N f(C) # 0, then
write C — C’. And let C; be an element of S(I, P) satisfying {p:, pi+1} = Bd(C;) for each i =

0,1,...,n—2. Let B; = {(z,y)|(z—i— %)2+y2 < Z} be a disk in the two dimensional Euclidean

space for each i = 0,1,...,n — 2. Since each element C; of S(I, P) can be matched off against
each B;, we put Ay = {B;|C; € S(I,P)}. And write Py = {(0,0),(1,0),(2,0),...,(n —1,0)}
and X = |J Ao (see Figure 1).
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Figure 1.

Let X (i) = U{Bj|C; = Cj € S(I,P)} for each i = 0,1,...,n — 2 and let h; : X(i) — B; an
embedding satisfying the following (i) and (ii) :



(i) h,(X(’L)) n Bd(Bz) =FnN Bd(Bi).
(ii) If f(pi) = p;j and f(pi+1) = Py, then hi((5,0)) = (¢,0) and hi((j’,0)) = (i +1,0).

Denote Dy = {(i0,11,- - -,%)|Ci, — Ci, = - = C;, }, where C;; is an element of S(I, P) for
each j =0,1,...,k. And put B;y;, . = (higohi, o---ohy,_ )(Bi,), where (io,1,...,%) € Dg.
Set Ay = {Bio,ih...,ikl(iO;ily .., 0k) € Dk} and Xj = |JAx. And denote Diojir, e ik_1.dk = (hig ©
hi, o -+ 0 hi,_)((jk,0)), where (49,41, ...,%—1) € D1 and (jk,0) € X (ix—1) (see Figure 2).

Moreover since the map f is pointwise P-expansive, we may assume that for any € > 0, there
exists a positive integer k such that the diameter of each element B; ;, . i, of Ay is less than
e. Define X_. = (Npo; Xk. Since any two points of X_. are separated in X_. by a third point of
X_., we see that X_. is a dendrite by [N, Theorem 10.2, p.166].
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Figure 2.
Next let us define a map 7 : I — X_. as (a) and (b) :

(a) m(t) = Mo Bio,ir,...ixs if for each k > 0 there exists C;, € S(I,P) such that f*(t) €
CI(Cs,).

When there exists m = min{k|f*(t) ¢ [P]}, define as the following :

Dio i1, im—1,0 if f™(t) € {0,po] and m # 0
Po ‘ if f™(t) € [0,po) and m =0
b t) = .
(b) m(2) Piojir,.im_1,n—1 if f7(t) € [Pn—1,1] and m # 0
Pn—1 if f™(t) € [Pp-1,1] and m =0

This map n is well-defined and continuous by the natural construction. Indeed, for each

element ¢ of I'\ P and neighborhood V' of 7(t) in X_., there exists some element B ;, ... i, of A
k

such that m(t) € Bjyi,,...ix, N X~ C V. Then by the construction of X_., ﬂ f'j(Cl(Cij)) is a
j=0

k k
non-empty subset containing ¢ and w(n f7(CI(Cy,))) C V. Since U{n f—j(Cl(C,-j))ll w(t) €
=0 =0

k
W(ﬂ f7(CI(Cy,))) C V} is a neighborhood of ¢ in I, m is continuous.
=0
Set Z(f,P) = w(I), which is a dendrite. Because every subcontinuum of a dendrite is a

o0 oo
dendrite. Define a map g : X_. — X_. by g(n Biyii,..i.) = ﬂ B;, i,,...ix, then the map g is
k=0 k=1
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well-defined and continuous. The map 7 is a semi-conjugacy between f and g, i.e. it is surjective
and satisfies m o f = go . See [ACKY] for details. We notice that g(Digi,,..im) = Piriz,...rim>
thus, g™ (Pig.41,....im) € T(P).

Notice 3.1 Let P be a periodic orbit of f as in Notice 2.3. By the construction of Z(f, P) and
the pointwise P-expansiveness of f, we see that #=1(B; N Z(f, P)) C C;—1 U Cl(C;) U Ci4, for
each B; € Ag. Particularly, it follows that #~!(m(p;)) C Ci—1 U {pi} UCi.

4 The relationship between the cardinality of P and the chaotic-
ity of ¢
In this section, we introduce the relationship between the cardinality of P and the behavior

of g : Z(f,P) = Z(f,P) constructed in Section 3. The following lemmas are derived by the
periodicity of P.

Lemma 4.1 Let f : I — I be a continuous map and let P a periodic orbit of f as in Notice
2.3. For each element C of S(I, P), there ezists a natural number k such that Co C f*(C).

Lemma 4.2 Let f : I — I be a continuous map and let P a periodic orbit of f with odd
period n as in Notice 2.3. If n is prime or the supremum in the Sharkouvsky ordering, then

[P] C f‘(Ol(Cg)) for some ¢.
In the following theorem, the topological mizing means the following :

For every pair of non-empty open sets U and V, there exists a positive integer N
such that f*(U)NV #0 for all k > N.

Clearly if f is topologically mixing, then it is also topologically transitive.

Theorem 4.3 Let f : I — I be a continuous map and let P a periodic orbit of f with odd
period n as in Notice 2.3. If n is prime or the supremum in the Sharkovsky ordering, then g
is topologically mizing and chaotic in the sense of Devaney, where g : Z(f, P) — Z(f, P) is the
map constructed in Section 3. Moreover g has positive topological entropy.

By Theorem 1.2 and 4.3, it is easy to prove the following main theorem.

Theorem 4.4 Let f : I — I be a continuous map. If f has a periodic orbit with odd period,
then there exists a chaotic map from a dendrite to itself in the sense of Devaney which is
semiconjugate to f and has positive topological entropy.

The following shows such example as g : Z(f, P) — Z(f, P) constructed in Section 3 is not
chaotic in the sense of Devaney, when |P| is the supremum in the Sharkovsky ordering but not
odd.

Example 4.5 Let f be the piecewise linear function from [0, 5] to itself defined by

£(0)=3,f(2)=5,f(3) =1,f(4) =2, and f(5) = 0.
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Figure 3.

Then P = {0,1,...,5} is a periodic orbit of f with a period 6 and it is the supremum in the
Sharkovsky ordering. However, we see that g : Z(f, P) — Z(f, P) as in Section 3 is not chaotic
in the sense of Devaney. Indeed, since f*([0,2]) C [0,5]\ (2,3) for each k > 0, there exists some
open subset U of Z(f, P) such that U C 7([0,2]) and Uy, ¢*(U) is not dense in Z(f, P).

The following provides such example as g : Z(f,P) — Z(f, P) costructed in Section 3 is
not chaotic in the sense of Devaney, when |P| is odd, but not the supremum in the Sharkovsky
ordering.

Example 4.6 Let f be the piecewise linear function from [0, 8] to itself defined by

F(0)=3,f(5) =8,7(6) =1, f(7) = 2, and f(8) =0.
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Then P = {0,1,2,...,8} is a periodic orbit of f with a period 9. Since {5, 3 '73—} is a
periodic point of f with a period 3, P is not the supremum in the Sharkovsky ordering. Let g
and Z(f, P) be as in Section 3. Since f*([0,2]) C [0,8]\ ((2,3) U (5,6)) for each k > 0, there
exists some open subset U of Z(f, P) such that V' C 7([0,2]) and Uy ¢*(U) is not dense in
Z(f,P). It follows that g is not chaotic in the sense of Devaney.
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