ooooooooon 1306 0 20030 109-117

109

HEREDOH[FISFM2H T 5 mE LiBIC DN T
-7 7 VA W T RERNDIGH-

KBRAZEKZBE A A RAHERBUEZ TR WHBRR  (Seiji SAITO)
Graduate School of Information Science and Technology, Osaka University
Suita, Osaka, 565-0871

(saito@ist.osaka-u.ac.jp) *
KRAREXRZEGARRAZHAAR ERBOEZER AHME  (Hiroaki ISHII)
Graduate School of Information Science and Technology, Osaka University
Suita, Osaka, 565-0871
(ishii@ist.osaka-u.ac.jp)

Abstract In this study we give a new representation of fuzzy numbers with bounded supports and also
we show that a fuzzy number means a bounded continuous curve in the two-dimensional metric space.
Our aims of this research are to discuss optimization problems with objective functions and constraints
both of which are L—fuzzy functions and to consider oil well equations which are represented by fuzzy
differential equations C}J(t) + DpCL(t) = 0, where t is the time, 0 € R, C(t) an L—fuzzy function and
Dy a constant L—fuzzy number by applying the above criteria of L—optimization problems. Moreover we
get an extension of the maxi-max theorem of optimization problems with an infinite number of constraints
and a objective function which consists of infinite series. Finally we give remarks on a stochastic infinite
horizon model of profit functions with a random variable.
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1 Set of fuzzy numbers (ii) The support set supp(u.) = c({¢ € R :

1(€) > 0}) is bounded in R,
Let I = [0, 1]. We define the following set of fuzzy

numbers, where a fuzzy number z is characterized (i) Let J = {£ € R:0 < p(€)}. po 18 strictly
by & membership function . as follows (cf. (2, 3]): quasi-convez on J, i.e., pz(Aé1+(1-A)&2) >
| minfu, (§1), #z(€2)) for0 <A <1 and&y,é2 €
J such that & # & ;

Definition 1 Denote

FE' = {uz : R — I satisfying (i) = (iv) below}. (iv) pg s upper semi-continuous on R.

(i) There exists a unique m € R such that py(m) =



In usual case a fuzzy nwumber z satisfies quasi-

convex on R, i.e.,

pz (A1 + (1 = N)&) 2 minfp(£1), He(€2))

for 0 < A <1 and &, & € R. Condition (iii) plays
an important role in proving properties of mem-
bership function p. in Theorem 1, where we show
significant properties concerning the end-points of
the a-cut set Lo(pz) = {{ € R p(§) 2 a}.

In the similar way as [2, 3] we consider the
following parametric representation of p, € Fgt

such that

z1(a) = min Ly (pz), w2(0) = max Lo (pz)
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means that the following relation.

;

(z1y1,2292) (0L 21,0 < 91)
(Tay1,z2y2) (0 < x1,91 <0< y0)
(way1, T1y2) (0 < z1,y2 <0)
(192, 7232) (21 0 < 25,0 < 1)
(min{z2y1, T1y2}, max{z1y1, Z2y2})

(21 £0< 29,91 0L y2)

Ty = «

Zay1, T1Y1) (21 L0 < 2,92 < 0)
T2 _<. 030 S yl)

(
(ivlyz,wzyl) (

(z1y2,71y1) (22 < 0,91 S0 < y0)
( (z

Tay2, Z1y1) (22 < 0,92 < 0)

\
By the above parametric representation of fuzzy
numbers we get the following theorem concerning

properties of end-points.

for 0 < o £ 1 and that z; (0) = min d(supp(s)), z2(0) =

max cl(supp(p-)). In what follows we denote a
fuzzy numbers z by (21, z2), t.e.,z= (zy, 7).
By applying the above extension principle and
the representation of fuzzy numbers we get the
following results.
1) Addition. Let z = (z1,22), ¥ = (y1,¥2) €
Fgt. We get the addition

sup min{pz(€1), py(€2))
§=61+63

Nz+y(§) =

= sup{aeI:§=§1+§2, & ewayEZEya(}

= sup Q,
£€[z1 () +y1(@),za(x)+ya(a)]

which means that « +y = (z1+v1,22 +y2). Here

To = La(llﬂ;) etc.
2) Subtraction. It follows that

pr—y(§) =sup{a € ]: =66,

means that z — y = (z; — y2, 22 — ¥1)-

3) Product. It follows that

Bzy(§) =sup{la € ]: £ =&,

§1 € 24,62 € yoe}

El € Zqa, €2 € ya}

Theorem 1 Denote x = (zy,z2) € F, where
z1,29 : I — R. Then the following properties
(1)-(ii1) hold:

(i) z: € C(I),s = 1,2. Here C(I) is the set of

all the continuous functions on I ;‘

(ii) There ezists a unigue m € R such that z,(1) =
z2(1) = m and z;:(a) £ m < za(a) for

ael;

1ii) One of the following statements (a) and (b)
holds;

(a) Functions z,,z2 are non-decreasing, non-
increasing on I, respectively, with z1 (o) <

z2(a) for0< a < 1;

(b) z1(a) =z2(a) =m for 0 < o < 1.

Conversely, under the above conditions (i) -(iii),

if we denote

pz(€) =sup{ael: wl(a) <€<z(a)} (1.1)



then ., is the membership function of x, i.e., y, €

st
F‘b.

Let a metric between « = (z1(:), z2(:)), ¥y = (y1(-), z2(*))

be defined as follows.

d(z,y) = sup Vizi(a) = v1()]? + |2 (@) — y2(a)?

Then we get following result immediately.

Theorem 2 (F$t,d) is complete metric space.

2 Set of L—fuzzy numbers

Denote a shape function by L : R. — I, where L is
upper semi-continuous and satisfies the following
properties (i) - (iv):
(i) L(0) = max L(§)=1; (i) L(&) is strictly
decreasing in £ > 0;
(ii1) L(~€) = L(€) for £ 2 0;
L&) >0} =1

(iv) sup{€ e R :

In what follows we consider a set of L—fuzzy num-
bers Fr, = {p € Fg¥ : (a) or (b) hold.} Let m €
R, £ > 0. There exist two typical types (a) and
(b) of Fr.

m—-§
(a) €>0and u(¢) = L(7F) for{<m
L(g—Tm) fOI‘f)m
(b)€=0and“(€):{1 fOI‘f:m
0 for#m

In this section we introduce a total order rela-
tion A-fuzzy max order <) over Fr. Here 0 <
)\‘ < 1 is given by decision makers. Let z =
(z1,22),¥ = (y1,y2) € Fr with the center z;(1),
the spread ¢, = z;(1) — 21(0) > 0 and center
v1(1), spread £, = y;(1) — y1(0) > 0. We define
that = <, y if and only if the following statements

(i)-(ia) ( [1]):
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(i) 1y — &3] < y1(1) — 21 (1) for y1(1) >z (1);

(i) Mey — €a] < 31(1) — 21(1) < |&, — €] for
y1(1) > 21(1) and £y # £,

(ii1) |y1(1) — 21(1)| < A(€y — &) for £, — £, > 0.

Furukawa [1] gives the following theorem so that
two any L—fuzzy numbers can be compared to
each other.

Theorem F1 For any z,y € F, it follows that
one of the relations x <) y, andy <) = hold.
Thus =\ is a total order relation over Fr.

The following theorem plays an important role
in comparing two L—fuzzy numbers.

Theorem F2 For z = (z1,23),y = (¥1,¥2) €
Fi satisfying £, = z(1) — 21(0) 2 0, £, =
y1(1) — y1(0) > 0, it follows that = = y means
that (i) or (ii) hold.

(1) Mz + z1(1) < My +v1(1) for £y > &;

(i) Mg+ z1(1) < My +y1(1) for £y < €.

3 Fuzzy optimization problems

Let 0 < A < 1. In this section we show criteria

concerning the following optimization problem
minimize f(z) subject to z € C{. (P?)

where C{ is a feasible set in F} or F§° and f :
¢! — FL is an objective function. We denote

z € F5° by
z=(21,22,23, ) Where z; € F fori=1,2,---.
In what follows we consider

¢ ={zeFL:gi(2) 22 (0,6;)r,i =1,2,---}.



where g; : Cf\ — Fr, (0,0;)L € Fr,and d; > O are
constants for 7 = 1,2,---. Let § = (0y,62,---) €
R, If 2* € C§ satisfies f(2*) = min{f(2) : z €
C{} then 2* is called an optimal solution of (P%).

In order to analyze (P{) which is general case,
we may consider an R~valued optimization prob-

lem

minimize f(z) subject to 2€C{NR. (PY)

Then, letting f3 = min f(2), we get f§ € R
z€ f‘ﬂR
which gives the optimal value in R as follows.

Corollary 1 Let f* € R. Then there exists no

L—fuzzy number f € FL\R such that f = f*,i.e., f =

f* and f* X5 f.

From the above corollary we get the following lemma

immediately.

Lemma 1 Denote f{ = min{f(z) : z € C$}, f§ =
min{f(z°) : 2 € C§{} €R, '
2 =min{f(2)°: z€C{} €R,

f& =min{f(2) : z€CJ} € R, where 2° € R, f(2)° €

R are centers of z, f(2), respectively, and C3 =
C: AR.

1If there exist f,i = 1,2,3 and f§, then it fol-
lows that f! € R and that

A=f=r<fm.

If6=0, then [ = f3 = f§ = f3.

Remark 1 It follows that
Cy={2€R>®:gj(2)<0,j=1,2,---} =C{NR.

When 0; > 0 for some integer j, there exists an ex-

ample such that f§ = f§ = f§ < f. See Exmaple
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In case that there exists an optimal solution of
L—fuzzy optimization problems, by the above lemma,

the solution means a real number.

Theorem 3 Denote f* = min{f(z) : 2 € C§}
and f§ = min{f(z) : z € C{ NR}. Suppose that
(P?) has at least one optimal solution in CS. Then

there exist f*, fg in R, which satisfy f* = f3.

L—fuzzied numbers
In what follows we introduce an idea of L—fuzzied
numbers generalized by Ff. Let 2 € Fr. The
quadratic 22 of an L—fuzzy number z isn’t neces-
sarily L—fuzzy number but fuzzy number in F3¢
(see [6]). For z = (z1,22) € Fr and o € I, we

have the following three cases:
o 22 = (22,2%) if 21 () > O;

o 22 = (2127, max[z?,23]) if z1(c) < 0 <

z2(a);
o 22 = (22,2?) if 25() < 0.

In this study we consider the left portion of the
membership function g2 is more significant than
the right portion of u.2. Denote an operator (-)y, :
Fgt — Frsuch that (z) = (z1(1), 21 (1)—z1(0))
for ¢ = (@1,22) € F2t. We call that (z) is an
L—fuzzized number. Here the membership func-

tion of z is p. (&) = L(Iji)l_;fo))Jr foréeR, L:
R — R, is a shape function and £, = max(§, 0) if

¢ € R. For z € F1, we get the L—fuzzied number
(@) = (21(1)%, 21(1)* = 2:(0)2;(0)))z,

where i = 1,7 = 2 if 21(0)z2(0) < 0,1 = j =1 if
21(0)z2(0) > 0 and |z,(0)] < |z2(0)|, i =7 = 2 if
z1(0)z2(0) > 0 and |z;(0)| > |z2(0)].




Let a shape function be L(§) = (1 — |{|)+.
For an L—fuzzy number z = (&,£)r with || <
£, which has the membership function p.(§) =
L(§2e-’-§)+ for £ € R.. Then we get the membership

function

(1—-———\’5;3‘5) for £ < €2;
K2 (€) = fo— /B

(1— . )+ for € > €2.

In this case we construct an L—fuzzy numbers
()L with the same portion as the left one of
2. It follows that (22) = (€2,42).. For z € Fi
and k € R we have (kz). = kz.

In the following example we consider L—fuzzy
optimization problem with a fuzzy objective func-

tion and fuzzy constraints.

Example 1 Letz = (u,v) € F and X € I. Fuzzy
functions F, g;,j = 1,2,3, are as follows (P§):

Fz) = —u-wv;

a1(z) = —u=3(0,01)z;

92(z) = —v=2(0,82)1;

g3(z) = (@) + (") 3 (1,8)L.

Here (0,61)1,(0,02)r,(1,383)r are L—fuzzy num-

bers and (u?)z, = (u1(1)?, €)1, (0%)1 = (v1(1)%, £oa)L

are L—fuzzized numbers.

The minimum of the above problem is attained
at u1(1) = v1(1) = (—@, 0)z, which means
that min, f(2) = (—\/I——ig\—‘s—i, O)L and ©* = v* =
(—4/242%,0),. When A = 0 and §; = 0,j =
1,2,3, then the real type of optimization prob-
lem (PY) gives —v2 < f(2) < 0in R and v* =
v*=1/vV2eR.

This example shows that there exists a unique
optimal solution of L—fuzzy number of fuzzy op-

timization problem (P?) with a fuzzy coefficient,
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where (P?) is an optimization problem with R—valu
coefficients if £, = 0 and (P?) is fuzzy type if
2, # 0, where £, is the spread of z € CS. There-
fore the optimal solution to the real type (PY?) is
the same as solution to the fuzzy type (P;‘s ) con-

cerning A =0 and £, = 0.

4 Qil well equations with R-
valued functions

In [8) they discuss exponential decay problems,
e.g., machine replacement and oil well extraction,
etc. They analyze optimization problems for each
oil well to determine its optimal replacement sched-
ule. In order to give a mathematical model we

introduce the following notations.

e C(t): the quality remaining in the well at

time ¢
e D > 0: rate of oil extraction
e P : unit profit of oil (sufficiently large)

As the oil reserves get depleted, the rate of ex-
traction eventually decreases to uneconomic lev-
els, making it worthwhile to abandon the well
and drill a new one at a cost f(v). Here v is
capacity of the well, f is continuously differen-
tiable function. Assume that V € R and that
0<v<V, f(0)=0, f(») >0,

Then they get the following rate of oil extrac-
tion €’ (t) = —DC(t) with C(0) = v. Then C(t) =
ve~Dt,

Moreover they discuss deterministic discounfed

models in case of horizon models with a continu-

ous discount rate r > 0. Let 7 = {t; : i = 1,2,---}



be a sequence of drilling times such that 0 < ¢; <
tipiand V ={v; : i = 1,2, -} a sequence of cor-
responding oil well capacity such that < v; < V.

They get a value of the net profit function

o Liy1 <
i= 4

They consider maximizing problems of J(7,V)
and show the followmg results.

Theorem STU The followmg statements 1)
and 2) hold:

*
i

1) There exist optimal sequences 7* = {¢

i = 1,2,_--.} and V* = {u;" g = 112,...}
such that
maxJ(T,V) = J(T*,V").
2) It follows that ¢} = 0, t2 =18, —t v =

v fori=1,2,-..
Let T = t3, v'= v}. Then
T
J=J(T*' V) = / Pre=(P+0tgt — f(1) + Je~T,
0

v

Orle—e"'T{

P(l _ e—(D+r)T) 3 f(l/)}
D+r v I
In [8] they assume that there eixits an optimal so-

lul;ion to the problem of maximizing J. They men-
tion that a sufﬁciently large value of P will guar-
antee some drilling optimal but that the question
of the existence is beyond the scope of the paper.

In the following section we show the maxi-max
theorem [4] and we show an extnsion. Moreover
we apply the extension theorem to the existence

discussion for optimal solutions of J.

5 Maxi-max theorems

In [4] the author get the following theorem con-

cerning the existence of dynamical programming.
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Theorem I[IWAMOTO] Let X be a set and
g: X x R — R such that g(z,-) : R — R is non-
decreasing for each z € X. Denote a set-valued
function by Y(-) : X — 2R, where 2® is the power
t of R and a gragh by G(Y) = {(z,y) e X xR.:
z € X,y eV}

If a function h : G()) — R satisfy
Hglea)a((g(:c renf(x hiz,y))=c

9(z, h(z, y)) such that

then there erists  max

z€X,yeY(x)
c= maszX,yey(I) g(iﬂ, h(m’ y))

In order to guarantee the existence of optimal
sulitions of the maximizing problems J we discuss

the following extension of the above theorem.

Theorem 4 Let X and Y are sets. Denote g .
X xY — R such that g(z,-) 1 Y — R satisfies
dg(z, ren)?x)h(w y)) and that I

9(z, h(z,y)) < g(=, renax h(z,y)) for z € X. De-
: X — 2R
Here 2R is the power set of R and a gragh by
GY)={(z,v) e X xY :z € X,y € Y(z)}. Let
a function h : G(Y) — R satisfy

3 , max h(z,y)) =c. Th t
max g(z o, (z,y)) = c. Then we ge

note a set-valued function by Y(-) :

3 z,h h that
L N (z,y)) such tha
= )] 1 M

% LB, ,, 9@ A=)

Let J(T,V) =9(T,V) = ih(T,V), and-

i=1
_ P(l —-e—(D+")(tf+x—t:))Vi vty
h(T; V) - [ D +7‘ —f(l/i)]e .
Denote X = {T = (t3,t2.---)}, and Y = {V =

(v1, 2.+ -)}. From the above we get

P(l - e—(D+T)(t(+1—tg))V:
D+r

max M(T, V") = |

Here V* = {y}, v} = min(V,55) and f (&) =
P(1—e(P+7)(ti41-t))
D+r '

—f(@})e .



Assumption. ¢} = 0 and 3T > 0 such that
Aty < 3T.

Denote 7% = {t}} such that T' = ¢}, , —t] = t5.

v} = min(V, %) and f (5;) = ﬂl—“—'z—D:;ﬂT—l S0
vi =vi, fori>1.

Then, by the extension of the maxi-max theo-

rem, we have

maxg(7, maxV) = o(T",V7)
- Te??‘&ng(T'v)'

6 Fuzzy functions

Consider a function z(t) : R — Fgf. Then z(t)
is said to be a fuzzy function. In [5] we find the

following definition of fuzzy functions.

{(z1(t, @), z2(t, )T e R? . x € I}

(21(t,°), 22(, )

z(t,") =

for t € [t;,t2]. Denote z(t) = (z1(t), z2(t)).

An L-fuzzy function z(t) = (z1(t), z2(¢t)) : R —
F2t is H-differentiable at ¢ in the sense of Hukuhara
if there exists an 7 € F&* such that (i) and (ii) hold
as h — 40.

(i) =(t + h) = =z(t) + hn + o(h);
z(t — h) + hn + o(h).

Here o(h) = (01(h), 02(h)) € C|0,€] x C|0, €] with
£ > 0, which means that

d(o(h),0) _
a0 [h]

(i) 2(t) =

0.

Then z(t) = (z1(t), z2(t)) is H-differentiable at ¢

if and only if z; (¢, @), z2(t, ) are differentiable in

t for each a € I such that n = (&%, %82) € Fgt.
In [5] the author discuss the integration of

fuzzy function x(t).
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Definition 2 An L-fuzzy function
z(t,-) = (z1(t, "), z2(t, ")) is called integrable over
[t1,t2} if z1(t, @) and z5(t, @) are integrable over

[t1,t2] for o € I. Define

t2
/ z(s,-)ds
t1

ta te ’
={(] = (s,a)ds,/ z3(s,a)ds)T € R?:
ty

ty
ael}.

7 Oil well equations with L-
fuzzy functions

In the same way as analyzing oil well equations
of R—valued functions we consider the following
problem with 0 < A < 1. We consider the rate of
oil extraction D, as a constant L—fuzzy number
Dy = (D1, D3) € Fr, such that 0 <\ Dy, where
D (a) is the left end-point of the a—cut set and
D, (o) > 0 for a € I. Then we assume that the oil
quality and unit profit of oil are L-fuzzy function

and L—fuzzy number, respectively.

e CL(t) = (Ci(¢),Ca(t)) € Fr : L—fuzzy func-
tion which means the quality remaining in

the well at time ¢

e Py = (P, P;) € Fr, : unit profit of oil with
0=\ P

In this section we consider the following notations,
v € R is a capacity of the well, f(v) is renewal cost
which is continuously differentiable with f(0) =0
and f’ (v) > 0 and V is the upper bound such that
o<v<V

Then we get an initial value problem of L—fuzzy
differential equation é—dc'{'-(t) + DpCL(t) = 0 with



Cr(0) = v, where 0 € R. It follows that as long
as C1(t) 2 0

Cy(t) + D1Ca(t) = 0
C(t) + D2Cs(t) = 0
with C;(0) = C2(0) = v. Therefore
Ci(t,a) = ve~Di(a)t Cy(t, ) = pe—Da(a)t

for t > 0, € I. We can solve some cases of
the above fuzzy differential equations (see [6]).
Without using the above information about the
L—fuzzy function Cp(t) we can find optimal so-
lutions for maximizing problems of values of the
net profit function with L—fuzzy value concerning
T={t;ieR:i=12-}suchthat 0 < ¢t; <
tiviand V= {y; € R:4i=1,2,---} such that
0<v <YV as follows.

oo tig1
J(T,V) = Z[/ PLu,-CL(t——t,-)e_'(t”t‘)dt
i=1 Yt
—f(u,')]e"”‘ .
It can be seen that J(7,V) = (J1,J2) € FL,

where
e Lig1

no= 3
i=1

—'f(Vi)]e—rt"
st Loyl
[/ Pyy;eDate—r(t—t) gy

J2=Zt‘

=1

—f)le .
Here J,(7,V, @), J2(T,V, c) are R—valued func-

tionis defined on X x Y x I. Denote

P1 Vie_Dlte‘-r(t-t‘)dt
Ly

X = {T= (tl,tg,---)ttiGR, OSti<ti+1},

Y = {V:(VI,UQ’...):V,-ER, 0<v<V}

Consider the maximizing problem of (7T, V). We

get the following theorem by applying Theorem 3
and STU.

116

Theorem 5 The following statements 1) and 2)
hold.

1) There exists at least one pair of optimal se-
quences T = {t7 11 =1,2,---} and V* =
{vi:i=1,2,---} such that

Ty\r}rgg&(yj(’]’,])) =J(T*,V*)eR.

*

2) It follows that t} =0, t5 =t} , — t},v} =

$ 9
vieR fori=1,2---. LetT =1t}, v =11
Then

v P(1—eP+nT)  f(v)
T V*) = - .

JIV7) l—e"T[ D+r v ]

Here P, D € R are respective centers of L—fuzzy

numbers Pr, Dy.

8 Concluding remarks

In [8] they analyze stochastic infinite horizon mod-
els. In the case where a continuous discount rate
r > 0 they consider the expected infinite horizon

profit functions J(C;) at times ¢; such that

J(C;) = J(C'-_‘t_l)e_r(tf+l"ti)
41
+ / / Pe=(PHn(t—t) gty (v)dy - Q.
v Jt;

Here Ciy; = ve P(ti+1-%) and the capacity v of
the oil well is a random variable, instead of a de-
cision one. Let ¢(v) be the probability density
function and v > C;. They assume that a fixed
cost @ is incurred per drilling.

From now on we treat the capacity v as a ran-
dom variable and the rate of oil extraction D as a
fuzzy number as well as we we analyze fuzzy func-
tions J(C;), i = 1,2,---, with a random variable

v.
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