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1 Introduction

It is natural to consider expectation criteria in stochastic decision problems. In particular, both
discounted expected value of total reward and average value per stage are well studied criteria
in Markov decision processes.

However, in some situation such as in economy of lower growth rate, growth of economy is in
itself a preferable criterion to total amount of production such as the gross national production.
How can we measure the growth of decision process? We take an order that sequence of earned
rewards is nondecreasing in stage direction.

In this paper we consider a probability criterion that the reward is nondecreasing in time—
an order probability—. We maximize the order probability on finite-horizon controlled Markov
chains. We show that the policy class for maximization depends upon reward function’s de-
pendence on today’s state, today’s decision and tomorrow’s state.

In Section 2, we formulate an optimization problem with order probability criterion on finite-
stage controlled Markov chains. Section 3 derives a recursive equation for decision process where
reward function is independent of today’s decision. Section 4 considers process with reward
function of today’s state, today’s decision and tomorrow’s state. It is shown that a recursive
relation is derived through imbedding method by expanding the original state space.

2 Decision Process with Order Probability
Throughout the paper, the following data is given :

N > 2 is an integer; the total number of stages

X = {s1, S2,.-..,8:} is a finite state space

U = {a, ag, ... ,ax} is a finite action space

rn : XxU — R! is an n-th reward function (0<n < N-1)

k:X — R! is a terminal function

p={p(‘|,-)} is a Markov transition law
: plylz,u) >0 V(z,u,y) € XxUxX, Zp(y|x,u) =1 VY(z,u) € XxU

yeX )

y ~ p( - |z,u) denotes that next state y conditioned on state = and action u
appears with probability p(y|z, u).
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Let an N-stage controlled Markov chain {(X,, U,)} on finite state space X and finite decision
space U be under a Markov transition law p. We maximize the order probability that the reward
(random variable) will appear in ascent order

ro(Xo, Up) < m1(X1,U1) < -+ £ rv_1(Xnv-1, Un-1) < k(XnN).

The problem is to how to find an optimal policy which maximizes the order probability
P(ro <r <--- <ry_1 < k). We focus our attention on policy class where the optimization
should be taken.

The order probability

P(ro(Xo,Up) < (X1, Uh) £+ < rn—1(Xv-1,Un-1) < k(Xw)) (1)

depends not only upon initial state but also upon when, where and what the decision maker
will choose. We maximize the order probability in Markov class :
Maximize Pg(ro <73 <---<rn-1<kn)
Po(z subject to (i)n Xn+1 ~p(: | Zn,
o(o) A (“)n +1~ (| Tn, Un) l<n<N
(ii)n un €U

Here P is the (discrete) probability measure on the product space X N induced from the

T

transition law p, a Markov policy m = {m,m1,..., *ny—1} € II, and an initial state z, € X.
Thus the probability is expressed by the partial multiple summation :

Pr(ro<---<k) = ZZ : Z (21|20, uo)P(22|T1,u1) - - - (TN |TN-1, UN-1)

(131,2-'2,--- )xN)E(*)

where the domain (*) in which the partial multiple summation is taken denotes the set of all
(z1,22,-.. ,2n) € X x X x -+ x X satisfying

To(Zo, o) < T1(ZT1,u1) < -+ L rn-1(ZN-1,un-1) < r(zN).

Here we note that the sequence of intermediate decisions {up, 41, ---, uy—1} is determined
through the Markov policy 7w = {mo, ..., n—1} as follows :

Uy = 7"0(330), uy = 7f1(-'131), ceny UN1 = 7TN—1(9JN—1)-
Thus the order probability control problem is written as follows :

Maximize PI(ro<---<k)

0

P
(o) subject to (i)n, (ii)s 0 <N < N-1.

We call this problem the order problem. Let vo(zo) denote the mazimum wvalue of problem
Po(.’Eo) :

'Uo(.’Bo) = I}r/IeaIIXP:(TOSSk) xo € X. (2)

0
Then our problem is to find an optimal policy 7* in Markov class IT :

’Uo((Bo) = P;:(T()SSIC) VfL‘oGX. . (3)
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3 Subproblems

In this section we derive a recursive equation for process Po(zo). Let m = {7, Tny1,-- -, TN_1}
be a Markov policy for subprocess from n-th stage on. We denote by II(n) the set of all such
Markov policies.

Now let us take n (0 < n < N—1), z, € X and a policy 7 € TI(n). We consider the order
probability

Pl(rn<mau < <k)
= P:n('rn(Xm Un) S ’rn+1(Xn+1, Un+1) S o S TN—I(XN—I, UN—I) .<_ k(XN) )

for the process which starts at state z, € X and is governed by 7 € II(n). Formally we set
P..(k(Xn)) =1
Then we have the recursive relation:

Lemma 3.1 For n < N—2 we have

Pl(ra<rppn<--<k) = ZP:,:+1(Tn+1 < -+ S k)P(Tpt1]Tn, Un) 4)
b % 1 Tppt € X Ta(Zn, Un) < Tnt1(Tns, Uns1)
where ' = {Tni1,- - ,TN=1}, Um = Tm(Zm) Mm=n,n+1.
Further for m = {wn_1} we have
Pf;’-‘rN—1(7‘N"1 S k) = ZPEN(k)p(xNImN—l, uN—l) ) (5)
— % : zy€X;rya(eno1,uv-1) S k(zn)

where uy_; = Tn-1(Tn-1)-

We see that Eq. (5) states

P:N_I(TN—l < k) = ZP(Z‘leN—huN—l)

Now we consider the family of subproblems:
maximize PJ (1, <7ty <o <TN1 S k)
Pn(zn bject t 1)m Xm+1 ~ P | Tm, Um
(zn) subject to (i) +1~ (| ZTm, Um) n<m<N
(ii)m um €U

where 0 < n < N—1, z, € X. Let v,(z,) denote the maximum value of problem P, (z,) :

Va(Zn) = Max PI(r,<---<k) z,€X. (6)
n€ll(n) "
where we set
’UN(.'I)N) =1 z,€X. | (7)

Then we have the recursive equation:
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Theorem 3.1
on(z) =1 zeX
on-(z) = Max} on(y)plyle,u) zeX 8)
= *x : yeX;ry(z,u) < k)
'Un(z) = I}:Ieal-sz*:vn+l(y)p(y,xiu) $€X, n=N—27"' 7110- (9)
= *x : yEX;m(z,u) <r(y)
where Ty_y,TN_g,--- , 71, Ty are calculated backward ; the first n_,(z) is a mazimizer for (8)
and the subsequent 7}, (x) is a mazimizer for (9). Further, r_,,"N_q,--. Tt are successively
defined through Ty _,, Th_g9y--- , T} :

ri(z) ==ra(z, 7 (z)) n=N-1,N-2,...,1. (10)

3.1 Decision-free Reward System

Now we consider the special case where the reward function r : XxU — R! is independent of
decision variable n, u :
r(z,u) = r(z).

Thus the order probability is
Pr(ro<r <---<k) = PL(r(Xo) <r(Xy) <--- < r(Xn_a) < k(XN)). (11)
Then we have simplified results.

Corollary 3.1 For n < N—2 we have

Pr(rn<tapn <2 <k) = Y PI (tnpr <+ < E)p(Tnt|Tny un) (12)
< *x 1 Tpp € X;r(z,) < 7(Tata)
where up, = o (zn), ™ = {Tpt1,...,7TN-1}
Further for m = {nn_1} we have
P:N_I(TN—l S k) = ZPmn(k)p(lexN—ljuN—l) (13)
= x : zy€X;r(zn_1) < k(zy)

where uy—_1 = Tn_1(TN-1)-

Corollary 3.2

on(z) =1 zeX
un-1(z) = Max 3 on(y)pylz,u) zeX
¥ yeX
ir(z)<k(y)
va(z) = l}:[eal.jx Z vr1(¥)p(ylz,u) z€X, n=N-2,.-.,0. (14)
yeX

ir(@)<r(y)
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4 Reward Functions Depend on Tomorrow

In this section we treat the reward function which depends not only today but also on tomorrow.
We consider both evaluation problem of order probability and optimization problem.

4.1 Evaluation

First we consider a recursive evaluation of order probability. Now let a sequence of reward
functions ;
rm:XxX >R 0<n<N-1), k:X-—>R

be given. We note that the reward functions depend on next state.
Evaluate P, (ro<r1 <:--<rn-15k)
under (i), Xpy1~p(-|lz,) n=0,...,N-1
Thus we evaluate the order probability
v9(Zo) = Poo(ro <11 <+ <rn_1 LK) - (15)

under the Markov chain {X,}Y with transition probability law p = {p(-|)}.

Let us consider the familiy of subproblems {P,(Zn, Zn+1)}:
Evaluate Py, .., (Th <7Tnp1 <o <rva1 LK)
under (i)m Xm41 ~p(:ltm) m=n+1,... ,N-1

(Zn, Tn+1) c XxX, n=0,...,N-1.
Here we note that the evaluated order probability is the conditional probability :
Prroni(Tn STap1 < -o- Srve1 < k)
= P(ra(Xn, Xnt1) < Tnt1(Xnt1, Xng2) < - -- < v-1(Xnv-1, Xn) < k(XN)
| (X, Xnt1) = (Tn; Tnt1) )

= Z Z Tt Ep(xn+2|$n+1)p(mn+3|zn+2) o plzN|TN-1,UN-1)

* 5 Tn42y--- TN

“— * rn(mn’ $n+1) S Tn+1(zn+l, $n+2) S T S TN—I(-'DN—-I;Q:N) S k(xN)

Po(zo)

P, (.’E.,,, zn+1)

Let w,(Zn, Tny1) denote the probability of Pp(Tn, Tn+1), where
wN(:vN) = 1.

Then we have the recursive equation

Lemma 4.1

wy(z) = 1 zeX

1 if rn-1(z,y) < k(y)
alz,y) = ,¥) € XxX
wn-1(2,Y) { 0 otherwise (2,9)

wa(z,y) = Y wnp1(y,2)p(2ly) (z,y) € XxX, 0<n<N-1  (16)

— % : zZ€X; rn(:v,y) < 7'n+1(y, z)
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The desired probability (15) is given by

vo(To) = Zwo(mo,xl)ll’(%l%)

z1€X
4.2 Optimization
Second we consider a recursive optimization of order probability. Let reward functions
Tn: XXUxX -+ R 0<n<N-1), k:X-R
be dependent on well next state as current decision. We optimize the order probability
Poo(ro < <+ <rn1 < k) (17)

under the controlled Markov chain {(X,,U,)} with transition probability law p = {p(-|-,-)}.
The problem is which class we optimize in and how we can find an optimal policy. The preceding
discussion on evaluation enables us to choose an policy class where any policy is a sequence of
decision functions :

' Yo : XXA, =>U 2<n<N-1.

Let us introduce the sequence of yesterday (last) reward sets {A,(z,)} to current state z, :

Ao(20) < {20 Ao = —o0}
An(zn) =A"- {An An = rn—l(xn—la Up—1, xn) }

(xn—h un—l) € XxU
Further we define yesterday (last) reward set

z,€X, n=1,...,N.
Aﬁ:zngAﬂ(z)

(18)

and the sequence of expanded state spaces {Y,} :
Yn = {yn = (Zn, M) |Zn € X, M € Ap(z,)} n=0,...,N.
Let us define the corresponding random variable K,, by

£ X

Ao
Ku é 7'"...1(X _1,Un_1,Xn) n= 1, NN ,N.
which takes values in A,,.

Now we introduce a new controlled Markov chain on the expanded state spaces {Y,}}.
Here the state variables {(X,;A,)} behave such that the first component {Xa} obeys the
original Markov transition law p and the second {A } follows the stochastic dynamics An+1 =
Tn(Tn,Un, Xny1). When the decision-maker chooses a decision u,(€ U) on (zn; \,)(€ Y,) at
n-th stage, the next state random variable (X, ,;; n+1) will take (Z,41; An+1) With probability
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P(Trs1|Tn, Un) at (n+1)-st stage, where Apy1 = Tn(Zny Un, Tny1). Thus this is expressed by a
coupled dynamics (i),, (i), 0<n < N-L

Thus we maximize the order probability over the new controlled chain on expanded state
spaces as follows :

maximize PJ (A <ro<r < <STNa1 S k)

Po(zo; o) subject to ()a Xns1 ~ P( | Tn,Un)
(l); K""‘l = rﬂ(zmumxn+l) 0<n< N-1
(ii)a un €U
where A\g = —00.

We imbed Po(zo; Xo) into the family of subproblems {Pn(zn; M)}

maximize PJ (A <7 <Tp1 <o STV S k)

Pn(Zn; An) subject t0  ()m Xmt1 ~ P(: | Zm, Um)
(). Amir = Tm(Tmy Umy Xmy1) n<mSN-1
(i)m um €U

where z,, € X, \, € Ap(z,) and 0 < n < N-1.
Let v,(Zn, An) denote the maximum value of P,.(Zn; An), where we set

’UN(IBN, AN) = PzN()\N S ’C(.’IIN) )

Then we have the recursive equation:

Theorem 4.1
11 if A<k
un(z; ) = FAs ] (@) z € X, X € An(x)
0 otherwise
on—1(z;A) = lr‘llea[}chN(y; rv-1(z,u,9) )p(ylz,u) T E€X, A€ Ana(z) (19)

— x : yeX;A<ryna(z,u,y)
va(z; ) = lﬁachvnﬂ(y; ra(z, u,y) )p(ylz,u) z€X, AEA(z) n=N=2,-- ,0 (20)
:-) * : YEX; A< rp(z,u,y)
where Ty_, Th_g,- - »7}, g are calculated backward ; the first w_y(z; A) s @ mazimizer for
(19) and the subsequent m%(z; X) is a mazimizer for (20).
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