<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>安次重一、岩下登志也: エリプティカル分布下におけるホッテリングのT^2統計の非null分布 (非null統計理論)</td>
</tr>
<tr>
<td>著者</td>
<td>井上達紀、岩下登志也</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2003), 1308: 1-15</td>
</tr>
<tr>
<td>発行日</td>
<td>2003-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42842</td>
</tr>
<tr>
<td>型</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>版本</td>
<td>publisher</td>
</tr>
<tr>
<td>サイト</td>
<td>京都大学大学院学術情報リポジトリ (Kyoto University Research Information Repository)</td>
</tr>
</tbody>
</table>
An Asymptotic Nonnull Distribution of Hotelling's T^2-statistic
under Elliptical Distributions

早稲田大学・アジア太平洋研究科 井上 達紀 (Tatsuki Inoue)
Graduate School of Asia-Pacific Study, Waseda University

明星大学・一般教育 自然科学 岩下 登志也 (Toshiya Iwashita)
Natural Sciences Division, General Education, Meisei University

要旨
本稿では確率母集団上での Hotelling の T^2 統計量の局所対立仮説の元での統計量の分布の $O(N^{-2})$
の漸近展開式を導く。この導出には、Lévy's の反転公式を利用した標本平均ベクトルと Wishart 行列
の同時特性関数に対する漸近有効 (valid) な岩下・瀬尾 (2001) の方法を使用する。

1. はじめに

X を p 次元確率行列とする。X の密度関数を $f(x; \mu, \Lambda)$ で表し、期待値 $E[X] = \mu$ 共分散行列
Cov[X] = $\gamma \Lambda$ とする。ここで、$\mu \in \mathbb{R}^p$, Λ は $p \times p$ の正定値行列であり、$\gamma > 0$ は定数である。

確率密度関数 $f(x; \mu, \Lambda)$ が正規分布の場合、すなわち

$$f(x; \mu, \Lambda) = (2\pi)^{-\frac{p}{2}} |\gamma \Lambda|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)'(\gamma \Lambda)^{-1}(x - \mu) \right\},$$

である場合 ($\gamma = 1$), 仮説検定

帰無仮説 $H_0: \mu = \mu_0$ 対立仮説 $K: \mu \neq \mu_0$。

において、Hotelling(1931) は X からの無作為標本 X_1, \ldots, X_N からなる標本平均ベクトル $\overline{X} = N^{-1} \sum_{k=1}^{N} X_k$ と標本共分散行列 $S = (N - 1)^{-1} \sum_{k=1}^{N} (X_k - \overline{X})(X_k - \overline{X})'$ から構成される検定統計量

$$T^2 = N (\overline{X} - \mu_0)' S^{-1} (\overline{X} - \mu_0),$$

に対する正確な分布を与えている。
近似理論においては、正規・非正規のもので数々の研究があり、正規性のもとでは、伊藤 (1956)、塩谷 (1956, 1971) によって、T^2 の近似分布が与えられている。また、確率密度関数 $f(x; \mu, \Lambda)$ が非負関数 g、正規化定数 K_p を用いて以下のような形式

$$f(x; \mu, \Lambda) = K_p|\Lambda|^{-1/2}g((x - \mu)'\Lambda^{-1}(x - \mu)),$$ (1.1)

で表される場合に、岩下 (1995) は、帰無仮説と局所対立仮説 $K_1: \mu = \mu_0 + N^{-1/2}r, \in \mathbb{R}^p - \{0\}$ のもとでの T^2 の近似展開を得ている。より一般的な分布では、狩野 (1995), 藤原 (1997) がそれぞれ独立な方法で Edgeworth 型の展開による T^2 の近似展開式を求めるている。

近年では、岩下・瀬尾 (2001) が Lévy's の反転公式を利用した高次近似展開公式を示している。この方法は確率列列 $Z_i: m_i \times n_i = \left(z_{i,j}^{(i)}\right), i = 1, 2$ に対して、

$$T_i = T_i(X_1, \ldots, X_N) = E[T_i(X_1, \ldots, X_N)] + \frac{1}{\sqrt{N}}Z_i,$$ (1.2)

であるような統計量 T_1, T_2 をパラメータとするスカラ関数 $G(T_1, T_2)$ に対する近似展開式で、T_1, T_2 の独立性は仮定していない。彼らはこの方法により、楕円母集団のもとで、帰無仮説 H_0 が真となる場合の T^2 統計量の $O(N^{-2})$ までの近似展開式を求めている。

本稿の目的は、岩下・瀬尾 (2001) の方法を用いて、$f(x; \mu, \Lambda)$ が、(1.1) 式のように表される場合の T^2 統計量の局所対立仮説 K_1 の元での $O(N^{-2})$ までの近似展開式を与えることである.

2. 局所対立仮説のもとでの T^2 統計量の近似展開

X, X_1, \ldots, X_N を式 (1.1) を密度関数とする楕円母集団からの独立同一な分布とする。この場合、X の特性関数は、$\psi(t) = \exp\{it'\mu\}\Psi(t'\Lambda t)$ と表され、平均ベクトルと共分散行列が存在するならば、それぞれ $E[X] = \mu, Cov[X] = \gamma\Lambda \equiv \Sigma$ と書ける。ここで $i = \sqrt{-1}, t \in \mathbb{R}^p$. また、$\gamma = -2\Psi'(0)$ である (例えば Kelker (1970) を参照)。

いま、ベクトル $U = \sqrt{N}\Sigma^{-1/2}(X - \mu)$ とし、$W = N^{-1}q_{k=1}^{N}(X_k - \mu)(X_k - \mu)'$ を用いて、行列 $V = \sqrt{N}\Sigma^{-1/2}(W - \Sigma)\Sigma^{-1/2}$ とおく。また、$E[|Y|^2] < \infty$ と仮定する ($Y = X - \mu$)。このとき、U と V の同時特性関数、および、U の周辺特性関数は、それぞれ以下のように表すことができる。

$$\Phi_1(\xi, \Theta) = E[\exp\{i\xi'U + itr(\Theta V)\}]$$

$$= e^{-itr(-i\sqrt{N}\Theta)}E\left[\exp\{iN^{-1/2}[\xi'\Sigma^{-1/2}Y + tr(\Theta \Sigma^{-1/2}YY'\Sigma^{-1/2})]\}\right]^N$$

$$= e^{-itr(-i\sqrt{N}\Theta)}\left[\sum_{k=0}^{\infty}\frac{1}{k!}\left(\frac{i}{\sqrt{N}}\right)^k E\left[\left[\xi'\Sigma^{-1/2}Y + tr(\Theta \Sigma^{-1/2}YY'\Sigma^{-1/2})\right]^k\right]\right]^N$$
ここで、etr(·) = exp{tr(·)}, ξ = (ξ₁, ξ₂, ..., ξₚ) ∈ Rₚ, また、Θ = (½(1 + δₐβ)θₐβ) は対称行列であり、
δₐβ は Kronecker のデルタである. また、式中の係数は以下のようである.

\[f₁ = \frac{a³ - 3ab + 3c}{3}, \]
\[f₂ = \frac{1}{36}(2a⁶ - 12a⁴b - 9a⁴ + 12a³c + 18a²b² + 36a²b - 36abc - 36ac - 18b² + 18c² + 36d), \]
\[f₃ = \frac{1}{1620}(10a⁹ - 90a⁷b - 135a⁷ + 90a⁶c + 270a⁵b² + 945a⁵b + 324a⁵ - 540a⁴bc - 945a⁴c - 270a³b³ - 1890a³b² - 1620a³b + 270a³c² + 540a³d + 810a²b²c + 3240a²bc + 1620a²c + 810ab³ + 1620ab² - 810abc² - 1620abd - 1620ac² - 1620ad - 810b²c - 1620bc + 270c³ + 1620cd + 1620e), \]
\[f₄ = \frac{1}{8}\left[\frac{4Ψ''(0)}{γ^2} - 1\right](ξ'ξ)^2, \]
\[f₅ = \frac{1}{24}\left[\frac{6Ψ''(0)}{γ^2} + \frac{4Ψ(3)(0)}{γ^3} - 1\right](ξ'ξ)^3 + \frac{1}{128}\left[\frac{4Ψ''(0)}{γ^2} - 1\right]^2(ξ'ξ)^4, \]
\[a = \text{tr}Θ, \quad b = -\frac{1}{2}\left[ξ'ξ + \frac{4Ψ''(0)}{γ^2} Z(2)(Θ)\right], \]
\[c = -\frac{1}{6}\left[\frac{12Ψ'(0)}{γ^2}[2ξ'Θξ + (ξ'ξ)\text{tr}Θ] - \frac{8Ψ'(0)}{γ³} Z(3)(Θ)\right], \]
\[d = \frac{1}{24}\left[\frac{12Ψ''(0)}{γ^2}(ξ'ξ)^2 \right. \]
\[- \frac{48Ψ(3)(0)}{γ³}[8ξ'Θξ + 4ξ'Θξ(\text{tr}Θ) + 2(ξ'ξ)\text{tr}Θ² + (ξ'ξ)(\text{tr}Θ)^2] \]
\[+ \frac{16Ψ(4)(0)}{γ⁴} Z(4)(Θ)\right], \]
\[e = \frac{1}{120}i\left[\frac{120Ψ(3)(0)}{γ³}[4(ξ'ξ)(ξ'Θξ) + (ξ'ξ)^2\text{tr}Θ] \right. \]
\[+ \frac{160Ψ(4)(0)}{γ⁴}\left[48ξ'Θ³ξ + 8(ξ'ξ)\text{tr}Θ³ + (ξ'ξ)(\text{tr}Θ)^³ + 24(ξ'Θξ)(\text{tr}Θ)^² + 12(ξ'Θξ)\text{tr}Θ² + 6(ξ'ξ)\text{tr}Θ²\text{tr}Θ + 6(ξ'Θξ)(\text{tr}Θ)^² \right] \]
\[+ \frac{32Ψ(5)(0)}{γ⁵} Z(5)(Θ)\right]. \]
局所対立仮説 \(K_i : \mu = \mu_0 + N^{-\frac{1}{2}}\epsilon, \epsilon \in \mathbb{R}^p - \{0\} \) のもとでは、Hotelling の \(T^2 \) 統計量は次のように書き表される。

\[
T^2 = N(\bar{X} - \mu + \mu - \mu_0)'S^{-1}(\bar{X} - \mu + \mu - \mu_0) \\
= \left(1 - \frac{1}{N}\right)(U + \Sigma^{-\frac{1}{2}}\epsilon)'\left(I_p + \frac{1}{\sqrt{N}}V - \frac{1}{N}UU'\right)^{-1}(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
equiv T^2_\epsilon.
\]

この \(T^2_\epsilon \) を展開すると,

\[
T^2_\epsilon = (U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
- \frac{1}{\sqrt{N}}(U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
+ \frac{1}{N}(U + \Sigma^{-\frac{1}{2}}\epsilon)'B(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
- \frac{1}{N\sqrt{N}}(U + \Sigma^{-\frac{1}{2}}\epsilon)'C(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
+ \frac{1}{N^2}(U + \Sigma^{-\frac{1}{2}}\epsilon)'D(U + \Sigma^{-\frac{1}{2}}\epsilon) + o_p(N^{-2}),
\]

を得る。ただし、\(A, B, C, D \) はそれぞれ以下のようである。

\[
A = V, \quad B = V^2 - I_p + UU', \quad C = V^3 - V + VUU' + UU'V, \\
D = V^4 - V^2UU' + UU'V^2 + VUU'V + (UU')^2 - (UU').
\]

したがって、その特性関数は以下のように書き表される。

\[
\exp(itT^2_\epsilon) = \exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \\
\times \left[1 + (it) \left[- \frac{1}{\sqrt{N}}(U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
+ \frac{1}{N}(U + \Sigma^{-\frac{1}{2}}\epsilon)'B(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
- \frac{1}{N\sqrt{N}}(U + \Sigma^{-\frac{1}{2}}\epsilon)'C(U + \Sigma^{-\frac{1}{2}}\epsilon) \\
+ \frac{1}{N^2}(U + \Sigma^{-\frac{1}{2}}\epsilon)'D(U + \Sigma^{-\frac{1}{2}}\epsilon)\right] \\
+ \frac{(it)^2}{2} \left[\frac{1}{N}((U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon))^2 \\
- \frac{2}{N\sqrt{N}}((U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon)) \\
\times ((U + \Sigma^{-\frac{1}{2}}\epsilon)'B(U + \Sigma^{-\frac{1}{2}}\epsilon)) \\
+ \frac{1}{N^2}((U + \Sigma^{-\frac{1}{2}}\epsilon)'B(U + \Sigma^{-\frac{1}{2}}\epsilon))^2 \right]
\]
\[+ 2((U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon)) \times ((U + \Sigma^{-\frac{1}{2}}\epsilon)'C(U + \Sigma^{-\frac{1}{2}}\epsilon))] \]
\[+ \frac{(it)^3}{6} \left[- \frac{1}{N\sqrt{N}}((U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon))^3 \right. \]
\[+ \frac{3}{N^2}((U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon))^2 \times ((U + \Sigma^{-\frac{1}{2}}\epsilon)'B(U + \Sigma^{-\frac{1}{2}}\epsilon))] \]
\[+ \frac{(it)^4}{24} \cdot \frac{1}{N^2}((U + \Sigma^{-\frac{1}{2}}\epsilon)'A(U + \Sigma^{-\frac{1}{2}}\epsilon))^4 + o_p(N^{-2}) \]
\[\equiv \exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \]
\[+ \sum_{j=1}^{4} \sum_{r} N^{-\frac{1}{2}j} q_{r}^{(j)} \exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \]
\[\times L_{r}^{(j)}(U + \Sigma^{-\frac{1}{2}}\epsilon)M_{r}^{(j)}(V). \] (2.5)

なお、式中 \(L_{r}^{(j)}(U + \Sigma^{-\frac{1}{2}}\epsilon) \) と \(M_{r}^{(j)}(V) \) は、要素 \(U + \Sigma^{-\frac{1}{2}}\epsilon \) と \(V \) からなる単項式である。この \(T_{2}^{2} \) の特性能関数を具体的に計算するには、岩下・瀬尾 (2001) の次の結果を利用する。

系 2.1. 確率行列 \(X : m_1 \times n_1 = (x_{\alpha\beta}) \), \(Y : m_2 \times m_2 = (y_{\alpha\beta}) = Y' \) に対して、\(f(X, Y) \) を \(R^{m_1n_1} \times R^{(1/2)m_2(m_2+1)} \) 上で連続で、かつ積分可能な関数とする。また、関数

\[H(X, Y) = \ell(X) \cdot \prod_{\alpha \leq \beta}^{m_2} y_{\alpha\beta}^{k_{\alpha\beta}} \equiv \ell(X)M(Y), \]

\(\ell(X) \) は \(X \) をパラメータとする連続スカラ関数であり、

\[\int_{R^{m_1n_1}} \int_{R^{(1/2)m_2(m_2+1)}} |H(X, Y)f(X, Y)|(dY)(dX) < \infty, \]

であると仮定する。

このとき、積分

\[I = \int_{R^{m_1n_1}} \int_{R^{(1/2)m_2(m_2+1)}} H(X, Y)f(X, Y)(dY)(dX) \]
\[= \int_{R^{m_1n_1}} \int_{R^{(1/2)m_2(m_2+1)}} \ell(X)M(Y)f(X, Y)(dY)(dX), \] (2.6)

は次のように書き表すことができる。

\[I = \int_{R^{m_1n_1}} \left\{ \ell(X)M((-i)\partial)\varphi(X, \Theta) \right|_{\Theta=0} \right\}(dX) \]
\[= \int_{R^{m_1n_1}} \left\{ H(X, (-i)\partial)\varphi(X, \Theta) \right|_{\Theta=0} \right\}(dX). \] (2.7)
\[\varphi(X, \Theta) = \left(\frac{1}{2\pi} \right)^{m_1n_1} \lim_{h_{11}, \ldots, h_{1n_1}} \lim_{h_{21}, \ldots, h_{2m_2}} \int_{\mathfrak{D}_U} \left\{ \prod_{\alpha=1}^{m_1} \prod_{\beta=1}^{n_1} \left(1 - \exp(-i\xi_{\alpha\beta} h_{\alpha\beta}) \right) \exp(-i\xi_{\alpha\beta} x_{\alpha\beta}) \right\} \phi(-, \Theta)(d\Xi), \] (2.8)

\[\phi(\Xi, \Theta) = \int_{R^{m_1n_1}} \int_{R^{(1/2)m_2(m_2+1)}} e^{i\text{tr}(\Xi'X) + i\text{tr}(\Theta Y)} f(X, Y)(dY)(dX). \] (2.9)

\(\mathfrak{D}_U = [-U, U] \times \cdots \times [-U, U] \subset R^{m_1n_1}, \partial : m_2 \times m_2 = (\partial/\partial \theta_{\alpha\beta}) \) であり、\(\Theta : m_2 \times m_2 = (\frac{1}{2}(1+\delta_{\alpha\beta}) \theta_{\alpha\beta}) = \Theta', \delta_{\alpha\beta} \) は Kronecker のデルタである。また、\(\Xi : m_1 \times n_1 = (\xi_{\alpha\beta}) \) である。

もし \(-\infty < \theta_{\alpha\beta} < \infty, (\alpha = 1, \ldots, m_2, \beta = 1, \ldots n_2) \) に対して、\(\int_{R^{m_1n_1}} |\phi(\Xi, \Theta)|(d\Xi) < \infty \) であるならば、

\[\varphi(X, \Theta) = \left(\frac{1}{2\pi} \right)^{m_1n_1} \int_{R^{m_1n_1}} \exp\{-i\text{tr}(\Xi'X)\} \phi(\Xi, \Theta)(d\Xi), \] (2.10)

かつ、

\[I_2 = \int_{R^{m_1n_1}} \left\{ \left(\frac{1}{2\pi} \right)^{m_1n_1} H(X, (-i)\partial) \right. \right. \int_{R^{m_1n_1}} \exp\{-i\text{tr}(\Xi'X)\} \phi(\Xi, \Theta)(d\Xi) \bigg|_{\Theta=0} \left. \right\} (dX), \] (2.11)

である。

次に、(2.1) 式と (2.2) 式で定義される \(\Phi_1(\xi, \Theta) \) と \(\Phi_2(\xi) \) を使って

\[\varphi_1(u, \Theta) = \left(\frac{1}{2\pi} \right)^p \int_{\Re^p} \exp(-i\xi'u) \Phi_1(\xi, \Theta)(d\xi), \] (2.12)

\[\varphi_2(u) = \left(\frac{1}{2\pi} \right)^p \int_{\Re^p} \exp(-i\xi'u) \Phi_2(\xi)(d\xi), \] (2.13)

とすると、系 2.1 を使うことによって以下の式を得る。

\[\zeta(t) \equiv \mathbb{E}[\exp(itT_2)] \]

\[= \mathbb{E} \left[\exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \right. \right. \]

\[+ \sum_{j=1}^{4} \sum_r N^{-\frac{1}{2}j} q_r^{(j)} \exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \]

\[\times L_r^{(j)}(U + \Sigma^{-\frac{1}{2}}\epsilon) M_r^{(j)}(V) \bigg] + o(N^{-2}) \]

\[= \int_{\Re^p} \exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \varphi_2(u)(du) \]

\[+ \int_{\Re^p} \left[\sum_{j=1}^{4} \sum_r N^{-\frac{1}{2}j} q_r^{(j)} \exp(it(U + \Sigma^{-\frac{1}{2}}\epsilon)'(U + \Sigma^{-\frac{1}{2}}\epsilon)) \right. \]
\[
\times L_D^{(j)}(U + \Sigma^{-\frac{1}{2}} \epsilon)M_D^{(j)}((-i)\partial)e_1(u, \Theta) \bigg|_{\Theta=0}
\]

\[
= C_p(t; \omega^2) + \frac{1}{N} \sum_{j=0}^{4} a_j C_{p+2j}(t; \omega^2)
+ \frac{1}{N^2} \sum_{j=0}^{8} b_j C_{p+2j}(t; \omega^2) + o(N^{-2}),
\]

(2.14)

ここで、\(C_k(t; \omega^2) \) は、自由度 \(k \) の非心パラメータ \(\omega^2 = \epsilon' \Sigma^{-1} \epsilon \) の非心カイニ乗分布の特性関数であり、各係数は以下のようである。

\[
a_0 = \frac{1}{8} \kappa \left(\omega^4 - 2 \omega (p + 2) \right) - \frac{p^2}{4},
\]

\[
a_1 = \frac{1}{4} \kappa \left(\omega^4 - 4 \omega^2 (p + 2) (p + 2) + \frac{1}{2} (\omega^2 - p) \right),
\]

\[
a_2 = \frac{1}{8} \kappa \left(-9 \omega^4 + 12 (p + 2) \omega^2 - 2 (p + 2) \right)
+ \frac{1}{4} \left(\omega^4 - 2 (p + 3) \omega^2 + p (p + 2) \right),
\]

\[
a_3 = \kappa \left(\omega^4 - \frac{1}{2} (p + 2) \omega^2 \right) + \frac{1}{2} (-\omega^2 + p + 2) \omega^2,
\quad a_4 = -\frac{1}{4} (\kappa - 1) \omega^4,
\]

\[
b_0 = \frac{1}{128} \kappa^2 \left(\omega^8 - 16 \omega^6 - 4 p (p + 2) \omega^4 + 32 (p + 2) (p + 4) \omega^2
+ 4 p (p + 2) ((p - 6) p - 32) \right)
+ \frac{1}{32} \kappa \left(-2 \omega^6 - p^2 \omega^4 + 12 (p + 2) (p + 4) \omega^2
+ 2 p (p + 2) ((p - 8) p - 28) \right)
+ \frac{1}{48} \beta \left(\omega^6 - 6 (p + 2) (p + 4) \omega^2 + 8 p (p + 2) (p + 4) \right)
+ \frac{1}{96} \beta \left(\omega^6 - 8 (p + 2) (p + 4) \omega^2 + 8 p (p + 2) (p + 4) \right)
+ \frac{1}{48} \beta \left(\omega^6 - 12 (p + 2) (p + 4) \omega^2 + 8 p (p + 2) (p + 4) \right)
+ \frac{1}{32} \kappa \left(\omega^8 - 2 (p - 16) \omega^6 + 8 (p + 2) ((p - 2) p - 16) \omega^2
- 4 p (p^2 (p + 4) - 8) \right)
+ \frac{1}{16} \kappa \left(-8 \omega^6 - ((p - 23) p - 100) \omega^4 + 4 (p - 8) (p + 2) (p + 3) \omega^2
- 2 p (p + 2) ((p - 1) p - 8) \right)
+ \frac{1}{16} \beta \left(3 \omega^6 - 8 (p + 4) \omega^4 + 6 (p + 2) (p + 4) \omega^2 + \frac{1}{8} (p^2 - 4) (p - \omega^2) \right),
\]

\[
b_1 = \frac{1}{64} \kappa^2 \left(-7 \omega^8 - 4 (p - 16) \omega^6 + 8 (p^2 (7 p + 32) + 24) \omega^4
- 8 (p + 2) (p (7 p + 40) + 60) \omega^2 + 4 p (p + 2) ((p - 3) p + 32) + 44) \right)
+ \frac{1}{32} \kappa \left(\omega^8 - 2 (p - 18) \omega^6 + 2 (p (4 p - 19) - 96) \omega^4
- 8 (p + 2) (p (p + 3) + 10) \omega^2 + 4 p (p + 2) (5 p + 22) \right)
\]
\[
\begin{align*}
\frac{1}{16} \beta & \left(-5 \omega^6 - 4(p + 4) \omega^4 + 18(p + 2)(p + 4) \omega^2 - 8p(p + 2)(p + 4) \right) \\
\frac{1}{16} \kappa & \left(-5(p + 4) \omega^6 + (p(9p + 47) + 12) \omega^4 - \frac{19}{8} (p + 2)(p + 4) \omega^2 + \frac{1}{3} p(p + 2)(p + 4) \right) \\
\beta & \left(\frac{15 \omega^6}{8} - \frac{13}{4}(p + 4) \omega^4 + (p + 2)(p + 4) \omega^2 \right) \\
\frac{1}{8} \omega^2 & \left(-\omega^6 + (3p + 25) \omega^4 - (p + 4)(3p + 25) \omega^2 + (p + 2)(p + 4)(p + 6) \right),
\end{align*}
\]

\[
\begin{align*}
b_3 = & \frac{1}{32} \kappa^2 \left(-5 \omega^8 + 2(23p + 104) \omega^6 - 4(p(19p + 158) + 336) \omega^4 + 4(p + 2)(p(9p + 80) + 180) \omega^2 - 4p(p + 2)(p + 4)(p + 6) \right) \\
\frac{1}{16} \kappa & \left(-5(p + 6) \omega^6 + (p(9p + 47) + 12) \omega^4 - \frac{19}{8} (p + 2)(p + 4) \omega^2 + \frac{1}{3} p(p + 2)(p + 4) \right) \\
\beta & \left(\frac{15 \omega^6}{8} - \frac{13}{4}(p + 4) \omega^4 + (p + 2)(p + 4) \omega^2 \right) \\
\frac{1}{8} \omega^2 & \left(-\omega^6 + (3p + 25) \omega^4 - (p + 4)(3p + 25) \omega^2 + (p + 2)(p + 4)(p + 6) \right),
\end{align*}
\]

\[
\begin{align*}
b_4 = & \frac{1}{128} \kappa^2 \left(-109 \omega^8 - 40(9p + 50) \omega^6 + 4(p(79p + 758) + 1776) \omega^4 - 80(p + 2)(p + 4)(p + 6) \omega^2 + 4p(p + 2)(p + 4)(p + 6) \right) \\
\frac{1}{32} \kappa & \left(-12 \omega^8 + 2(25p + 101) \omega^6 - (p(59p + 378) + 560) \omega^4 + 12(p + 2)(p + 4)(2p + 5) \omega^2 - 2p(p + 2)(p + 4)(p + 6) \right) \\
\beta & \left(\frac{15 \omega^6}{8} - \frac{13}{4}(p + 4) \omega^4 + (p + 2)(p + 4) \omega^2 \right) \\
\frac{1}{32} \kappa & \left(\omega^8 - 4(p + 13) \omega^6 + 4(p(p + 29) + 97) \omega^4 - 4(p + 2)(p + 4)(p + 13) \omega^2 + p(p + 2)(p + 4)(p + 6) \right),
\end{align*}
\]

\[
\begin{align*}
b_5 = & \frac{1}{16} \kappa^2 \left(-19 \omega^8 + (37p + 218) \omega^6 - 18(p + 4)(p + 6) \omega^4 + 2(p + 2)(p + 4)(p + 6) \omega^2 \right) \\
\frac{1}{16} \kappa & \left(14 \omega^8 - (35p + 162) \omega^6 + 6(p + 4)(4p + 17) \omega^4 - 4(p + 2)(p + 4)(p + 6) \omega^2 \right) \\
\beta & \left((p + 4) \omega^4 - \frac{11 \omega^6}{8} \right) \\
\frac{1}{8} \omega^2 & \left(-\omega^6 + (3p + 25) \omega^4 - (p + 4)(3p + 25) \omega^2 + (p + 2)(p + 4)(p + 6) \right),
\end{align*}
\]

\[
\begin{align*}
b_6 = & \frac{1}{32} \kappa^2 \left(25 \omega^8 - 28(p + 6) \omega^6 + 6(p + 4)(p + 6) \omega^4 \right) \\
\frac{1}{32} \kappa & \left(-27 \omega^8 + 4(10p + 53) \omega^6 - 12(p + 4)(p + 6) \omega^4 \right) \\
\beta & \omega^6 + \frac{1}{48} \left(9 \omega^8 - 2(9p + 61) \omega^6 + 9(p + 4)(p + 6) \omega^4 \right),
\end{align*}
\]
\begin{equation}
\begin{align*}
b_7 &= \frac{1}{8} \kappa^2 \left(-2 \omega^2 + p + 6 \right) \omega^6 + \frac{1}{8} \kappa \left(3 \omega^2 - 2 (p + 6) \right) \omega^6 \\
&\quad + \frac{1}{8} \left(-\omega^2 + p + 6 \right) \omega^6, \\
b_8 &= \frac{1}{32} (\kappa - 1)^2 \omega^8.
\end{align*}
\end{equation}

したがって，\(T^2_e \) 統計量の渐近展开式は \(x > 0 \) に対して，

\[
\Pr[T^2_e < x] = G_p(x; \delta) + \frac{1}{N} \sum_{j=0}^{4} a_j G_{p+2j}(x; \delta) + \frac{1}{N^2} \sum_{j=0}^{8} a_j G_{p+2j}(x; \delta) + o(N^{-2}),
\]
となる。ここで，\(G_k(x; \delta) \) は，自由度 \(k \) 非心パラメータ \(\omega^2 = \epsilon' \Sigma^{-1} \epsilon \) の非心カイ二乗分布の分布関数である。

3. 数値実験

確率変数 \(X \) に対して \(\tau_0(x) = \Pr[X < x] \) をモンテカルロシミュレーションから得られた経験分布関数とし，\(\tau_i(x) \) \((i = 1, 2)\) を \(O(N^{-i}) \) の渐近展开式から得られた分布関数とする。ここでは二つの極円分布について実験し，そのパラメータを変化させる。

まず，以下のような確率密度関数をもつ混合正規分布を扱う。

\[
f(x; 0, I_p) = (1 - \epsilon) N_p(x|0, I_p) + \epsilon N_p(x|0, \sigma^2 I_p), (0 \leq \epsilon \leq 1)
\]

ここで，\(\epsilon \) は混合パラメータであり，\(\sigma^2 \) は混合分散である。また，\(N_p(x|\mu, \Sigma) \) は平均 \(\mu \)，共分散行列 \(\Sigma \) の \(p \) 次元の正規密度関数である。確率密度関数より特性パラメータは以下のようである。

\[
\kappa = \frac{1 + \epsilon (\sigma^4 - 1)}{(1 + \epsilon (\sigma^2 - 1))^2} - 1, \quad \beta = \frac{1 + \epsilon (\sigma^6 - 1)}{(1 + \epsilon (\sigma^2 - 1))^3} - 1.
\]

経験分布関数は区間 \([l, u] \) を 1000 個に分割し，10\(^7\) 個の \(T^2 \) 統計量をシミュレーションで求め，得られた統計量の各々の区間内に含まれる個数を数えることにより構成する。ここで \(l \) は，渐近展開式から得られた分布関数が十分小さい値，例えば 10\(^{-5}\) とすることになる近似値 \(\tau_2(l) \approx 10^{-5} \) であり，逆に \(u \) は \(\tau_2(u) \approx 1 - 10^{-5} \) を満たす近似値をあらかじめ数値的解法で得るものとする。混合分布の数値実験において変化させるパラメータは，標本数 \(N \)，次元数 \(p \)，非心パラメータ \(\omega^2 \) ，混合分散 \(\sigma^2 \) ，混合比 \(\epsilon \) であり，

\[
d_1 = \max_{l \leq x \leq u} |\tau_1(x) - \tau_0(x)|, \quad d_2 = \max_{l \leq x \leq u} |\tau_2(x) - \tau_0(x)| \leq 1 - d_2/d_1
\]

Table 1. は混合分布 (3.15) の近似での比較結果である。およそも本稿で得られた \(O(N^{-2}) \) の渐近式の方が \(O(N^{-1}) \) の渐近式の方より経験分布との絶対差は小さいく，近似が改善されているように思える。しかし，混合分散が極端に大きく，混合比が小さい場合は絶対差が逆転している。
Figure 1. 式 (3.15) 混合分布の元での漸近分布 τ2(縦) と 経験分布 τ0(太)

Figure 2. 式 (3.15) 混合分布の元での漸近分布 τ1(細) と 経験分布 τ0(太)

Figure 1. と Figure 2. は、条件 \((N, p, \omega^2, \sigma^2, \epsilon) = (11, 3, 1, 16, 0.2)\) の元での経験分布と 漸近分布をプロットした例であり、Figure 3. はその差をプロットしたものである。同条件で \(N = 60\) としたものが、Figure 4. である。

次に、確率密度関数は

\[
f(x; 0, I_p) = \frac{\Gamma\left(\frac{1}{2}\nu + \frac{1}{2}p\right)}{(\pi \nu)^{\frac{1}{2}p} \Gamma\left(\frac{1}{2}\nu\right)} \left(1 + \nu^{-1}x'x\right)^{-\frac{1}{2}(\nu+p)},
\]

であるような自由度 \(\nu\) の多変量 \(t\) 分布についても同様に数値実験をおこなう。この場合、

\[
k = \frac{2}{\nu - 4}, \quad \beta = \frac{2(3\nu - 10)}{(\nu - 4)(\nu - 6)},
\]

であり、パラメータ \(N, p, \omega^2\)、自由度 \(\nu\) を変化させる。

Table 2. は、Table 1. と同様、多変量 \(t\) 分布について絶対差の比を求めたものである。表中、自由度 \(\nu = 7\) の場合、(標本数が多くなれば若干解消されるものの) \(O(N^{-2})\) の漸近式は極端に悪い。これは、モーメント条件を満たしていないので、漸近展開そのものが有効でなく、このような結果になったと思われる。Figure 5. は、その一例として、条件 \((N, p, \omega^2, \nu) = (13, 4, 1, 7)\) の場合をプロットしたものであり、Figure 6. は、自由度 \(\nu = 13\) 以外は Figure 5. と同条件の場合をプロットしたものである。

また、Figure 7. と 8. は、それぞれ \(1 - d_2/d_1\) が Table 2. のなかで最小・最大となるものである。このように二つのタイプの楕円分布を パラメータを変化させ、数値実験をしたすべての場合で、\(O(N^{-2})\) の漸近式の方が \(O(N^{-1})\) の漸近式より経験分布への収束がはやい。
Figure 3: 混合分布：\((N, p, \omega^2, \sigma^2, \varepsilon) = (11, 3, 1, 16, 0.2)\)，\(\tau_2(x) - \tau_0(x)\)：细，\(\tau_1(x) - \tau_0(x)\)：太

Figure 4: 混合分布：\((N, p, \omega^2, \sigma^2, \varepsilon) = (60, 3, 1, 16, 0.2)\)，\(\tau_2(x) - \tau_0(x)\)：细，\(\tau_1(x) - \tau_0(x)\)：太

Figure 5: 多变量 \(t\) 分布：\((N, p, \omega^2, \nu) = (13, 4, 1, 7)\)，\(\tau_2(x) - \tau_0(x)\)：细，\(\tau_1(x) - \tau_0(x)\)：太

Figure 6: 多变量 \(t\) 分布：\((N, p, \omega^2, \nu) = (13, 4, 1, 13)\)，\(\tau_2(x) - \tau_0(x)\)：细，\(\tau_1(x) - \tau_0(x)\)：太

Figure 7: 多变量 \(t\) 分布：\((N, p, \omega^2, \nu) = (7, 2, 2, 7)\)，\(\tau_2(x) - \tau_0(x)\)：细，\(\tau_1(x) - \tau_0(x)\)：太

Figure 8: 多变量 \(t\) 分布：\((N, p, \omega^2, \nu) = (30, 4, 0, 9)\)，\(\tau_2(x) - \tau_0(x)\)：细，\(\tau_1(x) - \tau_0(x)\)：太
References

Table 1: 混合分布 (3.15) の元での $1 - d_2/d_1$ (d_2 = 経験分布と $O(N^{-2})$ の漸近分布の絶対差の最大値)。

<table>
<thead>
<tr>
<th>σ^2</th>
<th>ε</th>
<th>p</th>
<th>ω^2</th>
<th>$N = 7$</th>
<th>$N = 11$</th>
<th>$N = 13$</th>
<th>$N = 30$</th>
<th>$N = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58 (0.0225)</td>
<td>2</td>
<td>0.53 (0.0296)</td>
<td>0.67 (0.0839)</td>
<td>0.72 (0.0052)</td>
<td>0.87 (0.0004)</td>
<td>0.77 (0.0002)</td>
<td>0.70 (0.0002)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.50 (0.0381)</td>
<td>0.65 (0.0114)</td>
<td>0.70 (0.0072)</td>
<td>0.86 (0.0007)</td>
<td>0.78 (0.0003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45 (0.0762)</td>
<td>2</td>
<td>0.52 (0.0863)</td>
<td>0.60 (0.0235)</td>
<td>0.66 (0.0145)</td>
<td>0.84 (0.0013)</td>
<td>0.80 (0.0004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40 (0.1000)</td>
<td>2</td>
<td>0.50 (0.0287)</td>
<td>0.64 (0.0180)</td>
<td>0.82 (0.0017)</td>
<td>0.81 (0.0005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 (0.1908)</td>
<td>2</td>
<td>0.51 (0.0500)</td>
<td>0.59 (0.0338)</td>
<td>0.80 (0.0029)</td>
<td>0.90 (0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31 (0.2036)</td>
<td>2</td>
<td>0.50 (0.0629)</td>
<td>0.57 (0.0392)</td>
<td>0.79 (0.0035)</td>
<td>0.89 (0.0005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.54 (0.0221)</td>
<td>2</td>
<td>0.52 (0.0298)</td>
<td>0.67 (0.0083)</td>
<td>0.71 (0.0052)</td>
<td>0.86 (0.0005)</td>
<td>0.66 (0.0003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 (0.0394)</td>
<td>2</td>
<td>0.52 (0.0117)</td>
<td>0.66 (0.0074)</td>
<td>0.85 (0.0007)</td>
<td>0.79 (0.0003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.43 (0.0748)</td>
<td>2</td>
<td>0.42 (0.0236)</td>
<td>0.66 (0.0145)</td>
<td>0.83 (0.0013)</td>
<td>0.82 (0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40 (0.1027)</td>
<td>2</td>
<td>0.50 (0.0296)</td>
<td>0.63 (0.0185)</td>
<td>0.82 (0.0017)</td>
<td>0.84 (0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30 (0.2051)</td>
<td>2</td>
<td>0.50 (0.0464)</td>
<td>0.56 (0.0401)</td>
<td>0.79 (0.0035)</td>
<td>0.90 (0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.29 (0.2261)</td>
<td>2</td>
<td>-0.26 (0.1148)</td>
<td>-0.16 (0.0498)</td>
<td>-0.14 (0.0357)</td>
<td>-0.02 (0.0049)</td>
<td>0.14 (0.0009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.08 (0.2455)</td>
<td>-0.56 (0.0905)</td>
<td>-0.37 (0.0609)</td>
<td>0.38 (0.0064)</td>
<td>0.71 (0.0009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.72 (0.4445)</td>
<td>-0.82 (0.1611)</td>
<td>-0.55 (0.1084)</td>
<td>0.38 (0.0118)</td>
<td>0.72 (0.0016)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31 (0.1883)</td>
<td>4</td>
<td>0.30 (0.0554)</td>
<td>0.58 (0.0339)</td>
<td>0.80 (0.0028)</td>
<td>0.90 (0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.29 (0.2261)</td>
<td>4</td>
<td>0.30 (0.0211)</td>
<td>0.60 (0.0139)</td>
<td>0.82 (0.0013)</td>
<td>0.86 (0.0003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14 (0.1212)</td>
<td>2</td>
<td>0.11 (0.0303)</td>
<td>0.11 (0.0187)</td>
<td>0.70 (0.0012)</td>
<td>0.83 (0.0002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12 (0.0316)</td>
<td>0</td>
<td>0.12 (0.1529)</td>
<td>0.48 (0.0498)</td>
<td>0.78 (0.0030)</td>
<td>0.88 (0.0004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.17 (0.2315)</td>
<td>2</td>
<td>0.13 (0.2279)</td>
<td>0.28 (0.0828)</td>
<td>0.34 (0.0375)</td>
<td>0.71 (0.0025)</td>
<td>0.72 (0.0006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21 (0.3534)</td>
<td>2</td>
<td>0.23 (0.2939)</td>
<td>0.40 (0.1004)</td>
<td>0.46 (0.0655)</td>
<td>0.74 (0.0059)</td>
<td>0.87 (0.0007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57 (0.0221)</td>
<td>2</td>
<td>0.54 (0.0259)</td>
<td>0.68 (0.0069)</td>
<td>0.73 (0.0043)</td>
<td>0.87 (0.0004)</td>
<td>0.69 (0.0002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.51 (0.0316)</td>
<td>2</td>
<td>0.54 (0.0138)</td>
<td>0.66 (0.0088)</td>
<td>0.71 (0.0055)</td>
<td>0.86 (0.0005)</td>
<td>0.72 (0.0003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45 (0.0737)</td>
<td>2</td>
<td>0.43 (0.0786)</td>
<td>0.61 (0.0205)</td>
<td>0.67 (0.0124)</td>
<td>0.85 (0.0010)</td>
<td>0.79 (0.0004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.41 (0.0872)</td>
<td>2</td>
<td>0.41 (0.0358)</td>
<td>0.59 (0.0235)</td>
<td>0.65 (0.0144)</td>
<td>0.84 (0.0012)</td>
<td>0.79 (0.0004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 (0.1846)</td>
<td>2</td>
<td>0.31 (0.1904)</td>
<td>0.53 (0.0491)</td>
<td>0.60 (0.0297)</td>
<td>0.81 (0.0024)</td>
<td>0.90 (0.0003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30 (0.2011)</td>
<td>2</td>
<td>0.30 (0.0535)</td>
<td>0.58 (0.0325)</td>
<td>0.81 (0.0027)</td>
<td>0.90 (0.0003)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: 多変量 t 分布 (3.16) の元での $1 - d_2/d_1$ ($d_2 = \text{経験分布と } O(N^{-2}) \text{ の漸近分布の絶対差の最大値}$).

<table>
<thead>
<tr>
<th>ν</th>
<th>p</th>
<th>ω^2</th>
<th>$N = 7$</th>
<th>$N = 11$</th>
<th>$N = 13$</th>
<th>$N = 30$</th>
<th>$N = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4.15</td>
<td>(0.3271)</td>
<td>-3.38 (0.1240)</td>
<td>-3.00 (0.0857)</td>
<td>-0.20 (0.0120)</td>
<td>0.54 (0.0023)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-4.84</td>
<td>(0.4609)</td>
<td>-3.77 (0.1990)</td>
<td>-3.30 (0.1504)</td>
<td>-0.77 (0.0584)</td>
<td>-0.15 (0.0473)</td>
</tr>
<tr>
<td>2</td>
<td>-5.43</td>
<td>(0.6290)</td>
<td>-3.90 (0.2752)</td>
<td>-3.32 (0.2097)</td>
<td>-0.68 (0.0866)</td>
<td>-0.14 (0.0725)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0</td>
<td>-2.83</td>
<td>(0.5783)</td>
<td>-2.50 (0.2220)</td>
<td>-2.31 (0.1548)</td>
<td>-0.70 (0.0227)</td>
</tr>
<tr>
<td>2</td>
<td>-3.81</td>
<td>(0.9076)</td>
<td>-3.05 (0.3797)</td>
<td>-2.70 (0.2814)</td>
<td>-0.96 (0.0944)</td>
<td>-0.22 (0.0699)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-2.36</td>
<td>(1.0397)</td>
<td>-2.13 (0.4194)</td>
<td>-1.98 (0.3026)</td>
<td>-1.05 (0.0756)</td>
<td>-0.37 (0.0438)</td>
</tr>
<tr>
<td>2</td>
<td>-2.79</td>
<td>(1.2521)</td>
<td>-2.37 (0.5104)</td>
<td>-2.16 (0.3714)</td>
<td>-0.99 (0.1045)</td>
<td>-0.29 (0.0687)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.29</td>
<td>(1.009)</td>
<td>0.41 (0.0342)</td>
<td>0.47 (0.0222)</td>
<td>0.72 (0.0026)</td>
<td>0.35 (0.0028)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.30</td>
<td>(0.0937)</td>
<td>-0.36 (0.0486)</td>
<td>-0.42 (0.0415)</td>
<td>-0.18 (0.0309)</td>
<td>-0.04 (0.0319)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.45</td>
<td>(0.1279)</td>
<td>-0.46 (0.0694)</td>
<td>-0.50 (0.0600)</td>
<td>-0.17 (0.0478)</td>
<td>-0.04 (0.0501)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.35</td>
<td>(0.1863)</td>
<td>0.53 (0.0528)</td>
<td>0.57 (0.0347)</td>
<td>0.83 (0.0028)</td>
<td>0.46 (0.0028)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
<td>(0.2037)</td>
<td>0.41 (0.0746)</td>
<td>0.40 (0.0560)</td>
<td>0.10 (0.0267)</td>
<td>-0.05 (0.0257)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.30</td>
<td>(0.2229)</td>
<td>0.33 (0.0934)</td>
<td>0.32 (0.0725)</td>
<td>-0.01 (0.0421)</td>
<td>-0.05 (0.0427)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.57</td>
<td>(0.0237)</td>
<td>0.70 (0.0066)</td>
<td>0.74 (0.0042)</td>
<td>0.41 (0.0022)</td>
<td>0.10 (0.0015)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.53</td>
<td>(0.0308)</td>
<td>0.37 (0.0194)</td>
<td>0.23 (0.0183)</td>
<td>-0.05 (0.0189)</td>
<td>-0.01 (0.0207)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>(0.0403)</td>
<td>0.27 (0.0288)</td>
<td>0.13 (0.0278)</td>
<td>-0.06 (0.0298)</td>
<td>-0.01 (0.0326)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>0.44</td>
<td>(0.0768)</td>
<td>0.62 (0.0206)</td>
<td>0.67 (0.0129)</td>
<td>0.66 (0.0027)</td>
<td>0.23 (0.0019)</td>
</tr>
<tr>
<td>2</td>
<td>0.41</td>
<td>(0.0995)</td>
<td>0.57 (0.0318)</td>
<td>0.55 (0.0254)</td>
<td>-0.01 (0.0268)</td>
<td>-0.01 (0.0298)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.32</td>
<td>(0.1901)</td>
<td>0.53 (0.0504)</td>
<td>0.59 (0.0310)</td>
<td>0.77 (0.0035)</td>
<td>0.45 (0.0024)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>(0.2018)</td>
<td>0.52 (0.0569)</td>
<td>0.58 (0.0363)</td>
<td>0.39 (0.0141)</td>
<td>0.04 (0.0160)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.29</td>
<td>(0.2174)</td>
<td>0.50 (0.0651)</td>
<td>0.56 (0.0426)</td>
<td>0.24 (0.0237)</td>
<td>0.00 (0.0273)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.56</td>
<td>(0.0230)</td>
<td>0.70 (0.0062)</td>
<td>0.74 (0.0039)</td>
<td>0.64 (0.0010)</td>
<td>0.22 (0.0007)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.54</td>
<td>(0.0279)</td>
<td>0.68 (0.0082)</td>
<td>0.66 (0.0064)</td>
<td>0.04 (0.0075)</td>
<td>0.01 (0.0084)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>(0.0347)</td>
<td>0.65 (0.0108)</td>
<td>0.57 (0.0101)</td>
<td>-0.00 (0.0121)</td>
<td>-0.00 (0.0134)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.44</td>
<td>(0.0754)</td>
<td>0.62 (0.0197)</td>
<td>0.67 (0.0122)</td>
<td>0.79 (0.0014)</td>
<td>0.55 (0.0008)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.41</td>
<td>(0.0923)</td>
<td>0.58 (0.0267)</td>
<td>0.64 (0.0172)</td>
<td>0.22 (0.0105)</td>
<td>0.02 (0.0121)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.32</td>
<td>(0.1876)</td>
<td>0.53 (0.0489)</td>
<td>0.59 (0.0298)</td>
<td>0.79 (0.0028)</td>
<td>0.73 (0.0009)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>(0.1956)</td>
<td>0.52 (0.0526)</td>
<td>0.58 (0.0326)</td>
<td>0.70 (0.0051)</td>
<td>0.15 (0.0063)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.30</td>
<td>(0.2080)</td>
<td>0.51 (0.0583)</td>
<td>0.57 (0.0365)</td>
<td>0.56 (0.0090)</td>
<td>0.07 (0.0110)</td>
<td></td>
</tr>
</tbody>
</table>