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Suppose that anonnegative statistic $T$ is asymptotically distributed as achi-squared distri-
bution with $f$ degrees of ffeedom, $\chi_{f}^{2}$ , as apositive number $n$ tends to infinity. We consider
monotone transformations to improve chi-squared approximations under nonnormality. The
transformations proposed here preserve monotonicity and give transformed statistics whose

first three moments are coincident with the ones of $\chi_{f}^{2}$ up to $O(n^{-1})$ . It may be noted that the

proposed transformations can be applied to awide class of statistics whether an asymptotic
expansion of $T$ is available or not. Several examples for applications are presented to demon-
strate that the proposed transformations give asignificant improvement to the chi-squared
approximation when compared to competitors.
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1. INTRODUCTION

Suppose that anonnegative statistic $T$ is asymptotically distributed as achi-squared
distribution $\chi_{f}^{2}$ with $f$ degrees of freedom, as apositive number $n$ tends to infinity. The
Bartlett correction was originally proposed so that its mean is coincident with the one
of $\chi_{f}^{2}11\mathrm{p}$ to the order $O(n^{-1})$ . Recently, $\mathrm{F}_{11}\mathrm{j}\mathrm{i}\mathrm{k}\mathrm{o}\mathrm{s}\mathrm{h}\mathrm{i}$ (2000) gave different transformations
such that the first two moments of transformed statistics are coincident with the ones of
$\chi_{f}^{2}11\mathrm{p}$ to $O(n^{-1})$ . The latter fact can be stated more concretely as follows: Suppose that
the first two moments of $T$ can be expanded as

$E(T)=f\{1+n^{-1}c_{1}+O(n^{-2})\}$, (1.1)
$E(T^{2})=f(f+2)\{1+n^{-1}c_{2}+O(n^{-2})\}$ . (1.2)

数理解析研究所講究録 1308巻 2003年 39-52

39



Then, for the case $\tilde{c_{2}}\equiv c_{2}-2c_{1}\neq 0$ , Fujikoshi (2000) gave the following three transfor-
mations:

(i) For $\alpha_{0}>0$ and $n\alpha_{0}+\beta_{0}>0$ ,

$Y=(n \alpha_{0}+\beta_{0})\log(1+\frac{1}{n\alpha_{0}}T)$ ; (1.3)

(ii) For $\alpha_{0}<0$ and $n\alpha_{0}+\beta_{0}<0$ ,

$Y=T+ \frac{1}{n}(\frac{\beta_{0}}{\alpha_{0}}T-\frac{1}{2\alpha_{0}}T^{2})$ ; (1.4)

(iii) For any $\mathrm{a}\mathrm{O}$ , $n$ and $\beta_{0}$ ,

$Y=(n \alpha_{0}+\beta_{0})\{1-\exp(-\frac{1}{n\alpha_{0}}T)\}$ ; (1.5)

with
$\alpha_{0}=2/\tilde{c_{2}}$ , $\beta_{0}=\frac{1}{2}\{(f+2)c_{2}-2(f+4)c_{1}\}/\tilde{c_{2}}$ . (1.6)

Then, it holds that $Y’ \mathrm{s}$ are monotone functions of $T$ under each parameter restriction
and

$E(Y)=f+O(n^{-2})$ , $E(Y^{2})=f(f+2)+O(n^{-2})$ . (1.7)
Further, if $T$ can be expanded as

$P(T \leq x)=G_{f}(x)+\frac{1}{n}\sum_{j=0}^{k}a_{j}G_{f+2j}(x)+O(n^{-2})$ (1.8)

where $k$ is apositive integer and $G_{f+2j}(\cdot)$ is the distribution function of $\chi_{f+2j}^{2}$ , $Y$ has the
asymptotic expansion given by

$P(Y\leq x)=G_{f}(x)+O(n^{-2})$ (1.9)

when $k=2$ . (See also Cordeiro and Ferrari (1998).) However, there exist some test
statistics such that the transformations given by (1.3), (1.4) and (1.5) with (1.6) do not
work in the sense of (1.9), especially under nonnormality.

It may be noted that Bartlett-type correction, studied by Cordeiro and Ferrari (1991),
Kakizawa (1996), Fujikoshi (1997) and Fujisawa (1997), for astatistic with (1.8) depends
on the knowledge about $k$ and the coefficients $a_{j}’ \mathrm{s}$ , and in some cases $k$ is unknown and
$a_{j}’ \mathrm{s}$ must be estimated in apractical use. Further, we often encounter the situations where
it is difficult to obtain the coefficients $a_{j}’ \mathrm{s}$ in (1.8), even though its existence is assured.
These situations appear in treating the distributions of multivariate test statistics under
nonnormality.

In order to overcome these difficulties, Cordeiro and Ferrari (1998) supposed to obtain
the third moment of $T$ as in an expanded form,

$E(T^{3})=f(f+2)(f+4)\{1+n^{-1}c_{3}+O(n^{-2})\}$ (1.10)
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adding to (1.1)-(1.2) and they proposed a(2.3)-type transformation beyond the Bartlett
correction, depending on the coefficients ci, $c_{2}$ and $c_{3}$ . So, such atransformation is
expected to give an improvement to the chi-squared approximation than do the transfor-
mations given by (1.3), (1.4) and (1.5). In general, the problem of deriving (1.1)-(1.2) and
(1.10) is more tractable than the one of deriving (1.8). Similarly, the problem of estimat-
ing the coefficients ci, $c_{2}$ and $c_{3}$ is simpler than the one of estimating the coefficients $a_{j}’ \mathrm{s}$ .
However, unfortunatelly, the transformation proposed by Cordeiro and Ferrari (1998) is
not always monotone.

In this paper, we shall consider new transformations given by adifferent approach
from others under the assumptions (1.1)-(1.2) and (1.10). It may be observed that new
transformations, proposed in this paper, successfully preserve monotonicity and give a
significant improvement to chi-squared approximation as expected. It would lead abroad
application with awide class of statistics, especially under nonnormality, where their
asymptotic expansions are quite difficult to access.

This paper is organized as in the following way. In Section 2, we propose monotone
transformations beyond the Bartlett correction, which are different from (1.3), (1.4) and
(1.5). In Section 3, we give some distributional properties of the proposed transformations
when $T$ has an asymptotic expansion (1.8). In Section 4, numerical examples of some
test statistics are demonstrated to observe an improvement brought by the proposed
transformations beyond the competitors.

2. NEW TRANSFORMATIONS

For anonnegative statistic $T$ whose asymptotic distribution is $\chi_{f}^{2}$ , we assume that the
first three moments are expanded as in (1.1)-(1.2) and (1.10), respectively. Then, for the
transformations $Y’ \mathrm{s}$ given by (1.3), (1.4) and (1.5) with (1.6), it holds that

$E(Y^{3})=f(f+2)(f+4)\{1+n^{-1}\tilde{c_{3}}+O(n^{-2})\}$ , (2.1)

where
$\tilde{c_{3}}=3(c_{1}-c_{2})+c_{3}$ .

Therefore, if $\mathrm{c}2\neq 0$ and $\tilde{c_{3}}=0$ , we have that the differences among the first three
moments of $Y$ ’s and $\chi_{f}^{2}$ are $O(n^{-2})$ . However, if $\mathrm{c}2\neq 0$ and $\tilde{c_{3}}\neq 0$ , in order to keep such
an optimum property, we need to consider some other transformations beyond Bartlett
correction.

Now we consider the cases $\mathrm{c}2\neq 0$ and $\tilde{c}_{3}\neq 0$ . Let us consider the following transfor-
mations which were originally given for astatistic with (1.8) when $k=3$ :

(i) For $\alpha>0$ , $n\alpha+\beta>0$ and $\gamma>0$ ,

$\tilde{T}_{1}=(n\alpha+\beta)\log\{1+\frac{1}{n\alpha}(T+\frac{\gamma}{n\alpha}T^{3})\}$ (Fujikoshi (1997)); (2.2)

(ii) For $\alpha<0$ , $not+\beta<0$ and $\gamma<0$ ,

$\tilde{T}_{2}=T+\frac{1}{n}(\frac{\beta}{\alpha}T-\frac{1}{2\alpha}T^{2}+\frac{\gamma}{\alpha}T^{3})$ (Cordeiro and Ferrari (1991)). (2.3)

41



Note that $\tilde{T}_{1}$ and $\tilde{T}_{2}$ are monotone increasing functions when the parameters $\alpha$ , $\beta$ and $\gamma$

satisfy the parameter restrictions of (i) and (ii), respectively. However, those parameter
ristrictions, in which $\alpha\gamma>0$ , are very severe. So, let 11S propose the following new
transformations:

(2.4)

(iii) For any $\alpha$ , $\beta$ , $\gamma$ and $n$ ,

$\tilde{T}_{3}=(n\alpha+\beta)\{1-\exp(-\frac{1}{n\alpha}T-\frac{\gamma}{n^{2}\alpha^{2}}T^{3}-\frac{9\gamma^{2}}{20n^{3}\alpha^{3}}T^{5})\}$ ;

(2.5)

(iv) For any $\alpha$ , $\beta$ , $\gamma$ and $n$ ,

$\tilde{T}_{4}=(n\alpha+\beta)(1-\frac{\beta^{2}-\beta+\gamma-1}{n^{2}\alpha^{2}})$

$\{1-\exp(-\frac{1}{n\alpha}T-\frac{\gamma}{n^{2}\alpha^{2}}T^{3}-\frac{9\gamma^{2}}{20n^{3}\alpha^{3}}T^{5})\}$ .

(2.7)

Note that $\tilde{T}_{4}=\{1-(\beta^{2}-\beta+\gamma-1)/(n^{2}\alpha^{2})\}\tilde{T}_{3}$ , and $\tilde{T}_{3}$ and $\tilde{T}_{4}$ preserve monotonicity
without parameter restrictions. Further, note that asymptotic expansions of four $\tilde{T}_{i}’ \mathrm{s}$

described in $(\mathrm{i})-(\mathrm{i}\mathrm{v})$ are the same up to $O(n^{-1})$ and they are given by

$\tilde{T}=T+\frac{1}{n}(\frac{\beta}{\alpha}T-\frac{1}{2\alpha}T^{2}+\frac{\gamma}{\alpha}T^{3})+O_{p}(n^{-2})$ . (2.6)

Originally, $\tilde{T}_{3}$ is motivated to reduce the amount of the terms of $O_{p}(n^{-2})$ in (2.6), con-
sidering the fact that

$\exp(-x)=1-x+\frac{1}{2!}x^{2}-\frac{1}{3!}x^{3}+\frac{1}{4!}x^{4}-\frac{1}{5!}x^{5}+\cdots$ .

The $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}+-+-\cdots$ terms could be effective to reduce extra terms if $x>0$ . From
(2.6), we have

$E( \tilde{T})=f\{1+\frac{1}{n}(c_{1}+\frac{\beta}{\alpha}-\frac{f+2}{2\alpha}+\frac{(f+2)(f+4)\gamma}{\alpha})+O(n^{-2})\}$ ,

$E( \tilde{T}^{2})=f(f+2)\{1+\frac{1}{n}(c_{2}+\frac{2\beta}{\alpha}-\frac{f+4}{\alpha}+\frac{2(f+4)(f+6)\gamma}{\alpha})+O(n^{-2})\}(2.8)$

and

$E( \tilde{T}^{3})=f(f+2)(f+4)\{1+\frac{1}{n}(c_{3}+\frac{3\beta}{\alpha}-\frac{3(f+6)}{2\alpha}+\frac{3(f+6)(f+8)\gamma}{\alpha})$

$+O(n^{-2})\}$ . (2.9)

The coefficient $\{1-(\beta^{2}-\beta+\gamma-1)/(n^{2}\alpha^{2})\}$ appeared in $\tilde{T}_{4}$ is motivated to reduce the
amount of the terms of $O(n^{-2})$ in (2.7)-(2.9). It might be considered to add some extra
term to the inside of $\exp(\cdot)$ so that it works to cancel the terms of $O(n^{-2})$ in (2.7)-(2.9).
However, there seems to be difficult to preserve monotonicity. The idea of multiplyin$\mathrm{g}$
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the coefficient $\{1-(\beta^{2}-\beta+\gamma-1)/(n^{2}\alpha^{2})\}$ in $\overline{T}_{4}$ aims to reduce the amount of the terms
of $o(n^{-2})$ simultaneously. In fact, the effect of coefficient $\{1-(\beta^{2}-\beta+\gamma-1)/(n^{2}\alpha^{2})\}$

can be seen in Section 4numerically.
Now, in order to make the terms of order $n^{-1}$ in (2.7)-(2.9) vanish, we need to choose

$\alpha$ , $\beta$ and $\gamma$ as

$\alpha=\frac{6}{3\tilde{c_{2}}-(f+4)\tilde{c_{3}}}$ ,

$\beta=\frac{12(c_{2}-4c_{1})+6f\tilde{c_{2}}-(f+2)(f+4)\tilde{c_{3}}}{4\{3c_{2}^{-}-(f+4)\tilde{c_{3}}\}}$, (2.10)

$\gamma=\frac{-\tilde{c_{3}}}{4\{3\tilde{c_{2}}-(f+4)\tilde{c_{3}}\}}$ ,

provided that $3\mathrm{c}2-(f+4)\mathrm{c}\mathrm{Y}\neq 0$ . These results can be summarized as follows:

THEOREM 1. Suppose that a nonnegative random variate $T$ has an asymptotic chi-
squared distribution with $f$ degrees of freedom, and its first three moments are expanded
as in (1.1)-(1.2) and (1.10). For the cases that $\tilde{c_{2}}\neq 0,\tilde{c_{3}}\neq 0$ and $3\tilde{c_{2}}-(f+4)\tilde{c_{3}}\neq 0$, let

$\tilde{T}$ ’s be the transformations (2.2)-(2.5) with $a$ , $\beta$ and $\gamma$ defined by (2.10). Then, it holds
that $\tilde{T}$ ’s are monotone functions of $T$ and

$E(\tilde{T})=f+O(n^{-2})$ ,
$E(\tilde{T}^{2})=f(f+2)+O(n^{-2})$ , (2.11)
$E(\tilde{T}^{3})=f(f+2)(f+4)+O(n^{-2})$ .

It is easy to see that the transformation $\tilde{T}_{2}$ with $\alpha$ , $\beta$ and 7defined by (2.10) is
equivalent to the transformation given by Cordeiro and Ferarri (1998).

Let $t(u)$ be afunction of $u$ defined by arelation
$P(T\leq t(u))=P(\chi_{f}^{2}\leq u)$ . (2.12)

Note that $P(T\leq t(u))=P(\tilde{T}(T)\leq\tilde{T}(t(u)))$ and the distribution of $\tilde{T}(T)$ is close to a
chi-squared distribution $\chi_{f}^{2}$ in the sense of (2.11). This suggests that an approximation
$\tilde{t}(u)$ may be proposed by $\tilde{T}(\tilde{t}(u))=u$ . Since $\tilde{t}(u)$ is an inverse function of $\tilde{T}$ , we can
express an approximation for (2.2) and (2.3), respectively, as follows:

(i) For $\alpha>0$ , $n\alpha+\beta>0$ and $\gamma>0$ ,

$\tilde{t}_{1}(u)=(\frac{n^{2}\alpha^{2}}{2\gamma^{2}})^{1/3}\{$
$(-d_{1}\gamma+\sqrt{d_{1}^{2}\gamma^{2}+\frac{4\gamma}{27n\alpha}})^{1/3}+(-d_{1}\gamma-\sqrt{d_{1}^{2}\gamma^{2}+\frac{4\gamma}{27n\alpha}})^{1/3}\}$

(2.13)

where $d_{1}=1- \exp(\frac{u}{n\alpha+\beta})$ ;
(ii) For $\alpha<0$ , $n\alpha+\beta<0$ and $\gamma<0$ ,

$\overline{t}_{2}(u)=\frac{1}{6\gamma}[1+\{$
$1-18(n\alpha+\beta)\gamma+108n\alpha\gamma^{2}u+108\gamma\sqrt{d_{2}}\}^{1/3}$

$+\{1-18(n\alpha+\beta)\gamma+108n\alpha\gamma^{2}u-108\gamma\sqrt{d_{2}}\}^{1/3}]$ (2.14)
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where $d_{2}=n^{2} \alpha^{2}\gamma^{2}u^{2}+\frac{n\alpha\gamma}{3}(\frac{1}{18\gamma}-(n\alpha+\beta))u+\frac{(na+\beta)^{2}}{108}(16(n\alpha+\beta)\gamma-1)$ . We note that
the asymptotic expansions of $\tilde{t}(u)$ given by (2.13)-(2.14) are same up to the order $O(n^{-1})$ ,
and they are given by

$\tilde{t}(u)=u-\frac{1}{n}(\frac{\beta}{\alpha}u-\frac{1}{2\alpha}u^{2}+\frac{\gamma}{\alpha}u^{3})+O(n^{-2})$. (2.15)

Unfortunately, we cannot describe $\tilde{t}(u)$ explicitly for (2.4) and (2.5). However, those
approximate values are available by conducting anumerical computation. It would be
enough for apractical use. The accuracy of the approximations to the true percentage
point $t(u)$ of $T$ can be evaluated by using

$P(T\leq t(u))=P(\tilde{T}(T)\leq\tilde{T}(t(u)))=P(\tilde{T}\leq u)$ . (2.16)

3. FURTHER PROPERTIES

In this section, we study some distributional properties of the transformed statistics
$\tilde{T}=\tilde{T}(T)$ when astatistic $T$ can be expanded as in (1.8), in addition to the assumptions
of Theorem 1. Especially, we examine how much the distributions of $\tilde{T}$ are simplified
and close to the distribution of $\chi_{f}^{2}$ . Before we treat the distributions of $\tilde{T}$ , we give the
expressions of $\alpha$ , $\beta$ and $\gamma$ in (2.10) in terms of the coefficients $a_{j}’ \mathrm{s}$ . Note that $\sum_{j=0}^{k}a_{j}=0$

to get from (1.8) that

$c_{1}= \frac{2}{f}\sum_{j=1}^{k}ja_{j}$ ,

$c_{2}= \frac{4}{f(f+2)}\sum_{j=1}^{k}j(j+f+1)a_{j}$ , (3.1)

$c_{3}= \frac{8}{f(f+2)(f+4)}\sum_{j=1}^{k}j^{2}(j+f+1)a_{j}$

$+ \frac{4}{f(f+2)}\sum_{j=1}^{k}j(j+f+1)a_{j}+\frac{2}{f+4}\sum_{j=1}^{k}ja_{j}$ .

For the case $k=2$ , we have $\tilde{c_{3}}=0$ , and hence the transformations $Y$ ’s due to Fujikoshi
(2000) yield an improvement on approximation of the third moment as well as the first
two moments of $\chi_{f}^{2}$ . Further, we can get (1.9). So, we consider the case $k\geq 3$ . First, we
note that

$\tilde{c_{2}}=\frac{4}{f(f+2)}\sum_{j=2}^{k}j(j-1)a_{j}$ ,

$\tilde{c_{3}}=\frac{8}{f(f+2)(f+4)}\sum_{j=3}^{k}j(j-1)(j-2)a_{j}$ (3.2)
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(3.5)

and hence the expressions of $\alpha$ , $\beta$ and $\gamma$ in (2.10) are obtained as

$\alpha=\frac{-3f(f+2)}{2\sum_{j=2}^{k}j(j-1)(2j-7)a_{j}}$ ,

$\beta=\frac{(f+2)\sum_{j_{-}^{-}1}^{k}j(j^{2}-6j+11)a_{j}}{2\sum_{j=2}^{k}j(j-1)(2j-7)a_{j}}$ , (3.3)

$\gamma=\frac{\sum_{j=3}^{k}j(j-1)(j-2)a_{j}}{2(f+4)\sum_{j=2}^{k}j(j-1)(2j-7)a_{j}}$ ,

provided that $3\mathrm{c}2-(f+4)\tilde{c_{3}}\neq 0$ . Especially when $k=3$ , (3.3) becomes that

$\alpha=\frac{1}{4}f(f+2)/(a_{2}+a_{3})$ , $\beta=\frac{1}{2}(f+2)a_{0}/(a_{2}+a_{3})$ ,

$\gamma=-\frac{1}{2}a_{3}/\{(f+4)(a_{2}+a_{3})\}$ . (3.4)

Under the assumption that the distribution of astatistic $T$ can be expanded as in (1.8),
Kakizawa (1996) proposed amethod for finding amonotone transformation of $T$ . When
$k=3$ , his method gives the following transformation with (3.4):

$T_{K}=T+ \frac{1}{n}(\frac{\beta}{\alpha}T-\frac{1}{2\alpha}T^{2}+\frac{\gamma}{\alpha}T^{3})$

$+ \frac{1}{4n^{2}}\{\frac{\beta^{2}}{\alpha^{2}}T-\frac{\beta}{\alpha^{2}}T^{2}+(\frac{2\beta\gamma}{\alpha^{2}}+\frac{1}{3\alpha^{2}})T^{3}-\frac{3\gamma}{2\alpha^{2}}T^{4}+\frac{9\gamma^{2}}{5\alpha^{2}}T^{5}\}$ .

Note that the expansion (3.5) is same as in (2.6) up to $O(n^{-1})$ .
Now, we consider asymptotic expansions of the distributions of $\overline{T}’ \mathrm{s}$ with an error term

of $O(n^{-2})$ . For the purpose, from (2.6) we may deal with

$\tilde{T}=T+\frac{1}{n}(\frac{\beta}{\alpha}T-\frac{1}{2\alpha}T^{2}+\frac{\gamma}{\alpha}T^{3})$ . (3.6)

The characteristic function of $\tilde{T}$ can be expanded as

$C(t)=E(e^{it\tilde{T}})$

$=E \{e^{itT}(1+\frac{it}{n}(\frac{\beta}{\alpha}T-\frac{1}{2\alpha}T^{2}+\frac{\gamma}{\alpha}T^{3}))\}+O(n^{-2})$

$=(1-2it)^{-f/2} \{1+\frac{1}{n}\sum_{j=0}^{k}a_{j}(1-2it)^{-j}\}$

$+ \frac{it}{n}E\{e^{itT}(\frac{\beta}{\alpha}T-\frac{1}{2\alpha}T^{2}+\frac{\gamma}{\alpha}T^{3})\}+O(n^{-2})$ .

Note that

$E(Te^{itT})=f(1-2it)^{-f/2-1}+O(n^{-1})$ ,
$E(T^{2}e^{itT})=f(f+2)(1-2it)^{-f/2-2}+O(n^{-1})$ ,
$E(T^{3}e^{\dot{\iota}tT})=f(f+2)(f+4)(1-2it)^{-f/2-3}+O(n^{-1})$.
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Using these results, we have

$C(t)=(1-2it)^{-f/2} \{1+\frac{1}{n}\sum_{j=0}^{k}\overline{a}_{j}(1-2it)^{-j}+O(n^{-2})\}$ , (3.7)

where

$\tilde{a}_{0}=a_{0}-\frac{\beta}{2\alpha}f,\tilde{a}_{1}=a_{1}$ $ $\frac{1}{4\alpha}(2\beta+f+2)f$ ,

$\tilde{a}_{2}=a_{2}-\frac{1}{4\alpha}(1+2\gamma f+8\gamma)f(f+2)$ , $\tilde{a}_{3}=a_{3}+\frac{\gamma}{2\alpha}f(f+2)(f+4)$ , (3.8)
$\tilde{a}_{j}=a_{j}(j\geq 4)$ .

Inverting (3.7), we can obtain the following theorem.

THEOREM 2. Suppose that a nonnegative random variate $T$ has an asymptotic
expansion (1.8), and its first three moments can be expanded as in (1.1)-(1.2) and (1.10).
Assume that $k\geq 3$ and $\sum_{j=2}^{k}j(j-1)(2j-7)a_{j}\neq 0$ . Then, neglecting the terms of $o(n^{-2})$ ,

$\tilde{T}$ ’s have the same asymptotic expansion given by

$P( \tilde{T}\leq x)=G_{f}(x)+\frac{1}{n}\sum_{j=0}^{k}\tilde{a}_{j}G_{f+2j}(x)+O(n^{-2})$ , (3.9)

where the coefficients $\tilde{a}_{j}$ ’s are given by (3.8).

Theorem 2shows that the diiferences between the asymptotic expansions for $T$ and $\tilde{T}$

appear in only the first four coefficients $a_{j},$ $dj,j=0,1,2,3$. Further, we can see that the
asymptotic expansions for $\tilde{T}$ in the cases $k=3$ and 4are considerably simple, and are
close to the distribution of $\chi_{f}^{2}$ . In fact,

(i) The case $k=3;\tilde{a}_{j}=0,j=0,1,2,3$ and

$P(\overline{T}\leq x)=G_{f}(x)+O(n^{-2})$ . (3.10)

(ii) The case $k=4$;note that

$\alpha=\frac{1}{4}f(f+2)/(a_{2}+a_{3}-2a_{4})$ , $\beta=\frac{1}{2}(f+2)(a_{0}-a_{4})/(a_{2}+a_{3}-2a_{4})$ ,

$\gamma=-\frac{1}{2}(a_{3}+4a_{4})/\{(f+4)(a_{2}+a_{3}-2a_{4})\}$ .

Hence, we have that $\tilde{a}_{0}=a_{4},\tilde{a}_{1}=-4a_{4},\tilde{a}_{2}=6a_{4},\tilde{a}_{3}=-4a_{4},\tilde{a}_{4}=a_{4}$ , and

$P( \tilde{T}\leq x)=Gf(x)+\frac{a_{4}}{n}\{G_{f}(x)-4G_{f+2}(x)+6G_{f+4}(x)$

$-4G_{f+6}(x)+G_{f+8}\}+O(n^{-2})$ (3.11)

$=G_{f}(x)+ \frac{2a_{4}}{nf}g_{f}(x)\{x-\frac{3}{f+2}x^{2}+\frac{3}{(f+2)(f+4)}x^{3}$

$- \frac{1}{(f+2)(f+4)(f+6)}x^{4}+O(n^{-2})\}$ ,
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where $g_{f}(x)$ is the probability density function of $\chi_{f}^{2}$ .
It may be noted that the transformations $\tilde{T}’ \mathrm{s}$ in (2.2)-(2.5) and $T_{K}$ in (3.5) have

removed the terms of $O(n^{-1})$ in the asymptotic expansion (1.8) with $k=3$ . One may refer
to Cordeiro and Ferarri (1998) as well. For $k=4$ , we have asimple asymptotic expansion
for the distribution of $\tilde{T}$ , which becomes more close to the chi-squared distribution $\mathrm{a}_{\mathrm{L}}\mathrm{s}a_{4}$

becomes close to zero. In many instances, the null distributions of test statistics under
nonnormality are expanded in the form (1.8) with $k=3$ .

4. SOME APPLICATIONS

EXAMPLE 1. Let $T=(n-q)s_{h}^{2}/s_{e}^{2}$ be atest statistic for testing the equality of
means of $q$ nonnormal populations $\Pi_{i}$ $(i=1, \ldots, q)$ with common variance. Here, $s_{h}^{2}$ and
$s_{\mathrm{e}}^{2}$ are the sums of squares dlle to the hypothesis and the error, respectively, based on
the sample of the size $n_{i}$ from $\Pi_{i}$ . Let $\rho_{t}=\sqrt{n_{i}/n}$ , where $n$ is the total sample size.

Assume that $\rho_{i}=O(1)$ as $n_{j}’ \mathrm{s}$ tend to infinity. Let $\kappa_{3}$ and $\kappa_{4}$ be the third and the fourth
cumulants of the standardized variate. Then, under ageneral condition, an asymptotic
expansion for the null distribution of $T$ was given by Fujikoshi, Ohmae and Yanagihara
(1999) in the form (1.8) with $k=3$ , $f=q-1$ and the coefficients given by

$a_{0}= \frac{1}{4}(q-1)(q-3)-d_{1}\kappa_{3}^{2}+d_{2}\kappa_{4}$,

$a_{1}=- \frac{1}{2}(q-1)^{2}+3d_{1}\kappa_{3}^{2}-2d_{2}\kappa_{4}$,

$a_{2}= \frac{1}{4}(q^{2}-1)-3d_{1}\kappa_{3}^{2}+d_{2}\kappa_{4}$,

a3 $=d_{1}\kappa_{3}^{2}$ ,

where

$d1$ $=$ $\frac{5}{24}$ ($\sum_{j=1}^{q}$ $\frac{n}{n_{j}}$
– $q\mathrm{z}$) $+$ $\frac{1}{12}$ $(q$ – $1$ $)$ $(q$ – $2$ $)$ ,
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$d_{2}= \frac{1}{8}(\sum_{j=1}^{q}\frac{n}{n_{j}}-q^{2})-\frac{1}{4}(q-1)$ .

We examined performance of our new transfomations under the following three non-
nomal models:

(1) $\chi^{2}$ distribution with 4degrees of freedom;
(2) Gamma distribution with shape parameter 3and scale parameter 1/3;
(3) Exponential distribution with scale parameter 1.

TABLE Igives the true percentage point $t(u)$ and the approximate percentage points
$t_{B}(u)$ , $t_{E}(u)$ , $t_{1\cdot 2}(u)$ , $t_{3}(u),\tilde{t}_{1\cdot 2}(u),\tilde{t}_{3}(u),\tilde{t}_{4}(u)$ and $t_{K}(u)$ for the case $q=3$. Here, $u$

denotes the upper 5% point of $\chi_{2}^{2}$ , $t_{B}(u)$ and $t_{E}(u)$ are computed on the basis of the
Bartlett corection and the Cornish-Fisher expansion $11\mathrm{p}$ to the order $O(n^{-1})$ respectively,
and $t_{3}(u),\tilde{t}_{3}(u),\tilde{t}_{4}(u)$ and $t_{K}(u)$ are computed on the basis of (1.5), (2.4), (2.5) and (3.5)
respectively. Note that when $k=3$ , the Cornish-Fisher expansion yields the percentage
point $t(u\mathrm{J}$ of $T$ in the same form as in (2.15) with (3.4). It means that the transformations
$T_{K}$ and $T$ aim to find an improvement of approximations to $t(u)$ in the terms of $O(n^{-2})$ .
On the other hand,

$t_{1\cdot 2}(u)=\{$

$t_{1}(u)$ if $\alpha_{0}>0$ and $n\alpha_{0}+\beta_{0}>0$ ,
$t_{2}(u)$ if $\alpha_{0}<0$ and $n\alpha_{0}+\beta_{0}<0$ ,

where $t_{1}(u)$ and $t_{2}(u)$ are computed on the basis of (1.3) and (1.4) respectively. Similarly,

$\tilde{t}_{1\cdot 2}(u)=\{$

$\tilde{t}_{1}(u)$ if $\alpha>0$ , $n\alpha+\beta>0$ and $\gamma>0$ ,
$\tilde{t}_{2}(u)$ if $\alpha<0$ , $n\alpha+\beta<0$ and $\gamma<0$ ,

where $\tilde{t}_{1}(u)$ and $\tilde{t}_{2}(u)$ are defined by (2.13) and (2.14) respectively.

TABLE I
The percentage points in the case $q=3$
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TABLE II
The actual test sizes in the case $q=3$

TABLE II gives the actual test sizes denoted by

$\alpha_{1}=P(T>u)$ , $\alpha_{2}=P(T>t_{B}(u))$ , $\alpha_{3}=P(T>t_{E}(u))$ ,
$\alpha_{4}=P(T>t_{1\cdot 2}(u))$ , $\alpha_{5}=P(T>t_{3}(u))$ , $\alpha_{6}=P(T>\tilde{t}_{1\cdot 2}(u))$ ,
$\alpha_{7}=P(T>\tilde{t}_{3}(u))$ , $\alpha_{8}=P(T>\tilde{t}_{4}(u))$ , $\alpha_{9}=P(T>t_{K}(u))$ ,

for the case $q=3$ .
In this example, $\tilde{T}_{1}$ and $\tilde{T}_{2}$ are not applicable because of $\alpha\gamma<0$ . The reason why

there are several $\alpha_{4}$ and 05 values very close to the target (5%) would be caused by
the closeness of $\tilde{c_{3}}$ to 0. In the case when $\tilde{c_{3}}$ is close to 0, the advantage of using the
transformations expanded as (2.6) is seriously influenced by the amount of the terms of
$O(n^{-2})$ in (2.11). In fact, we can see from TABLE II that areduction of the amount of
the terms of $O(n^{-2})$ brought by $\tilde{t}_{4}(u)$ is visible as an improvement of the approximation,
especially when $n$ is small
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EXAMPLE 2. We consider chi-squared approximations for the distribution of the
score statistic Sr. An asymptotic expansion for the null distribution of $S_{R}$ was given by
Harris (1985) in the form (1.8) with k $=3$ and the coefficients given by

$a_{0}= \frac{A_{2}-A_{1}-A_{3}}{24}$ , $a_{1}= \frac{3A_{3}-2A_{2}+A_{1}}{24}$ , $a_{2}= \frac{A_{2}-3A_{3}}{24}$ , $a_{3}= \frac{A_{3}}{24}$ .

The quantities $A_{1}$ , A2 and $A_{3}$ are usually functions of unknown parameters. Ferrari,
Uribe-Opazo and Cordeiro (2002) gave simple formulae of $A_{1}$ , $A_{2}$ and A3 for tw0-
parameter exponential family models.

Let us consider the gamma distribution with mean $\theta>0$ and shape parameter $\phi$ $>0$

$(y>0)$ . In the experiment, our interest is in testing $H_{0}$ : $\theta=\theta^{(0)}$ against $H_{1}$ : $\theta\neq\theta^{(0)}$ ,
assuming that the shape parameter $\phi$ is unknown. The Monte Carlo simulation with
100,000 replications was conducted by setting $\theta^{(0\rangle}=1$ , $\phi=0.5,1.0$ and 2.0 and the
number of observations was set as $n=10,20,30$ and 40. For each sample, the score
statistic were computed as $S_{R}=n\overline{\phi}(\overline{y} - 1)^{2}$ , where $\tilde{\phi}$ , the MLE of $\phi$ under $H_{0}$ , is
obtained as asolution to the nonlinear equation

$\log\tilde{\phi}-\psi(\tilde{\phi})=\log(\frac{\theta^{(0)}}{\overline{y}_{g}})+(\frac{\overline{y}-\theta^{(0)}}{\theta^{(0)}})$

with $\psi(\phi)=d\log$ $\Gamma(\phi)/d\phi$ the digamma functoin, and $\overline{y}$ and $\overline{y}_{g}$ are the sample mean and
geometric mean of $y_{1}$ , $\ldots$ , $y_{n}$ . Then, an asymptotic expansion for the null distribution
of $S_{R}$ is the chi-squared distribution with 1degree of freedom followed by the terms of
order $n^{-1}$ with the quantites

$A_{1}= \frac{6\{1-\phi^{2}\psi’(\phi)-2\phi\psi’(\phi)\}}{n\phi\{\phi\psi(\phi)-1\}^{2}},$, $A_{2}= \frac{9\{2\phi\psi’(\phi)-3\}}{n\phi\{\phi\psi(\phi)-1\}}$,and $A_{3}= \frac{20}{n\phi}$ .

See Ferrari, Uribe-Opazo and Cordeiro (2002) for the details.

TABLE III
The percentage points in the case $\theta^{(0)}=1$
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Similarly to EXAMPLE 1TABLE III gives the true percentage point and the approx-
imate percentage points for the case $\theta^{(0)}=1$ and TABLE IV gives the corresponding
actual test sizes.

In this example as well, $\tilde{T}_{1}$ and $\tilde{T}_{2}$ are not applicable because of $\alpha\gamma<0$ . From these
tables, we can see the advantage of using the transformations (2.4)-(2.5) and (3.5). In
fact, $\tilde{c_{3}}$ is not close to 0. Note that ay $<0$ and $\alpha<0$ . In the case when ay $<0$ and
$\alpha<0$ , the inside of $\exp(\cdot)$ in (2.4) is always positive, so that the using of $\exp(\cdot)$ in (2.4)
would cause to increase the amount of the terms of $O_{p}(n^{-2})$ in (2.6). We can see that
the transformation (2.5) with the coefficient $\{1-(\beta^{2}-\beta+\gamma-1)/(n^{2}\alpha^{2})\}$ produces an
improvement successfully in that sense.

TABLE IV
The actual test sizes in the case $\theta^{(0)}=1$

Nominal 5% test

$\frac{\alpha_{4}\alpha_{5}\alpha_{6}\alpha_{7}\alpha_{8}\alpha_{9}}{4.1743.895-4.1875.6125.555}$

0.063 0.061 0.063 0.073 0.072
3.989 3.905 4.461 4.757 4.790
0.062 0.061 0.065 0.067 0.068
4.265 4.217 4.711 4.877 4.893
0.064 0.064 0.067 0.068 0.068
4.502 4.466 4.899 4.985 4.997

$\frac{0.0660.065-0.0680.0690.069}{4.0884.074- 4.5315.0335.044}$

0.063 0.063 0.066 0.069 0.069
4.377 4.374 4.755 4.896 4.903
0.065 0.065 0.067 0.068 0.068
4.590 4.589 4.884 4.934 4.940
0.066 0.066 0.068 0.068 0.069
4.618 4.618 4.856 4.877 4.879

$\frac{0.0660.066- 0.0680.0680.068}{4.3104.297- 4.6044.8354.867}$

0.064 0.064 0.066 0.068 0.068
4.692 4.688 4.910 4.957 4.961
0.067 0.067 0.068 0.069 0.069
4.796 4.794 4.947 4.978 4.979
0.068 0.068 0.069 0.069 0.069
4.914 4.913 5.045 5.061 5.065

$\frac{0.0680.068- 0.0690.0690.069}{100,000\mathrm{r}\mathrm{e}\mathrm{p}1\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}}$

Through EXAMPLEs 1and 2, we have seen how much the distributions of the trans-
formed statistics $\tilde{T}_{i}$ are close to the one of $\chi_{f}^{2}$ -variate, or how much the approximate

percentage points $\tilde{t}_{i}(u)$ are close to the true percentage point $t(u)$ of $T$ . It is shown

that the proposed transformations of these statistics give alarger improvement to the
chi-squared approximation than do the other transformations. Unfortunately, we cannot
recommend our transformations in the following case $\mathrm{s}$
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(i) In the case $\alpha>0,\tilde{T}_{3}$ has the upper limit $not+\beta$ . Therefore, when $u$ is close to
$n\alpha+\beta$ , the approximate percentage point $\tilde{t}_{3}(u)$ cannot hold accuracy seen in EXAMPLEs
1and 2. Further, when $u$ is over $n\alpha+\beta$ , the approximate percentage point $\tilde{t}_{3}(u)$ cannot
be used.

(ii) In the case cry $<0,\tilde{T}_{3}$ has an extreme value at $T=\sqrt{-2n\alpha/(3\gamma)}$. Therefore, when
$u$ is close to that value, the approximate percentage point $\tilde{t}_{3}(u)$ cannot hold accuracy
seen in EXAMPLEs 1and 2.

As for $(\mathrm{i})-(\mathrm{i}\mathrm{i})$ described above, $\tilde{T}_{4}$ has similar natures to $\tilde{T}_{3}$ . To overcome these diffi-
culties $(\mathrm{i})-(\mathrm{i}\mathrm{i})$ simultaneously, the following transformation could be one of the options:

$\tilde{T}=(n^{2}+\frac{\beta}{\alpha}n)\log(1+\frac{1}{n^{2}}T-\frac{1}{2n^{3}\alpha}T^{2}+\frac{\gamma}{n^{3}\alpha}T^{3}$

$+ \frac{1}{2n^{4}}T^{2}+\frac{1}{12n^{4}\alpha^{2}}T^{3}-\frac{3\gamma}{8n^{4}\alpha^{2}}T^{4}$ % $\frac{9\gamma^{2}}{20n^{4}\alpha^{2}}T^{5})$

for any $\alpha$ , $\beta$ , $\gamma$ and $n$ . Its asymptotic expansion form is same as in (2.6) up to $O(n^{-1})$ .
The efficiency of this transformation and its modifications are under investigation.
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