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Suppose that a nonnegative statistic 7" is asymptotically distributed as a chi-squared distri-
bution with f degrees of freedom, x}, as a positive number n tends to infinity. We consider
monotone transformations to improve chi-squared approximations under nonnormality. The
transformations proposed here preserve monotonicity and give transformed statistics whose
first three moments are coincident with the ones of xi‘; up to O(n™1). It may be noted that the
proposed transformations can be applied to a wide class of statistics whether an asymptotic
expansion of T is available or not. Several examples for applications are presented to demon-
strate that the proposed transformations give a significant improvement to the chi-squared
approximation when compared to competitors.
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1. INTRODUCTION

Suppose that a nonnegative statistic T is asymptotically distributed as a chi-squared
distribution X? with f degrees of freedom, as a positive number n tends to infinity. The
Bartlett correction was originally proposed so that its mean is coincident with the one
of x} up to the order O(n~1). Recently, Fujikoshi (2000) gave different transformations
such that the first two moments of transformed statistics are coincident with the ones of
x? up to O(n~!). The latter fact can be stated more concretely as follows: Suppose that
the first two moments of T' can be expanded as

E(T) = f{l+n7 e+ O(n™?)}, (1.1)
E(T?) = f(f + 2){1 +n"le; + O(n™)}. | (1.2)

39



Then, for the case & = c; — 2¢; # 0, Fujikoshi (2000) gave the following three transfor-
mations:
(i) For ag > 0 and nog + B, > 0,

Y = (nag + o) log (1 + ;—:—YET) ; (1.3)

(ii) For ap < 0 and nag + B < 0,

7y 1P 1 2.
Y_T+; (a;T— ECTOT2)’ (1.4)
(iii) For any ag, n and S,
1
Y = ('nao +ﬂ0) {1 — exp (—;&;T)}, (15)
with 1
og =2/, Bo= 5{(1' +2)e; — 2(f + 41 } /6. (1.6)

Then, it holds that Y’s are monotone functions of T under each parameter restriction
and '

E(Y)=f+0(n™%), E(Y?)=f(f+2)+O(n7?). (1.7)
Further, if T can be expanded as

k
P(T <) = Gy(a) + %gaﬁm,—(z) +0(n™?) (18)
j=

where k is a positive integer and G z45;(-) is the distribution function of xf‘} +2;» Y has the
asymptotic expansion given by

P(Y < z) = Gy(z) + O(n7?) (1.9)

when k = 2. (See also Cordeiro and Ferrari (1998).) However, there exist some test
statistics such that the transformations given by (1.3), (1.4) and (1.5) with (1.6) do not
work in the sense of (1.9), especially under nonnormality.

It may be noted that Bartlett-type correction, studied by Cordeiro and Ferrari (1991),
Kakizawa (1996), Fujikoshi (1997) and Fujisawa (1997), for a statistic with (1.8) depends
on the knowledge about k and the coefficients a,’s, and in some cases k is unknown and
a;'s must be estimated in a practical use. Further, we often encounter the situations where
it is difficult to obtain the coefficients a;’s in (1.8), even though its existence is assured.
These situations appear in treating the distributions of multivariate test statistics under
nonnormality.

In order to overcome these difficulties, Cordeiro and Ferrari (1998) supposed to obtain
the third moment of T as in an expanded form,

E(T°) = f(f +2)(f +4){1+n"les + O(n~2)} (1.10)
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adding to (1.1)-(1.2) and they proposed a (2.3)-type transformation beyond the Bartlett
correction, depending on the coefficients ¢;, ¢a and c3. So, such a transformation is
expected to give an improvement to the chi-squared approximation than do the transfor-
mations given by (1.3), (1.4) and (1.5). In general, the problem of deriving (1.1)-(1.2) and
(1.10) is more tractable than the one of deriving (1.8). Similarly, the problem of estimat-
ing the coefficients ¢;, ¢z and c; is simpler than the one of estimating the coefficients a;’s.
However, unfortunatelly, the transformation proposed by Cordeiro and Ferrari (1998) is
not always monotone.

In this paper, we shall consider new transformations given by a different approach
from others under the assumptions (1.1)-(1.2) and (1.10). It may be observed that new
transformations, proposed in this paper, successfully preserve monotonicity and give a
significant improvement to chi-squared approximation as expected. It would lead a broad
application with a wide class of statistics, especially under nonnormality, where their
asymptotic expansions are quite difficult to access.

This paper is organized as in the following way. In Section 2, we propose monotone
transformations beyond the Bartlett correction, which are different from (1.3), (1.4) and
(1.5). In Section 3, we give some distributional properties of the proposed transformations
when T has an asymptotic expansion (1.8). In Section 4, numerical examples of some
test statistics are demonstrated to observe an improvement brought by the proposed
transformations beyond the competitors.

2. NEW TRANSFORMATIONS

For a nonnegative statistic 7" whose asymptotic distribution is X}, we assume that the
first three moments are expanded as in (1.1)-(1.2) and (1.10), respectively. Then, for the
transformations Y’s given by (1.3), (1.4) and (1.5) with (1.6), it holds that

E(Y®) = f(f+2)(f + {1 +n7'G+ O(n7%)}, (2.1)
where
é = 3(c; — ¢2) +c3.

Therefore, if & # 0 and é& = 0, we have that the differences among the first three
moments of Y’s and x% are O(n~2). However, if & # 0 and ¢3 # 0, in order to keep such
an optimum property, we need to consider some other transformations beyond Bartlett

correction.
Now we consider the cases & # 0 and 3 # 0. Let us consider the following transfor-
mations which were originally given for a statistic with (1.8) when k = 3:

(i) For a > 0, na+ﬂ>0and*y>0,
T, = (na+ B) log {1 + 1 (T + lﬁ)} (Fujikoshi (1997)); (2.2)
na no
(ii) For « <0, na+ B <0and v <0,

«

To=T+ ;1; (ﬂ T - 51&-:1“2 + %T?') (Cordeiro and Ferrari (1991)).  (2.3)
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Note that T} and T, are monotone increasing functions when the parameters a, § and
satisfy the parameter restrictions of (i) and (ii), respectively. However, those parameter
ristrictions, in which ay > 0, are very severe. So, let us propose the following new
transformations:

(iii) For any a, 8, v and n,

= 1 Y s N
Ts = (na + B) {1 — exp (———T - n2a2T 20n3a3T5)} ; (2.4)
(iv).For any a, .ﬂ, ~ and n, |
- B -Bty-1
Ty = (na+P) (1 - i
‘ 1 N 9’ s
{1 — exp (——T - nzaZT 20n3a3T (2.5)

Note that Ty = {1 — (82 — 8+ — 1)/(n?a?)}Ts, and T3 and Ty preserve monotonicity
without parameter restrictions. Further, note that asymptotic expansions of four 7T}'s
described in (i)-(iv) are the same up to O(n™!) and they are given by

T — l 4 ___1_ 2, Y3 -2
T_T+n(aT 2aT +aT + Op(n™%). (2.6)

Originally, T} is motivated to reduce the amount of the terms of Op(n~2) in (2.6), con-
sidering the fact that
| o 1 1 3.1, 15
exp(—z) 1—z+§x ~ 3% +Z!-:1: — 5t 4o
The expanded + — + — - - - terms could be effective to reduce extra terms if z > 0. From
(2.6), we have

E(f)=f {1 + % (¢1 + g- - fz“;z LUt z)ﬁyf + 4)7) + O(n-2)} , 2.7)

B() = f(f +2) {1 . (c2+ B_fre, 2<f+4§f+6)7)

(a7

+ O(n'z)} (2.8)

and

BT = f(f +2)(f+4){ ( 3ﬂ (f2:6)+3(f+6)65f+8)7)

+0(n7%)}. (2.9)

The coefficient {1 — (8% — 8+ v — 1)/(n?%a?)} appeared in T4 is motivated to reduce the
amount of the terms of O(n™?%) in (2.7)-(2.9). It might be considered to add some extra
term to the inside of exp(-) so that it works to cancel the terms of O(n~2) in (2.7)-(2.9).
However, there seems to be difficult to preserve monotonicity. The idea of multiplying
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the coefficient {1— (82— 8+~ —1)/(n2a?)} in T} aims to reduce the amount of the terms
of O(n™?) simultaneously. In fact, the effect of coefficient {1 — (62— 8 +v—1)/ (n?a?)}
can be seen in Section 4 numerically.

Now, in order to make the terms of order n~! in (2.7)-(2.9) vanish, we need to choose
a, B and v as

6
TG - (T 9E
g 12(c—den) +6/5 — (f +2)(f +4)5 (2.10)

1035 - (7 + a3}
&

T IEs -+ &)
provided that 3¢ — (f + 4)é # 0. These results can be summarized as follows:

THEOREM 1. Suppose that a nonnegative random variate T has an asymptotic chi-
squared distribution with f degrees of freedom, and its first three moments are expanded
as in (1.1)-(1.2) and (1.10). For the cases that & # 0, Gz # 0 and 36 — (f +4)é3 # 0, let
T’s be the transformations (2.2)-(2.5) with o, B and vy defined by (2.10). Then, it holds
that T'’s are monotone functions of T and

E(T) = f+0(n™?), S
E(T? = f(f+2) + 0(n7?), ‘ (2.11)
E(T% = f(f+2)(f +4) + O(n™?). '

It is easy to see that the transformation T, with o, B and v defined by (2.10) is
equivalent to the transformation given by Cordeiro and Ferarri (1998).
Let t(u) be a function of u defined by a relation

P(T < t(u)) = P(x} < ). (2.12)
Note that P(T < t(u)) = P(T(T) < T(t(x))) and the distribution of T(T) is close to a
chi-squared distribution x% in the sense of (2.11). This suggests that an approximation
#(u) may be proposed by T(f(u)) = u. Since (u) is an inverse function of T, we can
express an approximation for (2.2) and (2.3), respectively, as follows:
(i) For & > 0, na+ 3 > 0 and v > 0,

1/3 ' 1/3
_ n2a2\ 3 4y 4y
= — 2, — — /. 24
ti(u) = ( " ) dyy + /A3y + el T dyy \/d?v + o

(2.13)

where d; = 1 — exp(5245);
(ii) For & < 0, na+ 3 < 0 and v <0,

B 1 0 1/3
to(u) = a [1 + {1 — 18(na + @)y + 108nay*u + 1087\/d_2}

1/3
+ {1 — 18(na+ B)y + 108nay’u — 108y dz} ] (2.14)
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108
the asymptotic expanqlons of #(u) given by (2.13)-(2.14) are same up to the order O(n~1),

and they are given by

where dy = n?a?y?u? 4 252 (1&7 (na + ﬂ)) u+ (pathd)’ =2 (16(na+ B)y — 1). We note that

t(u) =u~— % (gu - _1;u2 + —Zju3) +O0(n72). (2.15)

Unfortunately, we cannot describe #(u) explicitly for (2.4) and (2.5). However, those
approximate values are available by conducting a numerical computation. It would be
enough for a practical use. The accuracy of the approximations to the true percentage
point t(u) of T' can be evaluated by using

~

P(T < t(u)) = P(T(T) < T(t(w))) = P(T < ). (2.16)

3. FURTHER PROPERTIES

In this section, we study some distributional properties of the transformed statistics
T = T(T) when a statistic T’ can be expanded as in (1.8), in addition to the assumptions
of Theorem 1. Especially, we examme how much the distributions of T _are simplified
and close to the distribution of 2 . Before we treat the distributions of T, we give the
expressions of a,  and «y in (2.10) in terms of the coefficients a;’s. Note that E 0a; =0
to get from (1.8) that

k
cl='2‘2jaja

4
c2 = e ZJ(9+f+1)aa, (3.1)
“= (f+2)(f+4)zj G+ 541

4 2 &
= 2 d0 + f+a; + — ) ja;.
f(f+2)j§=:1 ? f+4j5;: ?
For the case k = 2, we have &3 = 0, and hence the transformations Y’s due to Fujikoshi
(2000) yield an improvement on approximation of the third moment as well as the first
two moments of x%. Further, we can get (1.9). So, we consider the case k > 3. First, we
note that

&= f(f+2) ZJ(J 1)a,,
k
&= ° j (3.2)

T e 52
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and hence the expressions of «, 8 and  in (2.10) are obtained as
_ 3+
255,30 — 1)(% — T)a;’
g U+ DTG~ 6+ 10
2530 — D25 — T
¥ 33— 1) — 2)ey
T 2f+ )T, - D@ Ty’
provided that 3é; — (f + 4)é # 0. Especially when k = 3, (3.3) becomes that

(3.3)

o= 117 +2)/(ar+as), §=5( +2)ao/(02 +as),

7= —5as/{(f +4)(az + as)}. (3.4

Under the assumption that the distribution of a statistic T' can be expanded as in (1.8),
Kakizawa (1996) proposed a method for finding a monotone transformation of 7. When
k = 3, his method gives the following transformation with (3.4):

T =T+ (ﬁT— iT2+1T3)
2cx «

+— ! {ﬁzT—-ﬁgT2+<2§7+31 >T3

4n2? | o

27 +2 9 T5} (3.5)

2a2

Note that the expansion (3.5) is same as in (2.6) up to O(n™).
Now, we consider asymptotic expansions of the distributions of T’s with an error term
of O(n~?). For the purpose, from (2.6) we may deal with

FeT+l (ﬁT _Llpey 1T3) : (3.6)
n \« 2a o
The characteristic function of T can be expanded as
o(t) = B(e*T)

=FE {eitT (1 + — (—T - 5—T2 7T3))} +0(n™?)

=(1-2it) 21+ ls S a;(1 —2it)™
nj=0
iy, {e"‘T (éT ~ Lty 1T3)} +0(n7?%).
n « 2a 0"
Note that
E(Te'T) = f(1 — 2it)~ > + O(n7Y),

E(T?*T) = f(f +2)(1 — 2it)>72 4+ O(n™),
E(T%"T) = f(f + 2)(f +4)(1 — 2it) />3 + O(n7?).
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Using these results, we have

C(t) = (1 — 2it)~1/2 {1 41 Ekjdj(l - 2it)™ + O(n-2)} : (3.7)
n ;=
where

do=a-2f, G= o+ 20+ +2)f,

- -
G=a = —(+20f +8)f(/+2), G =a+ L/ +2)(f+4), (38)
d; =a; (j 24).

Inverting (3.7), we can obtain the following theorem.

THEOREM 2. Suppose that a nonnegative random variate T has an asymptotic
ezpansion (1.8), and its first threc moments can be expanded as in (1.1)-(1.2) and (1.10).
Assume that k > 3 and Z;?:z J(G=1)(2§—T)a; # 0. Then, neglecting the terms of O(n=2),
T’s have the same asymptotic expansion given by

. k
P(F < z) = Gy(z) + %;} GG 423(z) + O(n™?), (3.9)

where the coefficients d;’s are given by (3.8).

Theorem 2 shows that the differences between the asymptotic expansions for 7 and T
appear in only the first four coefficients aj, a;,j = 0,1,2,3. Further, we can see that the
asymptotic expansions for T in the cases k = 3 and 4 are considerably simple, and are
close to the distribution of 3. In fact, '

(i) The case k =3; d; =0,5=0,1,2,3 and

P(T < z) = Gy(z) + O(n~?). (3.10)

(ii) The case k = 4; note that

a= %f(f +2)/(a2 + a3 — 2aq), B= %(f +2)(ao — a4)/(az + a3 — 2a4),
7=~ (as +4a0)/{(f +4)(az + a5 — 20},
Hence, we have that dy = a4, d1 = —4ay, d2 = 6ay, d3 = —4ay, 44 = a4, and
P(T < 2) = Gy(2) + 2{G(2) ~ 4G s2() + 6Gpra(e)
—4Gs16(z) + Gyis} + O(n7?) (3.11)

20.4 3 3
= Gy(z) + P ZiC) {“c g i (f +2)(f + 4)933

1 -
"GO arLe” Tor 2’}’
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where g;(z) is the probability density function of x5

It may be noted that the transformations T’s in (2.2)-(2.5) and Tx in (3.5) have
removed the terms of O(n~1) in the asymptotic expansion (1.8) with k = 3. One may refer
to Cordeiro and Ferarri (1998) as well. For k = 4, we have a simple asymptotic expansion
for the distribution of T, which becomes more close to the chi-squared distribution as a4
becomes close to zero. In many instances, the null distributions of test statistics under
nonnormality are expanded in the form (1.8) with k = 3.

4. SOME APPLICATIONS

In this section, we shall give the transformations (2.2)-(2.5) for some statistics and
examine the accuracy of the approximations to the true percentage point t(u) of T.
We conducted simulation experiments as follows: For parameters given in advance, the
approximate percentage point was calculated for each monotone transformation. By using
these percentage points, we conducted the Monte Carlo simulation with 100,000 (= R,
say) independent trials for each test statistic. Let ¢, (r = 1,..., R) be an observed value of
T and p, = 1 (or 0) if £, is (or is not) larger than the approximate percentage point. On the
other hand, let ;) < {pg < --- < {ig) be the ordered values of ¢, and let us define £jp.g55] as
an observed value of t(u). We briefly write it t(u). Let p = 100 YR | p,/R which estimates
the test size (5%) with its estimated standard error s(p) = 100\ﬂi)‘/ 100)(1 — p/100)/R.
TABLEs I and III give values of the approximate percentage point for each monotone
transformation together with the value of ¢(u). As for the actual test sizes, TABLEs II
and IV give values of  (s(p)), on the first (second) line in each cell, for each monotone
transformation.

EXAMPLE 1. Let T = (n — q)s}/s? be a test statistic for testing the equality of
means of ¢ nonnormal populations I; (i = 1,...,q) with common variance. Here, s? and

s2 are the sums of squares due to the hypothesis and the error, respectively, based on

the sample of the size n; from II;. Let p; = /ni/n, where n is the total sample size.
Assume that p; = O(1) as n;’s tend to infinity. Let x3 and x4 be the third and the fourth
cumulants of the standardized variate. Then, under a general condition, an asymptotic
expansion for the null distribution of T' was given by Fujikoshi, Ohmae and Yanagihara
(1999) in the form (1.8) with k = 3, f = ¢ — 1 and the coefficients given by

1
a0 = 7(g = 1)(g — 8) — dar + dara,

1
a1 = —5(q—1)° + 315 — 2dara,

1
az = Z(q2 -1)- 3d1n§ + d3Ka4,

2
az = dl KZ3,
where

d1=§4(il—q2) +45(a- D2,
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(g—1).

.m»—-

1{&n
dy = - — -

We examined performance of our new transfomations under the following three non-

nomal models:
(1) x? distribution with 4 degrees of freedom;
(2) Gamma distribution with shape parameter 3 and scale parameter 1/3;
(3) Exponential distribution with scale parameter 1.

TABLE I gives the true percentage point t(u) and the approximate percentage points
te(u), te(u), tia(u), ts(u), f1.2(u ) t3(u), f4(u) and tx(u) for the case g = 3. Here, u
denotes the upper 5% point of x2, tg(u) and tg(u) are computed on the basis of the
Bartlett corection and the Cornish-Fisher expansion up to the order O(n~1) respectively,
and t3(u), t3(u), £4(u) and tx(u) are computed on the basis of (1.5), (2.4), (2. 5) and (3.5)
respectively. Note that when k = 3, the Cornish-Fisher expansion yields the percentage
point £(u) of T in the same form as in (2.15) with (3.4). It means that the transformations
Tk and T aim to find an improvement of approximations to t(u) in the terms of O(n=2).
On the other hand,

fra(u) = ti(u) if g > 0 and nag + By > 0,
1.2 - tz(u) ifa0<0andnao+ﬂo<0,

where ¢;(u) and #2(u) are computed on the basis of (1.3) and (1.4) respectively. Similarly,

Fra(u) = ti(u) fa>0,na+8>0andy >0,
12(U) = ta(u) fa<0,na+8<0and~y <0,

where £, (u) and #3(u) are defined by (2.13) and (2.14) respectively.

TABLE 1
The percentage points in the case g = 3

Sample sizes Upper 5% points (x3(0. 05) = 5.9915)
ng mna ng| tHu tp (u) tE(u) t1.0{u) t3(u) tl a(u) 13 (U) ta(u) tx (u)
3 3 31983 7703 7378 7958 8.020 - 8.040 8.447 7.943
Model (1) | 5 5 5 | 7.443 6.913 6.823 7.041 7.056 - 7.012 7.122 6.986
k3=+v2 [10 10 10| 6.503 6.419 6.407 6.476 6.479 - 6.449 6.472 6.443
K4 =3 3 6 6 {7416 6913 6.815 7.130 7.179 - 7.116 7.225 7.033
5 5 101]6.900 6.657 6.609 6.811 6.835 - 6.759 6.812 6.720
3 3 3 19937 7.703 7.580 8.176 8.445 - 8.389 8.637 8.719
Model (2) | 5 5 5 | 7425 6.913 6.945 7.158 7.223 - 7177 7.241 7.231
=2/vV3[10 10 10 | 6.399 6.419 6.468 6.530 6.542 - 6.519 6.532 6.528
Kg=2 3 6 6 |7410 6913 6.939 7.213 7.317 - 7.228 7.295 7.278
5 5 10/|6.893 6.657 6.702 6.872 6.922 - 6.849 6.883 6.870
3 3 319262 7.703 6.770 6.966 7.290 - 7.803 8.783 6.689
Model 3) | 5 5 5 [7.081 6913 6.458 6.586 6.686 - 6.717 6.949 6.429
K3 =2 10 10 10| 6.305 6.419 6.225 6.291 6.332 - 6.279 6.332 6.218
kg=26 3 6 6 |7316 6913 6.441 6.821 6.850 - 7.112 7.344 6.453
5 5 106741 6.657 6.329 6.598 6.612 - 6.634 6.735 6.335

100,000 replications
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TABLE II
The actual test sizes in the case ¢ =3
Sample sizes Nominal 5% test
ny ng2 N3 631 (s7%) Qa3 Q4 073 8733 e %4 Qas Qg
3 3 3 (11343 7.608 8.174 7.182 7.086 - 7.060 6.499 7.205
0.100 0.084 0.087 0.082 0.081 - 0.081 0.078 0.082
Model (1) | & 5 5 | 8199 5953 6.136 5.719 5696 - 5762 5.580 5.821
0.087 0.075 0.076 0.073 0073 - 0.074 0.073 0.074
k3=+v2 |10 10 10| 6.256 5.179 5200 5.052 5.045 - 5117 5.059 5.127
0.077 0.070 0.070 0.069 0.069 - 0.070 0.069 0.070
K4=3 3 6 6| 7983 5890 6.071 5478 5412 - 5502 5.331 5.653
0.086 0.074 0.076 0.072 0072 - 0.072 0.071 0.073
5 5 10| 7.095 5484 5572 5.171 5127 - 5281 5.165 5.348
0.081 0.072 0.073 0.070 0.070 - 0.071 0.070 0.071
3 3 3 (11679 7.834 8.050 7.108 6.702 - 6.779 6.437 6.346
0.102 0.085 0.08 0.081 0.079 - 0.079 0.078 0.077
Model (2) | 5 5 5 | 8.092 5855 5788 5428 5323 - 5398 5294 5.312
0.086 0.074 0.074 0.072 0.071 - 0.071 0.071 0.071
k3=2/vV3 |10 10 10| 5941 4945 4838 4714 4686 - 4739 4710 4.719
0.075 0.069 0.069 0.067 0067 - 0.067 0.067 0.067
K4 =2 3 6 6 | 7.961 5.847 5.790 5.313 5.136 - 5287 5.167 5.195
0.086 0.074 0.074 0.071 0070 - 0.071 0.070 0.070
5 5 10| 6.987 5454 5365 5.036 4927 - 5.087 5.014 5.040
0.081 0.072 0.071 0.069 0.068 - 0.069 0.069 0.069
3 3 310257 6.809 8381 8015 7432 - 6.673 5.483 8.552
0.096 0.080 0.088 0.086 0.083 - 0.079 0.072 0.088
Model 3) { 8 5 5 | 7.321 5294 6.210 5930 5719 - 5.665 5.236 6.274
0.082 0.071 0.076 0.075 0.073 - 0.073 0.070 0.077
K3 =2 10 10 10| 5.830 4.749 5.200 5.029 4.986 - 5.063 4.940- 5.217
0.074 0.067 0.070 0.069 0069 - 0.069 0.068 0.070
Kg=6 3 6 6 | 7702 5658 6.553 5.830 5.768 - 5.345 4.969 6.524
0.084 0.073 0.078 0.074 0074 - 0.071 0.069 0.078
5 5 10| 6.655 5.138 5.810 5.261 5238 - 5.191 5.010 5.795
0.079 0.070 0.074 0.071 0070 - 0.070 0.069 0.074

100,000 replications
TABLE II gives the actual test sizes denoted by

o) = P(T > u), Qg = P(T > tB(u)), Qg = P(T > EE(’U,)),
g = P(T > tl.Q(U)), Qg = P(T > t3(U)), Qg = P(T > t1.2(u)),
ar = P(T > t3(v)), ag=P(T > t4(u)), ag=P(T >tx(u)),

for the case ¢ = 3.

In this example, T3 and T are not applicable because of ay < 0. The reason why
there are several a4 and as values very close to the target (5%) would be caused by
the closeness of é3 to 0. In the case when & is close to 0, the advantage of using the
transformations expanded as (2.6) is seriously influenced by the amount of the terms of
O(n~2) in (2.11). In fact, we can see from TABLE II that a reduction of the amount of
the terms of O(n~2) brought by #4(u) is visible as an improvement of the approximation,
especially when n is small.
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EXAMPLE 2. We consider chi-squared approximations for the distribution of the
score statistic Sg. An asymptotic expansion for the null distribution of Sg was given by
Harris (1985) in the form (1.8) with k£ = 3 and the coefficients given by

A—Ai—Ay  _BA3-24+ A A 34 4
24 T 24 T Ty BT oy

The quantities A;, A, and Az are usually functions of unknown parameters. Ferrari,
Uribe-Opazo and Cordeiro (2002) gave simple formulae of A;, A; and Az for two-
parameter exponential family models.

Let us consider the gamma distribution with mean # > 0 and shape parameter ¢ > 0
(y > 0). In the experiment, our interest is in testing Hy : 8 = 6 against H; : 8 # ),
assuming that the shape parameter ¢ is unknown. The Monte Carlo simulation with
100,000 replications was conducted by setting 6@ = 1, ¢ =0.5, 1.0 and 2.0 and the
number of observations was set as n =10, 20, 30 and 40 For each sample, the score
statistic were computed as Sg = no(j — 1)2 where @, the MLE of ¢ under Hp, is
obtained as a solution to the nonlinear equation

S P10 7 — 00
log ¢ — () = log (Gg—) + (2—9%—)

g9

ag =

with 1(¢) = dlogI'(¢)/d¢ the digamma functoin, and 7 and 7, are the sample mean and
geometric mean of yi,...,y,. Then, an asymptotic expansion for the null distribution
of Sg is the chi-squared distribution with 1 degree of freedom followed by the terms of
order n~! with the quantites

6(1— 6%/ (0) —200'(8)} , _ 926W(4) — 3} 2
n GV @ 1 T nelewie) =1 AT g

See Ferrari, Uribe-Opazo and Cordeiro (2002) for the details.

A=

TABLE III
The percentage points in the case 60 =1

Sample sizes Upper 5% points (x$(0.05) = 3.8415)
¢ n t(u) tp(u) tg(u) tio(u) ts(u) fio(u) fa3(u) fa(u) tx(w)
10 3.613 3.891 3.794 4.044 4.023 - 4.039 3.365 3.391
0.5 20 3.580 3.866 3.823 3.957 4.000 - 3.738 3.620 3.608
30 3.652 3.858 3.836 3.922 3.941 - 3.743 3.693 3.684
40 3.722 3.854 3.838 3.903 3.913 - 3.757 3.729 3.723
10 13.599 3.805 3813 3930 3.935 - 3.760 3.587 3.584
1.0 20 3.675 3.868 3.834 3.886 3.887 - 3.752 3.710 3.707
30 3.730 3.859 3.838 3.871 3.872 - 3.771 3.752 3.751
40 3.733 3.855 3.840 3.864 3.864 - 3.784 3.774 3.773
10 3.618 3.884 3.821 3.826 3.831 - 3.740 3.669 3.661
201 - 20 3.737 3.863 3.836 3.833 3.835 - 3.767 3.748 3.746
30 3.768 3.856 3.839 3.836 3.837 - 3.786 3.778 3.777
40 3.811 3.852 3.840 3.837 3.838 - 3.798 3.793 3.793

100,000 replications

50



Similarly to EXAMPLE 1, TABLE III gives the true percentage point and the approx-
imate percentage points for the case 9©® = 1 and TABLE IV gives the corresponding
actual test sizes. N _

In this example as well, T} and T, are not applicable because of oy < 0. From these
tables, we can see the advantage of using the transformations (2.4)-(2.5) and (3.5). In
fact, ¢ is not close to 0. Note that ay < 0 and a < 0. In the case when ay <0 and
o < 0, the inside of exp(+) in (2.4) is always positive, so that the using of exp(-) in (2.4)
would cause to increase the amount of the terms of O,(n™2) in (2.6). We can see that
the transformation (2.5) with the coefficient {1 — (8% — 8+ v — 1)/(n%a®)} produces an
improvement successfully in that sense.

TABLE IV
The actual test sizes in the case 60 =1

Sample sizes Nominal 5% test
¢ n ay Qg asg ay as ag a7 ag Qg
10 4533 4.431 4.616 4.174 3.895 - 4.187 5.612 5.555
0.066 0.065 0.066 0.063 0.061 - 0.063 0.073 0.072
20 4252 4.196 4.278 3.989 3.905 - 4.461 4.757 4.790
0.5 0.064 0.063 0.064 0.062 0.061 - 0.065 0.067 0.068
30 4.443 4.402 4.455 4.265 4.217 - 4.711 4.877 4.893
0.065 0.065 0.065 0.064 0.064 - 0.067 0.068 0.068
40 4.670 4.637 4.679 4.502 4.466 - 4.899 4.985 4.997
0.067 0.066 0.067 0.066 0.065 - 0.068 0.069 0.069
10 4320 4.171 4394 4.088 4.074 - 4.531 5.033 5.044
0.064 0.063 0.065 0.063 0.063 - 0.066 0.069 0.069
20 4502 4414 4.516 4.377 4374 - 4755 4.896 4.903
1.0 0.066 0.065 0.066 0.065 0.065 - 0.067 0.068 0.068 .
30 4.658 4.617 4.668 4.590 4.589 - 4.884 4.934 4.940
0.067 0.066 0.067 0.066 0.066 - 0.068 0.068 0.069
40 4681 4.644 4.688 4.618 4.618 - 4.856 4.877 4.879
0.067 0.067 0.067 0.066 0.066 - 0.068 0.068 0.068
10 4259 4.153 4.337 4.310 4.297 - 4.604 4.835 4.867
0.064 0.063 0.064 0.064 0.064 - 0.066 0.068 0.068
20 4.664 4.606 4.685 4.692 4.688 - 4.910 4.957 4.961
2.0 0.067 0.066 0.067 0.067 0.067 - 0.068 0.069 0.069
30 4782 4.730 4.789 4.796 4.794 - 4.947 4.978 4.979
0.067 0.067 0.068 0.068 0.068 - 0.069 0.069 0.069
40 4900 4.874 4.904 4914 4913 - 5045 5.061 5.065
0.068 0.068 0.068 0.068 0.068 - 0.069 0.069 0.069

100,000 replications

Through EXAMPLEs 1 and 2, we have seen how much the distributions of the trans-
formed statistics T} are close to the one of x? -variate, or how much the approximate
percentage points £;(u) are close to the true percentage point t(u) of T. It is shown
that the proposed transformations of these statistics give a larger improvement to the
chi-squared approximation than do the other transformations. Unfortunately, we cannot
recommend our transformations in the following cases:
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(i) In the case a > 0, T; has the upper limit na + 8. Therefore, when u is close to
na+ (3, the approximate percentage point ¢3(u) cannot hold accuracy seen in EXAMPLEs
1 and 2. Further, when u is over no + 3, the approximate percentage point t3(u) cannot

be used.
(i) In the case ary < 0, T has an extreme value at T’ = \/—2na/(3y). Therefore, when

u is close to that value, the approximate percentage point #3(u) cannot hold accuracy
seen in EXAMPLEs 1 and 2. B _

As for (i)-(ii) described above, Ty has similar natures to T5. To overcome these diffi-
culties (i)-(ii) simultaneously, the following transformation could be one of the options:

7 _[.2 @ l _ 1 Y
T = (n + an) log (1 + n2T 2n3aT + n3aT3

1

1 3y 92
— T2 T3 — T T°
+2n4 + 12n4a2 8nia? 20n4a?

for any a, B, v and n. Its asymptotic expansion form is same as in (2.6) up to O(n71).
The efficiency of this transformation and its modifications are under investigation.
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