<table>
<thead>
<tr>
<th>Title</th>
<th>Kneser's property for a semilinear parabolic partial differential equation with Dirichlet boundary condition (Functional Equations in Mathematical Models)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kaminogo, Takashi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2003, 1309: 214-221</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42887</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Kneser's property for a semilinear parabolic partial differential equation with Dirichlet boundary condition

東北学院大学 教養学部 上之郷高志（Takashi Kaminogo）
Department of Mathematics, Tohoku Gakuin University

1. Introduction. We consider an initial and boundary value problem

\[\begin{align*}
\frac{\partial u}{\partial t} &= \Delta u + F(t, x, u) \quad \text{for} \ 0 < t \leq T, \ x \in D, \ u \in \mathbb{R} \\
\quad u(0, x) &= u_0(x) \quad \text{for} \ x \in \overline{D}, \\
\quad u(t, x) &= 0 \quad \text{for} \ 0 < t \leq T, \ x \in \partial D,
\end{align*} \]

(E_n)

where \(T > 0 \) is a given constant, \(D = (0,1)^n \subset \mathbb{R}^n \), \(F : [0, T] \times \overline{D} \times \mathbb{R} \to \mathbb{R} \) is continuous and \(u_0 \in C(\overline{D}, \mathbb{R}) \) satisfies \(u_0(x) = 0 \) on \(\partial D \). A continuous function \(u(t, x) \) defined on \([0, \tau] \times \overline{D}\) will be called a (mild) solution of (E_n) when \(u \) is expressed by

\[
\begin{align*}
u(t, x) &= \int_D G(t, x, y)u_0(y) \, dy + \int_0^t ds \int_D G(t-s, x, y)F(s, y, u(s, y)) \, dy,
\end{align*}
\]

where \(G \) is the fundamental solution of \(\partial u/\partial t = \Delta u \) with \(u = 0 \) on \(\partial D \).

We shall discuss the Kneser's property for solutions of (E_n). In [2] and [3], we proved that solutions of (E_n) have Kneser's property, where the boundary condition is replaced with Neumann boundary condition and \(D \) is assumed to be a bounded domain with smooth boundary.

In this article, we always assume the following assumption (A) to the function \(F \).

(A) \(F(t, x, y) \) is expressed by

\[
F(t, x, u) = f(t, x, u) + g(t, x, u),
\]

where \(f \) and \(g \) are continuous functions on \([0, T] \times \overline{D} \times \mathbb{R}\) and satisfy

\[
\begin{align*}
f(t, x, u) &= 0 \quad \text{for} \ 0 \leq t \leq T, \ x \in \partial D, \ u \in \mathbb{R}, \\
g(t, x, -u) &= -g(t, x, u) \quad \text{for} \ 0 \leq t \leq T, \ x \in \overline{D}, \ u \in \mathbb{R}.
\end{align*}
\]
Only for simplicity of notations, we shall state our results in the case where $n = 1$, and hence, (E$_n$) will be reduced to the problem
\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} + F(t, x, u) \quad \text{for} \quad 0 < t \leq T, \quad x \in \overline{D} = [0, 1], \quad u \in \mathbb{R}, \\
u(0, x) &= u_0(x) \quad \text{for} \quad x \in \overline{D} = [0, 1], \\
u(t, 0) &= u(t, 1) = 0 \quad \text{for} \quad 0 < t \leq T,
\end{aligned}
\]
where u_0 is a continuous function satisfying $u_0(0) = u_0(1) = 0$. The following example shows that solutions of (E$_1$) are not always unique.

\textbf{Example.} Consider the following problem for $t > 0, x \in [0, 1]$ and $u \in \mathbb{R}$.
\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} + \sqrt{\frac{x^4 - 2x^3 + x}{12}} \sqrt{|u|} + \frac{12u}{1 + x - x^2}, \\
u(0, x) &= 0, \\
u(t, 0) &= u(t, 1) = 0.
\end{aligned}
\]
It is clear that (E) admits the zero solution $u(t, x) \equiv 0$. Furthermore, it is not difficult to see that
\[
u(t, x) = \frac{t^2(x^2 - x)(x^2 - 1)}{48} = \frac{t^2}{4} \cdot \frac{x^4 - 2x^3 + x}{12}
\]
is also a solution of (E).

\textbf{Remark.} The function F in (E) satisfies assumption (A).

2. \textbf{Compactness of solutions.} It is well known (e.g. [1]) that the fundamental solution G for $\partial u/\partial t = \partial^2 u/\partial x^2$ with $u(t, 0) = u(t, 1) = 0$ is expressed by
\[
G(t, x, y) = \sum_{k=-\infty}^{k=\infty} \{E(t, x - y + 2k) - E(t, x + y + 2k)\},
\]
where $E(t, \xi) = (4\pi t)^{-1/2} \exp(-\xi^2/4t)$ for $t > 0, \xi \in \mathbb{R}$.

Let X be any metric space. We shall denote by $BC(X, \mathbb{R})$ the Banach space of all bounded and continuous functions on X with the norm $\| \cdot \|$ defined by
\[
\|v\| = \sup\{|v(x)|; x \in X\}
\]
for $v \in BC(X, \mathbb{R})$. Similarly, for any compact metric space X, we shall denote by
$C(X, \mathbb{R})$ the Banach space of all continuous functions on X with the norm $\| \cdot \|$ given by (3).

By assumption (A), the functions f and g admit a continuous and nondecreasing function $\varphi : [0, \infty) \to (0, \infty)$ with the property that

$$|f(t, x, u)| \leq \varphi(|u|), \quad |g(t, x, u)| \leq \varphi(|u|)$$

for $(t, x, u) \in [0, T] \times [0, 1] \times \mathbb{R}$.

Now we shall define several extensions of the functions $u_0(x), u(t, x), f(t, x, u)$ and $g(t, x, u)$ in the following way. For a function $u_0 \in C([0, 1], \mathbb{R})$ with $u_0(0) = u_0(1) = 0$, we can easily construct a continuous extension $\hat{u}_0 : \mathbb{R} \to \mathbb{R}$ of u which satisfies that $\hat{u}_0(x)$ is an odd mapping and is 2-periodic. Similarly, for $\tau \in (0, T]$ and for a function $u = u(t, x) \in C([0, \tau] \times [0, 1], \mathbb{R})$ satisfying $u(t, 0) = u(t, 1) = 0$ on $[0, \tau]$, let $\tilde{u} = \tilde{u}(t, x) \in C([0, \tau] \times \mathbb{R}, \mathbb{R})$ be a continuous extension of u which is an odd mapping and 2-periodic in x for each $t \in [0, \tau]$, while let $\tilde{u} = \tilde{u}(t, x) \in C([0, \tau] \times \mathbb{R}, \mathbb{R})$ be a continuous extension of u which is an even mapping and 2-periodic in x for each $t \in [0, \tau]$. Finally, for the functions f and g satisfying (1), let $\hat{f} = \hat{f}(t, x, u) \in C([0, T] \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ be an extension of f which is an odd mapping and 2-periodic in x for each $(t, u) \in [0, T] \times \mathbb{R}$, while $\tilde{g} = \tilde{g}(t, x, u) \in C([0, T] \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ be an extension of g which is an even mapping and 2-periodic in x for each $(t, u) \in [0, T] \times \mathbb{R}$. Here, notice that $\tilde{g}(t, x, u)$ is an odd mapping in u because of (1).

Lemma 1. For a function $u_0 \in C([0, 1], \mathbb{R})$ with $u_0(0) = u_0(1) = 0$, we have

$$\int_D G(t, x, y)u_0(y) \, dy = \int_{\mathbb{R}} E(t, x - y)\hat{u}_0(y) \, dy.$$

Proof. It follows from (2) that

$$\int_D G(t, x, y)u_0(y) \, dy$$

$$= \sum_{k = -\infty}^{k = \infty} \left\{ \int_0^1 E(t, x - y + 2k)u_0(y) \, dy - \int_0^1 E(t, x + y + 2k)u_0(y) \, dy \right\} \, dy$$

$$= \sum_{k = -\infty}^{k = \infty} \left\{ \int_{-2k}^{1-2k} E(t, x - z)u_0(z + 2k) \, dz + \int_{-2k}^{-1-2k} E(t, x - z)u_0(-z - 2k) \, dz \right\}$$

$$= \sum_{k = -\infty}^{k = \infty} \left\{ \int_{-2k}^{1-2k} E(t, x - z)\hat{u}_0(z) \, dz + \int_{-1-2k}^{-2k} E(t, x - z)\hat{u}_0(z) \, dz \right\} \, dz$$
Lemma 2. Suppose that (A) holds and that \(\tau \in (0, T] \). Then for a function \(u \in C([0, \tau] \times [0, 1], \mathbb{R}) \) satisfying \(u(t, 0) = u(t, 1) = 0 \) for \(t \in [0, \tau] \), it follows, for \(0 \leq s \leq t \leq \tau \), that

\[
\int_D G(t - s, x, y)f(s, y, u(s, y))\,dy = \int_{\mathbb{R}} E(t - s, x - y)\hat{f}(s, y, \tilde{u}(s, y))\,dy
\]

and

\[
\int_D G(t - s, x, y)g(s, y, u(s, y))\,dy = \int_{\mathbb{R}} E(t - s, x - y)\tilde{g}(s, y, \hat{u}(s, y))\,dy.
\]

Proof. It is easy to observe that the following equalities hold for each \((s, y) \in [0, \tau] \times \mathbb{R}\).

\[
\hat{f}(s, -y, \hat{u}(s, -y)) = -\hat{f}(s, y, \hat{u}(s, y)), \quad \hat{f}(s, y + 2, \hat{u}(s, y + 2)) = \hat{f}(s, y, \hat{u}(s, y)),
\]

\[
\tilde{g}(s, -y, \hat{u}(s, -y)) = -\tilde{g}(s, y, \hat{u}(s, y)), \quad \tilde{g}(s, y + 2, \hat{u}(s, y + 2)) = \tilde{g}(s, y, \hat{u}(s, y)).
\]

By using the similar arguments as in the proof of Lemma 1, we can easily prove the assertion of the lemma.

Let \(h : [0, T] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) be a continuous function satisfying

\[
|h(t, x, u)| \leq \varphi(|u|) \quad \text{for} \quad (t, x, u) \in [0, T] \times \mathbb{R} \times \mathbb{R},
\]

where \(\varphi : [0, \infty) \rightarrow (0, \infty) \) is a continuous and nondecreasing function introduced in the above. For this function \(h, \tau \in (0, T] \) and for \(u \in BC([0, \tau] \times \mathbb{R}, \mathbb{R}) \), define a function \(H(h, u, \tau) \) on \([0, \tau] \times \mathbb{R}\) by

\[
[H(h, u, \tau)](t, x) = \int_0^t ds \int_{\mathbb{R}} E(t - s, x - y)h(s, y, u(s, y))\,dy.
\]

By using similar arguments as in the proof of Lemma 1.5 in [2], we can prove the following lemma.

Lemma 3. For any \(\tau \in (0, T] \), \(u \in BC([0, \tau] \times \mathbb{R}, \mathbb{R}) \) and for any function \(h \) satisfying (5), we have

\[
|[H(h, u, \tau)](t, x) - [H(h, u, \tau)](t', x')|
\leq 8M\sqrt{t}\sqrt{t' - t} + M(t' - t) + 2\sqrt{2}M\sqrt{t}|x - x'|.
\]
for any $0 \leq t < t' \leq \tau$ and $x, x' \in \mathbb{R}$, where $M = \sup \{|h(t, u(t, x))|; t \in [0, \tau], x \in \mathbb{R}\} \leq \varphi(||u||) < \infty$.

Theorem 1 (Existence). Suppose that (A) holds. Then for any function $u_0 \in C([0, 1], \mathbb{R})$ with $u_0(0) = u_0(1) = 0$, there exists at least one solution $u(t, x)$ of (E_1) on $[0, \tau] \times [0, 1]$ for some $\tau > 0$.

Proof. Put $||u_0|| = M_0$ and take a number L satisfying $L > M_0$. Then we can choose a number $\tau > 0$ so that an inequality

$$M_0 + 2\varphi(L)\tau \leq L$$

holds. We denote by V the set of all functions $u \in C([0, \tau] \times [0, 1], \mathbb{R})$ which satisfy that $||u|| \leq L$, $u(t, 0) = u(t, 1) = 0$ and that $u(0, x) = u_0(x)$ for $x \in [0, 1]$. Then V is a closed and convex subset of $C([0, \tau] \times [0, 1], \mathbb{R})$. For every $v \in V$, we define a mapping $\Psi v : [0, \tau] \times [0, 1] \rightarrow \mathbb{R}$ by $[\Psi v](0, x) = u_0(x)$ for $x \in [0, 1]$ and

$$[\Psi v](t, x) = \int_D G(t, x, y)u_0(y)dy + \int_0^t ds \int_D G(t-s, x, y)F(s, y, v(s, y))dy$$

for $0 < t \leq \tau$, $x \in [0, 1]$. Then Ψv belongs to $C([0, \tau] \times [0, 1], \mathbb{R})$ and $[\Psi v](t, 0) = [\Psi v](t, 1) = 0$ for $t \in (0, \tau]$. It follows from Lemmas 1 and 2 that

$$[\Psi v](t, x) = \int_\mathbb{R} E(t, x-y)\hat{u}_0(y)dy$$

$$+ \int_0^t ds \int_\mathbb{R} E(t-s, x-y)\hat{f}(s, y, \tilde{v}(s, y))dy$$

$$+ \int_0^t ds \int_\mathbb{R} E(t-s, x-y)\tilde{g}(s, y, \hat{v}(s, y))dy,$$

thus we have

$$||[\Psi v](t, x)|| \leq M_0 + \int_0^t ds \int_\mathbb{R} E(t-s, x-y)\varphi(||\hat{v}||)dy$$

$$+ \int_0^t ds \int_\mathbb{R} E(t-s, x-y)\varphi(||\tilde{v}||)dy$$

$$\leq M_0 + 2\varphi(L)\tau \leq L$$

because $\int_\mathbb{R} E(t, x-y)dy = 1$. Therefore, we obtain that $\Psi(V) \subset V$. It follows from (6) and Lemma 3 that $\Psi(V)$ is relatively compact, and hence, we can find a fixed point u in V by Shauder's fixed point theorem. Clearly, u is a solution of (E_1), which completes the proof. \square
Lemma 4. Suppose that (A) holds. Then there exist two numbers $\tau > 0$ and $M > 0$ such that every solution u of (E) exists and satisfies $|u(t, x)| \leq M$ on $[0, \tau] \times [0, 1]$.

Proof. Put $||u_0|| = M_0$. Then any solution u of (E) satisfies

$$|u(t, x)| \leq M_0 + 2 \int_0^t \int_{\mathbb{R}} E(t-s, x-y) \varphi(||u(s)||) dy ds$$

for $t > 0$ and $x \in [0, 1]$ as long as u exists, where $||u(s)|| = \sup\{|u(s, y)|; y \in [0, 1]\}$. Therefore, it follows that

$$||u(t)|| \leq M_0 + 2 \int_0^t \varphi(||u(s)||) ds.$$

If we put $v(t) := ||u(t)||$ and $w(t) := M_0 + 2 \int_0^t \varphi(v(s)) ds$ for $t > 0$, then we have $v(t) \leq w(t)$ and $w'(t) = 2\varphi(v(t)) \leq 2\varphi(w(t))$. By the comparison theorem in the theory of ordinary differential equations, the maximal solution $p(t)$ of $p' = 2\varphi(p)$ with $p(0) = M_0$ exists on $[0, \tau]$ for some $\tau > 0$ and an inequality $p(\tau) \geq p(t) \geq w(t)$ holds on $[0, \tau]$. By putting $M = p(\tau)$, we have the assertion. \qed

3. Kneser's property. For the functions f and g satisfying (1) and for $m \in \mathbb{N}$, we put

$$f_m(t, x, u) = \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} f(t, x, v) dv, \quad g_m(t, x, u) = \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} g(t, x, v) dv.$$

Then $f_m(t, x, u) = 0$ for $x = 0, 1$, while $g_m(t, x, -u) = -g_m(t, x, u)$ by virtue of (1). It is easy to see that $\{f_m\}$ and $\{g_m\}$ converge, respectively, to f and g uniformly on every compact set in $[0, T] \times [0, 1] \times \mathbb{R}$. Clearly, f_m and g_m are locally Lipschitz continuous in u. Moreover, by the mean value theorem in integration, we have

$$|f_m(t, x, u)| \leq \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} |f(t, x, v)| dv \leq \frac{m}{2} \int_{u-\frac{1}{m}}^{u+\frac{1}{m}} \varphi(|v|) dv = \varphi(|u + \theta/m|) \leq \varphi(|u| + 1),$$

where θ is a suitable number satisfying $-1 < \theta < 1$. By replacing $\varphi(s + 1)$ by $\varphi(s)$, we may assume that $|f_m(t, x, u)| \leq \varphi(|u|)$. Similarly, we may also assume that $|g_m(t, x, u)| \leq \varphi(|u|)$.

Theorem 2. Suppose that (A) holds and that \(u_0 \in C([0, 1], \mathbb{R}) \) is an arbitrary function satisfying \(u_0(0) = u_0(1) = 0 \). Then a family

\[
\mathcal{F} = \{ u \in C([0, \tau] \times [0, 1], \mathbb{R}); u \text{ is a solution of } (E_1) \}
\]

is compact and connected in \(C([0, \tau] \times [0, 1], \mathbb{R}) \) when \(\tau > 0 \) is sufficiently small.

Proof. By Lemma 4, there exist \(\tau > 0 \) and \(M > 0 \) such that every solution \(u \) of \((E_1) \) exists and satisfies \(|u(t, x)| \leq M \) on \([0, \tau] \times [0, 1] \). For this \(\tau > 0 \), we shall prove the assertion of the theorem.

It suffices to show that \(\mathcal{F} \) is connected because the compactness of \(\mathcal{F} \) is obvious by Lemma 3. Suppose that \(\mathcal{F} \) is not connected. Then there exist an open set \(\mathcal{O} \) and two nonempty compact sets \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) in \(C([0, \tau] \times [0, 1], \mathbb{R}) \) such that

\[
\mathcal{F}_1 \cup \mathcal{F}_2 = \mathcal{F}, \quad \mathcal{F}_1 \subset \mathcal{O}, \quad \mathcal{F}_2 \cap \overline{\mathcal{O}} = \emptyset.
\]

Let \(u_1 \) and \(u_2 \) be any elements in \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \), respectively. Then, for each \(m \in \mathbb{N} \), \(u_i \) is a solution of

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + H_i(t, x, u), \quad (i = 1, 2),
\]

where

\[
H_i(t, x, u) = F(t, x, u_i(t, x)) - F_m(t, x, u_i(t, x)) + F_m(t, x, u)
\]

and

\[
F_m(t, x, u) = f_m(t, x, u) + g_m(t, x, u).
\]

Let \(m \) be fixed. For any \(\theta \in [0, 1] \), define \(\Phi_\theta(t, x, u) \) by

\[
\Phi_\theta(t, x, u) = (1 - \theta)H_1(t, x, u) + \theta H_2(t, x, u).
\]

Then \(\Phi_\theta(t, x, u) \) is expressed by

\[
\Phi_\theta(t, x, u) = G_m(t, x) + f_m(t, x, u) + g_m(t, x, u),
\]

where

\[
G_m(t, x) = (1 - \theta)\{F(t, x, u_1(t, x)) - F_m(t, x, u_1(t, x))\}
\]

\[
+ \theta\{F(t, x, u_2(t, x)) - F_m(t, x, u_2(t, x))\}.
\]

Here, we notice that \(G_m(t, 0) = G_m(t, 1) = 0 \). Since \(\{G_m(t, x)\} \) converges to 0 uniformly on \([0, \tau] \times [0, 1] \) as \(m \to \infty \), we may assume that \(|G_m(t, x)| \leq 1 \) for \(m \in \mathbb{N} \).
by taking a subsequence if necessary. Therefore, we may also assume that

$$|G_m(t, x) + f_m(t, x, u)| \leq \varphi(|u|)$$

by replacing $1 + \varphi(s)$ by $\varphi(s)$.

For any fixed $m \in \mathbb{N}$, a problem

$$\begin{aligned}
& \left\{ \begin{array}{lcl}
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \Phi_\theta(t, x, u) & \text{for } 0 < t \leq \tau, x \in [0, 1], u \in \mathbb{R}, \\
 u(0, x) = u_0(x) & \text{for } x \in [0, 1], \\
 u(t, 0) = u(t, 1) = 0 & \text{for } 0 < t \leq \tau
\end{array} \right.
\end{aligned}$$

(E_\theta)

has a unique solution $v_\theta(t, x)$ because $\Phi_\theta(t, x, u)$ is locally Lipschitz continuous in u. Evidently, $v_0 = u_1$ and $v_1 = u_2$. Moreover, it is not difficult to verify that a mapping $\theta \mapsto v_\theta$ is continuous from $[0, 1]$ into $C([0, \tau] \times [0, 1], \mathbb{R})$, and hence, there exists a $\theta \in [0, 1]$ such that $v_\theta \in \partial O$. We denote these θ and v_θ by θ_m and u_m, respectively. Then u_m is a solution of (E_{\theta_m}) and a relation $u_m \in \partial O$ holds. It follows from Lemma 3 that $\{u_m\}$ is equicontinuous on $[0, \tau] \times [0, 1]$, and hence, we may assume that $\{u_m\}$ converges uniformly to some $u \in C([0, \tau] \times [0, 1], \mathbb{R})$ by taking a subsequence if necessary. Since $\{\Phi_{\theta_m}\}$ converges to $f + g$ uniformly on every compact set in $[0, \tau] \times [0, 1] \times \mathbb{R}$, u is a solution of (E_1), which implies that $u \in \partial O$ and $u \in \mathcal{F}$. This is a contradiction. \hfill \Box

The following corollary is a direct consequence of Theorem 2.

Corollary. Under the same assumptions as in Theorem 2, a set

$$\mathcal{F} = \{u(\tau) \in C([0, 1], \mathbb{R}); u \text{ is a solution of (E_1)}\}$$

is compact and connected in $C([0, 1], \mathbb{R})$ when $\tau > 0$ is sufficiently small.

REFERENCES

