<table>
<thead>
<tr>
<th>Title</th>
<th>Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Representation Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sagaki, Daisuke; Naito, Satoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1310: 65-84</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/42900</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra

佐垣 大輔 (Daisuke SAGAKI) 内藤 聡 (Satoshi NAITO)
筑波大学 数学系
Institute of Mathematics,
University of Tsukuba
sagaki@math.tsukuba.ac.jp naito@math.tsukuba.ac.jp

0 Introduction.

Let \(\mathfrak{g} \) be a symmetrizable \(K \)-\(\mathcal{X} \)-\(\mathbf{M} \) algebra over \(\mathbb{Q} \) with the Cartan subalgebra \(\mathfrak{h} \) and the Weyl group \(W \). We fix an integral weight lattice \(P \subset \mathfrak{h}^* := \text{Hom}_\mathbb{Q}(\mathfrak{h}, \mathbb{Q}) \) that contains all simple roots of \(\mathfrak{g} \). Let \(\lambda \in P \) be an integral weight. In [L1] and [L2], Littelmann introduced the notion of Lakshmibai–Seshadri paths of shape \(\lambda \), which are piecewise linear, continuous maps \(\pi : [0, 1] \to P \) parametrized by pairs of a sequence of elements of \(W \lambda \) and a sequence of rational numbers satisfying a certain condition, called the chain condition. Denote by \(\mathcal{B}(\lambda) \) the set of Lakshmibai–Seshadri paths of shape \(\lambda \). Littelmann proved that \(\mathcal{B}(\lambda) \) has a normal crystal structure in the sense of [Kas3], and that if \(\lambda \) is a dominant integral weight, then the formal sum \(\sum_{\pi \in \mathcal{B}(\lambda)} e(\pi(1)) \) is equal to the character \(\text{ch} L(\lambda) \) of the integrable highest weight \(\mathfrak{g} \)-module \(L(\lambda) \) of highest weight \(\lambda \). Then he conjectured that \(\mathcal{B}(\lambda) \) for dominant \(\lambda \in P \) would be isomorphic to the crystal base of the integrable highest weight module of highest weight \(\lambda \) as crystals. This conjecture was affirmatively proved independently by Kashiwara [Kas4] and Joseph [J].

In [Kas2] and [Kas5], Kashiwara introduced an extremal weight module \(V(\lambda) \) of extremal weight \(\lambda \in P \) over the quantized universal enveloping algebra \(U_q(\mathfrak{g}) \) over \(\mathbb{Q}(q) \), and showed that it has a crystal base \(\mathcal{B}(\lambda) \). The extremal weight module is a natural generalization of an integrable highest (lowest) weight module. In fact, we know from [Kas2, §8] that if \(\lambda \in P \) is dominant (resp. anti-dominant), then the extremal weight module \(V(\lambda) \) is isomorphic to the integrable highest (resp. lowest) weight module of highest (resp. lowest) weight \(\lambda \), and the crystal base \(\mathcal{B}(\lambda) \) of \(V(\lambda) \) is isomorphic to the crystal base of the integrable highest (resp. lowest) weight module as a crystal.
Now, we assume that g is of affine type. Let I be the index set of the simple roots of g, and fix a special vertex $0 \in I$ as in [Kas5, §5.2]. In this paper, as an extension of the isomorphism theorem due to Kashiwara and Joseph, we prove that if λ is a level-zero fundamental weight $\varpi_i \in P$ for $i \in I_0 := I \setminus \{0\}$ (see [Kas5, §5.2]; note that ϖ_i is not dominant), then the connected component $B_0(\varpi_i)$ of $B(\varpi_i)$ containing $\pi_{\varpi_i}(t) := t \varpi_i$ is isomorphic to the crystal base $B(\varpi_i)$ of the extremal weight module $V(\varpi_i)$ as crystals. Namely, we prove the following:

Theorem 1. Assume that g is of affine type. There exists a unique isomorphism $\Phi_{\varpi_i} : B(\varpi_i) \cong B_0(\varpi_i)$ of crystals such that $\Phi_{\varpi_i}(\varpi_i) = \pi_{\varpi_i}$, where $\varpi_i \in B(\varpi_i)$ is the unique extremal weight element of weight ϖ_i.

Let g_s be the Levi subalgebra corresponding to a proper subset S of the index set I, and let $U_q(g_s) \subset U_q(g)$ be the quantized universal enveloping algebra of g_s. By restriction, we can regard the crystals $B(\varpi_i)$ and $B_0(\varpi_i)$ for $U_q(g)$ as crystals for $U_q(g_s)$. We show the following branching rule for $B(\varpi_i)$ and $B_0(\varpi_i)$ as crystals for $U_q(g_s)$:

Theorem 2. As crystals for $U_q(g_s)$, $B(\varpi_i)$ and $B_0(\varpi_i)$ decompose as follows:

$$B(\varpi_i) \cong \bigsqcup_{\pi \in B(\varpi_i) \text{ g_s-dominant}} B_S(\pi(1)), \quad B_0(\varpi_i) \cong \bigsqcup_{\pi \in B_0(\varpi_i) \text{ g_s-dominant}} B_S(\pi(1)).$$

where $B_S(\lambda)$ is the set of Lakshmibai–Seshadri paths of shape λ for $U_q(g_s)$, and $\pi \in B(\varpi_i)$ is said to be g_s-dominant if $(\pi(t))(\alpha_i^\vee) \geq 0$ for all $t \in [0, 1]$ and $i \in S$.

We also show that the extremal weight module $V(\varpi_i)$ of extremal weight ϖ_i is completely reducible as a $U_q(g_s)$-module. Then, as an application of Theorems 1 and 2 above, we obtain the following branching rule for $V(\varpi_i)$:

Theorem 3. The extremal weight module $V(\varpi_i)$ of extremal weight ϖ_i is completely reducible as a $U_q(g_s)$-module, and the decomposition of $V(\varpi_i)$ as a $U_q(g_s)$-module is given by:

$$V(\varpi_i) \cong \bigoplus_{\pi \in B_0(\varpi_i) \text{ g_s-dominant}} V_S(\pi(1)),$$

where $V_S(\lambda)$ is the integrable highest weight $U_q(g_s)$-module of highest weight λ.

Assume that ϖ_i is minuscule, i.e., $\varpi_i(\alpha_i^\vee) \in \{\pm 1, 0\}$ for every dual real root α_i^\vee of g. Then we can check that $B(\varpi_i)$ is connected, and hence $B(\varpi_i) = B_0(\varpi_i)$.
In this case, we get the following decomposition rule of Littelmann type for the concatenation $\mathcal{B}(\lambda) \ast \mathcal{B}(\varpi_i)$. Here we note that unlike Theorems 2 and 3, this theorem does not necessarily imply the decomposition rule for tensor products of corresponding $U_q(\mathfrak{g})$-modules.

Theorem 4. Let λ be a dominant integral weight which is not a multiple of the null root δ of \mathfrak{g}, and assume that ϖ_i is minuscule. Then, the concatenation $\mathcal{B}(\lambda) \ast \mathcal{B}(\varpi_i)$ decomposes as follows:

$$\mathcal{B}(\lambda) \ast \mathcal{B}(\varpi_i) \cong \bigoplus_{\pi \in \mathcal{B}(\varpi_i)} \mathcal{B}(\lambda + \pi(1)),$$

where $\pi \in \mathcal{B}(\varpi_i)$ is said to be λ-dominant if $(\lambda + \pi(t))(\alpha_i^\vee) \geq 0$ for all $t \in [0,1]$ and $i \in I$.

Remark. The reader should compare Theorems 1 and 4 with the corresponding results [G, Theorems 1.5 and 1.6] of Greenstein for bounded modules.

Acknowledgments. We are grateful to Professors Jonathan Beck and Hiraku Nakajima for informing us their results in [BN], and permitting us to use them.

1 Preliminaries and Notation.

1.1 Quantized universal enveloping algebras. Let $A = (a_{ij})_{i,j \in I}$ be a symmetrical Cartan matrix, and $\mathfrak{g} := \mathfrak{g}(A)$ the Kac–Moody algebra over \mathbb{Q} associated to the generalized Cartan matrix A. Denote by \mathfrak{h} the Cartan subalgebra, by $\Pi := \{\alpha_i\}_{i \in I} \subset \mathfrak{h}^*$ and $\Pi^\vee := \{\alpha_i^\vee\}_{i \in I} \subset \mathfrak{h}$ the set of simple roots and simple coroots, and by $W = \langle r_i \mid i \in I \rangle$ the Weyl group. We take (and fix) an integral weight lattice $P \subset \mathfrak{h}^*$ such that $\alpha_i \in P$ for all $i \in I$.

Denote by $U_q(\mathfrak{g})$ the quantized universal enveloping algebra of \mathfrak{g} over the field $\mathbb{Q}(q)$ of rational functions in q, and by $U_q^{-}(\mathfrak{g})$ (resp. $U_q^{+}(\mathfrak{g})$) the negative (resp. positive) part of $U_q(\mathfrak{g})$. We denote by $\widetilde{U}_q(\mathfrak{g}) = \bigoplus_{\lambda \in P} U_q(\mathfrak{g}) a_{\lambda}$ the modified quantized universal enveloping algebra of \mathfrak{g}, where a_{λ} is a formal element of weight λ (cf. [Kas2, §1.2]).

1.2 Affine Lie algebras. Assume that \mathfrak{g} is of affine type. Let

$$\delta = \sum_{i \in I} a_i \alpha_i \in \mathfrak{h}^* \quad \text{and} \quad c = \sum_{i \in I} a_i^\vee \alpha_i^\vee \in \mathfrak{h}$$

(1.2.1)
be the null root and the canonical central element of \mathfrak{g}. We denote by (\cdot, \cdot) the bilinear form on \mathfrak{h}^*, which is normalized by: $a_i^\vee = \frac{\langle \alpha_i, \alpha_i \rangle}{2} a_i$ for all $i \in I$. Set $\mathfrak{h}_0^* := \bigoplus_{i \in I} \mathbb{Q} \alpha_i \subset \mathfrak{h}^*$, and let $\text{cl} : \mathfrak{h}_0^* \rightarrow \mathfrak{h}_0^*/\mathbb{Q} \delta$ the canonical map from \mathfrak{h}_0^* onto the quotient space $\mathfrak{h}_0^*/\mathbb{Q} \delta$. We have a bilinear form (also denoted by (\cdot, \cdot)) on $\mathfrak{h}_0^*/\mathbb{Q} \delta$ induced from the bilinear form (\cdot, \cdot), which is positive-definite.

We take (and fix) a special vertex $0 \in I$ as in [Kas5, §5.2], and set $I_0 := I \setminus \{0\}$. For $i \in I_0$, let ϖ_i be a unique element in $\bigoplus_{i \in I_0} \mathbb{Q} \alpha_i$ such that $\varpi_i(\alpha_j^\vee) = \delta_{i,j}$ for all $j \in I_0$. Notice that $\Lambda_i := \varpi_i + a_i^\vee \Lambda_0$ is an i-th fundamental weight for \mathfrak{g}, where Λ_0 is a 0-th fundamental weight for \mathfrak{g}. So, we may assume that all the ϖ_i's are contained in the integral weight lattice P.

1.3 Crystal bases. Let $B(\infty)$ be the crystal base of the negative part $U_q^{-}(\mathfrak{g})$ with u_∞ the highest weight element. Denote by e_i and f_i the raising and lowering Kashiwara operator on $B(\infty)$, respectively, and define $\varepsilon_i : B(\infty) \rightarrow \mathbb{Z}$ and $\varphi_i : B(\infty) \rightarrow \mathbb{Z}$ by

$$
\varepsilon_i(b) := \max\{n \geq 0 \mid e_i^n b \neq 0\}, \quad \varphi_i(b) := \varepsilon_i(b) + (\text{wt}(b))(\alpha_i^\vee).
$$

Denote by $\ast : B(\infty) \rightarrow B(\infty)$ the \ast-operation on $B(\infty)$ (cf. [Kas1, Theorem 2.1.1] and [Kas3, §8.3]). We put $e_i^* := \ast \circ e_i \circ \ast$ and $f_i^* := \ast \circ f_i \circ \ast$ for each $i \in I$.

Theorem 1.3.1 (cf. [Kas1, Theorem 2.2.1]). For each $i \in I$, there exists an embedding $\Psi_i^{-} : B(\infty) \hookrightarrow B(\infty) \otimes B_i$ of crystals that maps u_∞ to $u_\infty \otimes b_i(0)$, where $B_i := \{b_i(n) \mid n \in \mathbb{Z}\}$ is a crystal in [Kas1, Example 1.2.6]. In addition, if $b = (f_i^*)^k b_0$ for some $k \in \mathbb{Z}_{\geq 0}$ and $b_0 \in B(\infty)$ such that $e_i^* b_0 = 0$, then $\Psi_i^{-}(b) = b_0 \otimes b_i(-k)$.

We denote by $B(-\infty)$ the crystal base of the positive part $U_q^{+}(\mathfrak{g})$ with $u_{-\infty}$ the lowest weight vector, and by e_i and f_i the raising and lowering Kashiwara operator on $B(-\infty)$, respectively. We set

$$
\varepsilon_i(b) := \varphi_i(b) - (\text{wt}(b))(\alpha_i^\vee), \quad \varphi_i(b) := \max\{n \geq 0 \mid f_i^n b \neq 0\}.
$$

We also have the \ast-operation $\ast : B(-\infty) \rightarrow B(-\infty)$ on $B(-\infty)$. We can easily show that there exists an embedding $\Psi_i^{+} : B(-\infty) \hookrightarrow B_i \otimes B(-\infty)$ of crystals with properties similar to Ψ_i^{-} in Theorem 1.3.1.

Let $B(\tilde{U}_q(\mathfrak{g})) = \bigsqcup_{\lambda \in \mathcal{P}} B(U_q(\mathfrak{g})a_\lambda)$ be the crystal base of the modified quantized universal enveloping algebra $\tilde{U}_q(\mathfrak{g})$ with u_λ the element of $B(U_q(\mathfrak{g})a_\lambda)$ corresponding to $a_\lambda \in U_q(\mathfrak{g})a_\lambda$ (cf. [Kas2, Theorem 2.1.2]). We denote by e_i and f_i the raising
and lowering Kashiwara operator on \(B(\tilde{U}_q(g)) \), and define \(\epsilon_i : B(\tilde{U}_q(g)) \to \mathbb{Z} \) and \(\varphi_i : B(\tilde{U}_q(g)) \to \mathbb{Z} \) by

\[
\epsilon_i(b) := \max\{n \geq 0 \mid e_i^n b \neq 0\}, \quad \varphi_i(b) := \max\{n \geq 0 \mid f_i^n b \neq 0\}. \tag{1.3.3}
\]

We know the following theorem from [Kas2, Theorem 3.1.1].

Theorem 1.3.2. There exists an isomorphism \(\Xi_\lambda : B(U_q(g)a_\lambda) \cong B(\infty) \otimes T_\lambda \otimes B(-\infty) \) of crystals such that \(\Xi_\lambda(u_\lambda) = u_\infty \otimes t_\lambda \otimes u_{-\infty} \), where \(T_\lambda := \{ t_\lambda \} \) is a crystal consisting of a single element \(t_\lambda \) of weight \(\lambda \) (cf. [Kas3, Example 7.3]).

We also denote by \(* : B(\tilde{U}_q(g)) \to B(\tilde{U}_q(g)) \) the *-operation on \(B(\tilde{U}_q(g)) \) (cf. [Kas2, Theorem 4.3.2]). We know the following theorem from [Kas2, Corollary 4.3.3].

Theorem 1.3.3. Let \(b \in B(U_q(g)a_\lambda) \), and assume that \(\Xi_\lambda(b) = b_1 \otimes t_\lambda \otimes b_2 \) with \(b_1 \in B(\infty) \) and \(b_2 \in B(-\infty) \). Then, \(b^* \) is contained in \(B(U_q(g)a_{\lambda'}) \), where \(\lambda' := -\lambda - \text{wt}(b_1) - \text{wt}(b_2) \), and \(\Xi_{\lambda'}(b^*) = b_1^* \otimes t_{\lambda'} \otimes b_2^* \).

1.4 The crystal base of an extremal weight module.

Since \(B(\tilde{U}_q(g)) \) is a normal crystal, we can define an action of the Weyl group \(W \) on \(B(\tilde{U}_q(g)) \) (see [Kas2, §7.1]); for \(i \in I \), we define an action of the simple reflection \(r_i \) by

\[
r_i b := \begin{cases} f_i^n b & \text{if } n := (\text{wt}(b))(\alpha_i^\vee) \geq 0 \\ e_i^{-n} b & \text{if } n := (\text{wt}(b))(\alpha_i^\vee) \leq 0 \end{cases} \quad \text{for } b \in B(\tilde{U}_q(g)). \tag{1.4.1}
\]

An element \(b \in B(\tilde{U}_q(g)) \) is said to be extremal if the elements \(\{ wb \}_{w \in W} \subset B(\tilde{U}_q(g)) \) satisfy the following condition for all \(i \in I \):

\[
\begin{align*}
&\text{if } (\text{wt}(wb))(\alpha_i^\vee) \geq 0, \text{ then } e_i(wb) = 0, \\
&\text{and if } (\text{wt}(wb))(\alpha_i^\vee) \leq 0, \text{ then } f_i(wb) = 0. \tag{1.4.2}
\end{align*}
\]

For \(\lambda \in P \), we define a subcrystal \(B(\lambda) \) of \(B(U_q(g)a_\lambda) \) by

\[
B(\lambda) := \{ b \in B(U_q(g)a_\lambda) \mid b^* \text{ is extremal} \}. \tag{1.4.3}
\]

Remark that \(u_\lambda \in B(U_q(g)a_\lambda) \) is contained in \(B(\lambda) \). We know from [Kas2, Proposition 8.2.2] and [Kas5, §3.1] that \(B(\lambda) \) is the crystal base of the extremal weight module \(V(\lambda) \) of extremal weight \(\lambda \) over \(U_q(g) \).
2 Some Tools for Crystal Bases.

2.1 Multiple maps. We know the following theorem.

Theorem 2.1.1 ([Kas4, Theorem 3.2]). Let $m \in \mathbb{Z}_{>0}$. There exists a unique injective map $S_{m,\infty} : B(\infty) \hookrightarrow B(\infty)$ such that for each $b \in B(\infty)$ and $i \in I$, we have

\[
\mathrm{wt}(S_{m,\infty}(b)) = m \mathrm{wt}(b), \quad \epsilon_i(S_{m,\infty}(b)) = m \epsilon_i(b), \quad \varphi_i(S_{m,\infty}(b)) = m \varphi_i(b),
\]

(2.1.1)

\[
S_{m,\infty}(u_\infty) = u_\infty, \quad S_{m,\infty}(e_i b) = e_i^m S_{m,\infty}(b), \quad S_{m,\infty}(f_i b) = f_i^m S_{m,\infty}(b).
\]

(2.1.2)

Proposition 2.1.2. We set $S_{m,\infty}^* := \ast \circ S_{1n,\infty} \circ \ast$. Then we have $S_{m,\infty}^* = S_{m,\infty}$ on $B(\infty)$. Namely, the \ast-operation commutes with the map $S_{m,\infty} : B(\infty) \hookrightarrow B(\infty)$.

The proposition above can be shown in a way similar to [NS2, Theorem 2.3.1]. Before giving a proof of the proposition, we show the following lemma.

Lemma 2.1.3. The following diagram is commutative:
\[
\begin{array}{ccc}
B(\infty) & \xrightarrow{\Psi_j^{-}} & B(\infty) \otimes B_j \\
S_{m,\infty}^* & \downarrow & S_{m,\infty}^* \otimes S_{m,j} \\
B(\infty) & \xrightarrow{\Psi_j} & B(\infty) \otimes B_j.
\end{array}
\]

(2.1.3)

Here $S_{m,j} : B_j \to B_j$ is a map defined by $S_{m,j}(b_j(n)) := b_j(mn)$.

Proof. For $b \in B(\infty)$, there exists $b_0 \in B(\infty)$ such that $b = (f_j^*)^k b_0$ for some $k \in \mathbb{Z}_{\geq 0}$ and $e_j^* b_0 = 0$. Then, by Theorem 1.3.1, we have $\Psi_j^{-}(b) = b_0 \otimes b_j(-k)$, and hence

\[
(S_{\infty}^* \otimes S_{m,j})(\Psi_j^{-}(b)) = S_{\infty}^*(b_0) \otimes b_j(-mk).
\]

On the other hand, we see that $S_{m,\infty}^*(b) = (f_j^*)^k S_{m,\infty}^*(b_0)$. If $e_j^* S_{m,\infty}^*(b_0) \neq 0$, then we have $\epsilon_j(S_{m,\infty}(b_0)) \geq 1$. Since $\epsilon_j(S_{m,\infty}(b)) = m \epsilon_j(b) \in m \mathbb{Z}$ for all $b \in B(\infty)$, we deduce that $\epsilon_j(S_{m,\infty}(b_0)) \geq m$, and hence $(e_j^*)^m S_{m,\infty}^*(b_0) \neq 0$. However, since $e_j^* b_0 = 0$, we get $(e_j^*)^m S_{m,\infty}^*(b_0) = S_{m,\infty}^*(e_j^* b_0) = 0$, which is a contradiction. Therefore, we conclude that $e_j^* S_{m,\infty}^*(b_0) = 0$. It follows from Theorem 1.3.1 that

\[
\Psi_j^{-}(S_{m,\infty}^*(b)) = \Psi_j^{-}((f_j^*)^k S_{m,\infty}^*(b_0)) = S_{m,\infty}^*(b_0) \otimes b_j(-mk).
\]

Hence we have $(S_{m,\infty}^* \otimes S_{m,j})(\Psi_j^{-}(b)) = \Psi_j^{-}(S_{m,\infty}^*(b))$. This completes the proof of the lemma. \qed
Proof of Proposition 2.1.2. We will prove that $S_{n,\infty}^{*}(b) = S_{m,\infty}(b)$ for $b \in \mathcal{B}(\infty)$ by induction on the height $\text{ht}(\xi)$ of ξ (note that $-\text{wt}(b) \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_{i}$ for all $b \in \mathcal{B}(\infty)$). If $\text{ht}(\xi) = 0$, then b is the highest weight element $u_{\infty} \in \mathcal{B}(\infty)$, and hence the assertion is obvious.

Assume that $\text{ht}(\xi) \geq 1$. Then, there exists some $i \in I$ such that $b_{1} := e_{i}b \neq 0$. If $e_{j}^{*}b_{1} = 0$ for all $j \in I$, then $b_{1} = u_{\infty}$, and hence $b = f_{i}u_{\infty}$. Because $f_{i}^{k}u_{\infty}$ is a unique element of weight $-k\alpha_{i}$ for each $k \in \mathbb{Z}_{\geq 0}$, and $\text{wt}(b^{*}) = \text{wt}(b)$ for all $b \in \mathcal{B}(\infty)$, we deduce that $b^{*} = b$, and hence that

$$S_{m,\infty}^{*}(b) = (S_{m,\infty}(b^{*}))^{*} = (S_{m,\infty}(b))^{*} = f_{i}^{m}u_{\infty} = S_{m,\infty}(b).$$

So, we may assume that there exists $j \in I$ such that $e_{j}^{*}b_{1} \neq 0$. Let $b_{2} \in \mathcal{B}(\infty)$ be such that $e_{j}^{*}b_{2} = 0$ and $b_{1} = (f_{j}^{*})^{k}b_{2}$ for some $k \in \mathbb{Z}_{\geq 1}$. Namely, $b = f_{i}(f_{j}^{*})^{k}b_{2}$ for some $k \geq 1$ and $b_{2} \in \mathcal{B}(\infty)$ such that $e_{j}^{*}b_{2} = 0$.

Case 1: $i \neq j$. We show that $\Psi_{j}^{-}(S_{m,\infty}^{*}(b)) = \Psi_{j}^{-}(S_{m,\infty}(b))$ (recall that $\Psi_{j}^{-} : \mathcal{B}(\infty) \hookrightarrow \mathcal{B}(\infty) \otimes \mathcal{B}_{j}$ is an embedding of crystals). We have

$$\Psi_{j}^{-}(b) = \Psi_{j}^{-}(f_{i}(f_{j}^{*})^{k}b_{2}) = f_{i}\Psi_{j}^{-}((f_{j}^{*})^{k}b_{2}) = f_{i}(b_{2} \otimes b_{j}(-k))$$

$$= f_{i}b_{2} \otimes b_{j}(-k).$$

Here the last equality immediately follows from the definition of the tensor product of crystals (see, for example, [Kas3, §7.3]) and the condition that $i \neq j$. Therefore, we obtain

$$\Psi_{j}^{-}(S_{m,\infty}^{*}(b)) = (S_{m,\infty} \otimes S_{m,j})(\Psi_{j}^{-}(b)) \quad \text{by Lemma 2.1.3}$$

$$= S_{m,\infty}(f_{i}b_{2}) \otimes b_{j}(-mk)$$

$$= S_{m,\infty}(f_{i}b_{2}) \otimes b_{j}(-mk) \quad \text{by the inductive assumption}$$

$$= f_{i}^{m}S_{m,\infty}(b_{2}) \otimes b_{j}(-mk).$$

On the other hand,

$$S_{m,\infty}(b) = S_{m,\infty}(f_{i}(f_{j}^{*})^{k}b_{2}) = f_{i}^{m}S_{m,\infty}((f_{j}^{*})^{k}b_{2})$$

$$= f_{i}^{m}(f_{j}^{*})^{mk}S_{m,\infty}(b_{2}) \quad \text{by the inductive assumption}.$$

As in the proof of Lemma 2.1.3, we deduce that $e_{j}^{*}S_{m,\infty}(b_{2}) = 0$, and hence $e_{j}^{*}S_{m,\infty}(b_{2}) = e_{j}^{*}S_{m,\infty}(b_{2}) = 0$ by the inductive assumption. Therefore,

$$\Psi_{j}^{-}(S_{m,\infty}(b)) = \Psi_{j}^{-}(f_{i}^{m}(f_{j}^{*})^{mk}S_{m,\infty}(b_{2})) = f_{i}^{m}\Psi_{j}^{-}((f_{j}^{*})^{mk}S_{m,\infty}(b_{2}))$$

$$= f_{i}^{m}(S_{m,\infty}(b_{2}) \otimes b_{j}(-mk)) = (f_{i}^{m}S_{m,\infty}(b_{2})) \otimes b_{j}(-mk).$$
Here the last equality immediately follows again from the definition of the tensor product of crystals and the condition that \(i \neq j \). Thus, we get that \(\Psi_j^{-}(S_{m,\infty}(b)) = \Psi_j^{-}(S_{m,\infty}(b)) \), and hence \(S_{m,\infty}^{*}(b) = S_{m,\infty}(b) \).

Case 2 : \(i = j \). As in Case 1, we have \(\Psi_j^{-}(b) = f_i(b_2 \otimes b_i(-k)) \). We deduce from the definition of the tensor product of crystals that

\[
\Psi_i^{-}(b) = f_i(b_2 \otimes b_i(-k)) = \begin{cases}
 f_i b_2 \otimes b_i(-k) & \text{if } \phi_i(b_2) > k, \\
 b_2 \otimes b_i(-k - 1) & \text{if } \phi_i(b_2) \leq k.
\end{cases}
\]

Hence, as in Case 1, we get

\[
\Psi_i^{-}(S_{m,\infty}^{*}(b)) = \begin{cases}
 f_i^m S_{m,\infty}(b_2) \otimes b_i(-mk) & \text{if } \phi_i(b_2) > k, \\
 S_{m,\infty}(b_2) \otimes b_i(-mk - m) & \text{if } \phi_i(b_2) \leq k.
\end{cases}
\]

On the other hand, in exactly the same way as in Case 1, we can show that \(\Psi_i^{-}(S_{m,\infty}(b)) = f_i^m(S_{m,\infty}(b_2) \otimes b_i(-mk)) \). Because \(\phi_i(S_{m,\infty}(b_2)) = m\phi_i(b_2) \) by (2.1.1), we deduce from the definition of the tensor product of crystals that

\[
f_i^m(S_{m,\infty}(b_2) \otimes b_i(-mk)) = \begin{cases}
 f_i^m S_{m,\infty}(b_2) \otimes b_i(-mk) & \text{if } \phi_i(b_2) > k, \\
 S_{m,\infty}(b_2) \otimes b_i(-mk - m) & \text{if } \phi_i(b_2) \leq k.
\end{cases}
\]

Therefore, we obtain that \(\Psi_i^{-}(S_{m,\infty}^{*}(b)) = \Psi_i^{-}(S_{m,\infty}(b)) \), and hence \(S_{m,\infty}^{*}(b) = S_{m,\infty}(b) \). Thus, we have proved the proposition. \(\square \)

Remark 2.1.4. A similar result holds for the crystal base \(B(-\infty) \). Namely, for each \(m \in \mathbb{Z}_{>0} \), there exists a unique injective map \(S_{m,-\infty} : B(-\infty) \hookrightarrow B(-\infty) \) with properties similar to \(S_{m,\infty} \) in Theorem 2.1.1, and it commutes with the *-operation on \(B(-\infty) \).

For \(m \in \mathbb{Z}_{>0} \), we define an injective map \(\tilde{S}_{m,\lambda} : B(U_q(\mathfrak{g})a_{\lambda}) \hookrightarrow B(U_q(\mathfrak{g})a_{m\lambda}) \) as in the following commutative diagram (cf. Theorem 1.3.2):

\[
\begin{array}{ccc}
B(U_q(\mathfrak{g})a_{\lambda}) & \xrightarrow{\Xi_{\lambda}} & B(\infty) \otimes T_\lambda \otimes B(-\infty) \\
\tilde{S}_{m,\lambda} & \downarrow \sim & S_{m,\infty} \otimes \tau_{m,\lambda} \otimes S_{m,-\infty} \\
B(U_q(\mathfrak{g})a_{m\lambda}) & \xleftarrow{\Xi_{m\lambda}^{-1}} & B(\infty) \otimes T_{m\lambda} \otimes B(-\infty),
\end{array}
\]

(2.1.4)

where \(\tau_{m,\lambda} : T_\lambda \to T_{m\lambda} \) is defined by \(\tau_{m,\lambda}(t_\lambda) := t_{m\lambda} \). We define \(\tilde{S}_m : \tilde{U}_q(\mathfrak{g}) \hookrightarrow \tilde{U}_q(\mathfrak{g}) \) as the direct sum of all the \(\tilde{S}_{m,\lambda} \)'s.
Proposition 2.1.5. The maps $\tilde{S}_{m,\lambda}: B(U_q(\mathfrak{g})a_\lambda) \hookrightarrow B(U_q(\mathfrak{g})a_{m\lambda})$ and $\tilde{S}_m : B(\tilde{U}_q(\mathfrak{g})) \hookrightarrow B(\tilde{U}_q(\mathfrak{g}))$ have properties similar to $S_{m,\infty}$ in Theorem 2.1.1. In addition, the map \tilde{S}_m commutes with the $*$-operation on $B(\tilde{U}_q(\mathfrak{g}))$.

Proof. The first assertion immediately follows from Theorem 2.1.1, Remark 2.1.4, and the definition of the tensor product of crystals (see also [Kas5, Appendix B]). Let us prove the second assertion. We set $\tilde{S}_m^* := \ast \circ \tilde{S}_m \circ \ast$. It suffices to show the following:

Claim. Let $\lambda \in P$, and $b \in B(U_q(\mathfrak{g})a_\lambda)$. Then, we have that $\tilde{S}_m^*(b) \in B(U_q(\mathfrak{g})a_{m\lambda})$, and that $\Xi_{m\lambda}(\tilde{S}_m^*(b)) = \Xi_{m\lambda}(\tilde{S}_m(b))$.

Assume that $\Xi_{\lambda}(b) = b_1 \otimes t_\lambda \otimes b_2$ with $b_1 \in B(\infty)$ and $b_2 \in B(-\infty)$. Then we see by the definition of \tilde{S}_m that

$$
\Xi_{m\lambda}(\tilde{S}_m(b)) = (S_{m,\infty} \otimes \tau_{m,\lambda} \otimes S_{m,-\infty})(\Xi_{\lambda}(b)) = S_{m,\infty}(b_1) \otimes t_{m\lambda} \otimes S_{m,-\infty}(b_2).
$$

On the other hand, we know from Theorem 1.3.3 that $b^* \in B(U_q(\mathfrak{g})a_{\lambda'})$ and $\Xi_{\lambda'}(b^*) = b_1^* \otimes t_{\lambda'} \otimes b_2^*$, where $\lambda' := -\lambda - \mathrm{wt}(b_1) - \mathrm{wt}(b_2)$. Hence we have

$$
\Xi_{m\lambda}(\tilde{S}_m^*(b^*)) = (S_{m,\infty} \otimes \tau_{m,\lambda} \otimes S_{m,-\infty})(\Xi_{\lambda'}(b^*)) = S_{m,\infty}(b_1^*) \otimes t_{m\lambda} \otimes S_{m,-\infty}(b_2^*).
$$

We deduce again from Theorem 1.3.3 that $\tilde{S}_m^*(b) = (\tilde{S}_m(b^*))^* \in B(U_q(\mathfrak{g})a_{m\lambda})$, and that

$$
\Xi_{m\lambda}(\tilde{S}_m^*(b)) = S_{m,\infty}^*(b_1) \otimes t_{m\lambda} \otimes S_{m,-\infty}^*(b_2)
$$

by Proposition 2.1.2 and Remark 2.1.4.

Thus, we obtain $\Xi_{m\lambda}(\tilde{S}_m^*(b)) = \Xi_{m\lambda}(\tilde{S}_m(b))$, as desired. \hfill \Box

Theorem 2.1.6. Let $m \in \mathbb{Z}_{>0}$. There exists an injective map $S_{m,\lambda} : B(\lambda) \hookrightarrow B(m\lambda)$ such that $S_{m,\lambda}(u_\lambda) = u_{m\lambda}$ and such that for each $b \in B(\infty)$ and $i \in I$, we have

$$
\mathrm{wt}(S_{m,\lambda}(b)) = m \mathrm{wt}(b), \quad \epsilon_i(S_{m,\lambda}(b)) = m \epsilon_i(b), \quad \varphi_i(S_{m,\lambda}(b)) = m \varphi_i(b), \quad (2.1.5)
$$

$$
S_{m,\lambda}(e_i b) = e_i^m S_{m,\lambda}(b), \quad S_{m,\lambda}(f_i b) = f_i^m S_{m,\lambda}(b). \quad (2.1.6)
$$

Proof. Set $S_{m,\lambda} := \tilde{S}_m|_{B(\lambda)}$. Then, it is obvious from Proposition 2.1.5 that $S_{m,\lambda}(B(\lambda)) \subset B(U_q(\mathfrak{g})a_{m\lambda})$. Hence we need only show that $(S_{m,\lambda}(b))^*$ is extremal for every $b \in B(\lambda)$. We can easily check that the action of the Weyl group W commutes with $S_{m,\lambda}$. So, it follows from Proposition 2.1.5 that

$$
w((S_{m,\lambda}(b))^*) = w S_{m,\lambda}(b^*) = S_{m,\lambda}(wb^*) \quad \text{for all} \quad b \in B(\lambda) \text{ and } w \in W.
$$
Assume that $\text{wt}(b^*) = \mu$. Then we see that $\text{wt}((S_{m,\lambda}(b))^*) = m\mu$. Suppose that $(w(m\mu))(\alpha_i^\vee) \geq 0$ and $e_i(w((S_{m,\lambda}(b))^*)) \neq 0$. As in the proof of Lemma 2.1.3, we deduce that $e_i^m(w(S_{m,\lambda}(b))) \neq 0$. Hence we have

$$S_{m,\lambda}(e_i(wb^*)) = e_i^mS_{m,\lambda}(wb^*) = e_i^m(wS_{m,\lambda}(b^*)) = e_i^m(w((S_{m,\lambda}(b))^*)) \neq 0.$$

However, since $(w(\mu))(\alpha_i^\vee) \geq 0$ and b^* is extremal, we have $e_i(wb^*) = 0$, and hence $S_{m,\lambda}(e_i(wb^*)) = 0$, which is a contradiction. Therefore, we obtain that $e_i(w(S_{m,\lambda}(b))) = 0$. Similarly, we can prove that if $(w(m\mu))(\alpha_i^\vee) \leq 0$, then $f_i(w((S_{m,\lambda}(b))^*)) = 0$. This completes the proof of the theorem.

\section{2.2 Embedding into tensor products.}

In this subsection, we assume that g is an affine Lie algebra (for the notation, see §1.2). We know the following theorem from [B, §2], [N, §3] in the symmetric case, and from [BN, §4] in the nonsymmetric case.

\begin{theorem}
We have an embedding $G_{m,\omega_i} : B_0(m\omega_i) \hookrightarrow B(\omega_i)^{\otimes m}$ of crystals that maps $u_{m\omega_i}$ to $u_{\omega_i}^{\otimes m}$.
\end{theorem}

\begin{remark}
In [BN, they take a vertex $0 \in I$ such that $a_0 = 1$ (see [BN, §2.1]). So, in the case of $A_2^{(2)}$, the choice of the vertex 0 is different from that in [Kas5, §5.2], and hence from ours. However, this does not cause a serious problem. For details, see the comment after [BN, Theorem 2.15].
\end{remark}

Since $B(\omega_i)$ is connected (see [Kas5, Theorem 5.5]), we see that $S_{m,\omega_i}(B(\omega_i)) \subset B_0(m\omega_i)$. Hence we can define $\sigma_{m,\omega_i} : B(\omega_i) \hookrightarrow B(\omega_i)^{\otimes m}$ by $\sigma_{m,\omega_i} := G_{m,\omega_i} \circ S_{m,\omega_i}$ for each $m \in \mathbb{Z}_{>0}$. Remark that σ_{m,ω_i} has the following properties:

$$\text{wt}(\sigma_{m,\omega_i}(b)) = m \text{wt}(b), \quad \epsilon_j(\sigma_{m,\omega_i}(b)) = m\epsilon_j(b), \quad \varphi_j(\sigma_{m,\omega_i}(b)) = m\varphi_j(b), \quad (2.2.1)$$

$$\sigma_{m,\omega_i}(u_{\omega_i}) = u_{\omega_i}^{\otimes m}, \quad \sigma_{m,\omega_i}(e_jb) = e_j^m\sigma_{m,\omega_i}(b), \quad \sigma_{m,\omega_i}(f_jb) = f_j^m\sigma_{m,\omega_i}(b). \quad (2.2.2)$$

\begin{lemma}
Let $m, n \in \mathbb{Z}_{>0}$. Then we have $\sigma_{m,\omega_i} = \sigma_{n,\omega_i}^{\otimes m} \circ \sigma_{m,\omega_i}$.
\end{lemma}

\begin{proof}
Since $B(\omega_i)$ is connected, every $b \in B(\omega_i)$ is of the form

$$b = x_{j_1}x_{j_2}\cdots x_{j_k}u_{\omega_i},$$

for some $j_1, j_2, \ldots, j_k \in I$, where x_j is either e_j or f_j. We will show by induction on k that $\sigma_{m,\omega_i}(b) = \sigma_{n,\omega_i}^{\otimes m} \circ \sigma_{m,\omega_i}(b)$ for all $b \in B(\omega_i)$. If $k = 0$, then the assertion is obvious, since $b = u_{\omega_i}$. Assume that $k \geq 1$. We set $b' := x_{j_2}\cdots x_{j_k}u_{\omega_i}$, and $\sigma_{m,\omega_i}(b') = u_1 \otimes u_2 \otimes \cdots \otimes u_m \in B(\omega_i)^{\otimes m}$. Assume that

$$\sigma_{m,\omega_i}(b) = x_{j_1}^m\sigma_{m,\omega_i}(b') = x_{j_1}^k u_1 \otimes x_{j_1}^k u_2 \otimes \cdots \otimes x_{j_1}^k u_m$$

for some \(k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 0} \). Then we have

\[
\sigma_{m,\varpi}^\otimes b = x_{j_1}^n \sigma_{m,\varpi}(u_1) \otimes x_{j_2}^m \sigma_{m,\varpi}(u_2) \otimes \cdots \otimes x_{j_{k+1}}^n \sigma_{m,\varpi}(u_m).
\]

Here we remark (cf. [Kasl, Lemma 1.3.6]) that for all \(u_1 \otimes u_2 \otimes \cdots \otimes u_m \in B(\varpi_i)^{\otimes m} \),

\[
x_j(u_1 \otimes u_2 \otimes \cdots \otimes u_m) = u_1 \otimes u_2 \otimes \cdots \otimes x_j u_1 \otimes \cdots \otimes u_m
\]

if and only if

\[
x_j^n(\sigma_{m,\varpi}(u_1) \otimes \cdots \otimes \sigma_{m,\varpi}(u_m)) = \sigma_{m,\varpi}(u_1) \otimes \cdots \otimes x_j^n \sigma_{m,\varpi}(u_m).
\]

So we obtain

\[
\sigma_{m,\varpi}^\otimes \sigma_{m,\varpi}(b) = x_{j_1}^m (\sigma_{m,\varpi}(u_1) \otimes \cdots \otimes \sigma_{m,\varpi}(u_m))
\]

\[
= x_{j_1}^m (\sigma_{m,\varpi}^\otimes \sigma_{m,\varpi}(b')).
\]

We see that \(\sigma_{m,\varpi}^\otimes \sigma_{m,\varpi}(b') = \sigma_{m,\varpi}(b') \) by the inductive assumption, and that \(\sigma_{m,\varpi}(b') = x_{j_1}^m \sigma_{m,\varpi}(b') \). Therefore, we obtain \(\sigma_{m,\varpi}^\otimes \sigma_{m,\varpi}(b) = \sigma_{m,\varpi}(b) \).

For each \(w \in W \), we set \(u_{w\varpi} := u_{w1\varpi} \in B(\varpi_i) \). By [Kas5, Proposition 5.8], we see that \(u_{w1\lambda} \) is well-defined. We can easily show the following lemma.

Lemma 2.2.4. For each \(m \in \mathbb{Z}_{>0} \) and \(w \in W \), we have \(\sigma_{m,\varpi}(u_{w\varpi}) = (u_{w\varpi})^\otimes m \).

Proposition 2.2.5. Let \(b \in B(\varpi_i) \). Assume that \(b = x_{j_1} x_{j_2} \cdots x_{j_k} u_{\varpi}, \) where \(x_j \) is either \(e_j \) or \(f_j \), and set \(b_l := x_{j_1} x_{j_2} \cdots x_{j_l} u_{\varpi} \) for \(l = 1, 2, \ldots, k+1 \). Then there exists sufficiently large \(m \in \mathbb{Z} \) such that for every \(l = 1, 2, \ldots, k+1 \),

\[
\sigma_{m,\varpi}(b_l) = u_{w_{l,1}\varpi} \otimes u_{w_{l,2}\varpi} \otimes \cdots \otimes u_{w_{l,m}\varpi}
\]

for some \(w_{l,1}, w_{l,2}, \ldots, w_{l,m} \in W \).

Proof. We show the assertion by induction on \(k \). If \(k = 0 \), then the assertion is obvious. Assume that \(k \geq 1 \). By the inductive assumption, there exists \(m \in \mathbb{Z}_{>0} \) such that \(\sigma_{m,\varpi}(b_l) \) is of the desired form for every \(l = 2, \ldots, k+1 \). Assume that

\[
\sigma_{m,\varpi}(b_1) = \sigma_{m,\varpi}(x_{j_1} b_2) = x_{j_1}^m \sigma_{m,\varpi}(b_2)
\]

\[
= x_{j_1}^{c_1} u_{w_{2,1}\varpi} \otimes x_{j_1}^{c_2} u_{w_{2,2}\varpi} \otimes \cdots \otimes x_{j_1}^{c_m} u_{w_{2,m}\varpi}
\]
for some $c_1, c_2, \ldots, c_m \in \mathbb{Z}_{\geq 0}$. We can easily check by Lemma 2.2.4 and [Kas1, Lemma 1.3.6] that if $n_p \in \mathbb{Z}_{>0}$ satisfies the condition that $(w_{2,p}w_i)(\alpha_{j_i}^*) | n_pc_p$, then
$$
\sigma_{n_p,w_i}(\alpha_{j_i}^*)u_{w_{2,p}w_i} = u_{w_1w_i} \otimes u_{w_{2}w_i} \otimes \cdots \otimes u_{w_{n}w_i}
$$
for some $w_1, w_2, \ldots, w_n \in W$. Therefore, by Lemma 2.2.4, we see that there exists $N \gg 0$ (for example, put $N = \prod_{p=1}^{m} n_p$) such that

$$(\sigma_{N,w_i})^\otimes m \circ \sigma_{m,w_i}(b_1) = u_{w_{1.1}w_i} \otimes u_{w_{1.2}w_i} \otimes \cdots \otimes u_{w_{1.Nm}w_i}$$

for some $w_{1.1}, w_{1.2}, \ldots, w_{1.Nm} \in W$. Furthermore, we deduce from Lemma 2.2.4 that $(\sigma_{N,w_i})^\otimes m \circ \sigma_{m,w_i}(b_1)$ is of the desired form for every $l = 2, \ldots, k + 1$. It follows from Lemma 2.2.3 that $(\sigma_{N,w_i})^\otimes m \circ \sigma_{m,w_i} = \sigma_{N,m,w_i}$. Thus we have proved the proposition.

\section{Preliminary Results.}

\subsection{Some tools for path models.}

A path is, by definition, a piecewise linear, continuous map $\pi : [0, 1] \to \mathbb{Q} \otimes \mathbb{Z} P$ such that $\pi(0) = 0$. We regard two paths π and π' as equivalent if there exist piecewise linear, nondecreasing, surjective, continuous maps $\psi, \psi' : [0, 1] \to [0, 1]$ (reparametrization) such that $\pi \circ \psi = \pi' \circ \psi$. We denote by P the set of paths (modulo reparametrization) such that $\pi(1) \in P$, and by e_i and f_i the raising and lowering root operator (see [L2, §1]). By using root operators, we can endow P with a normal crystal structure (see [L2, §1 and §2]); we set $\text{wt}(\pi) := \pi(1)$, and define $\epsilon_i : P \to \mathbb{Z}$ and $\varphi_i : P \to \mathbb{Z}$ by

$$
\epsilon_i(\pi) := \max\{n \geq 0 \mid e_i^n\pi \neq 0\}, \quad \varphi_i(\pi) := \max\{n \geq 0 \mid f_i^n\pi \neq 0\}. \quad (3.1.1)
$$

Let $\lambda \in P$ be an (arbitrary) integral weight. We denote by $B(\lambda) \subset P$ the set of Lakshmibai–Seshadri paths of shape λ (see [L2, §4]), and set $\pi_{\lambda}(t) := t\lambda \in B(\lambda)$. Denote by $B_0(\lambda)$ the connected component of $B(\lambda)$ containing π_{λ}. We obtain the following lemma by [L2, Lemma 2.4].

\begin{lemma}
For $\pi \in P$, we define $S_m : P \hookrightarrow P$ by $S_m(\pi) := m\pi$, where $(m\pi)(t) := m\pi(t)$ for $t \in [0, 1]$. Then we have $S_m(B_0(\lambda)) = B_0(m\lambda)$. In addition, the map S_m has properties similar to $S_{m,\infty}$ in Theorem 2.1.1.
\end{lemma}

For paths $\pi_1, \pi_2 \in P$, we define a concatenation $\pi_1 \ast \pi_2 \in P$ as in [L2, §1]. Because $\pi_{\lambda} \ast \pi_{\lambda} \ast \cdots \ast \pi_{\lambda}$ (m-times) is just $\pi_{m\lambda}$ modulo reparametrization, we obtain the following lemma.
Lemma 3.1.2. We have a canonical embedding $G_{m,\lambda}: B_0(m\lambda) \hookrightarrow B(\lambda)^{sm}$ of crystals that maps $\pi_{m,\lambda}$ to π_m^{λ}, where $B(\lambda)^{sm} := \{\pi_1 \ast \pi_2 \ast \cdots \ast \pi_m | \pi_i \in B(\lambda)\}$, and $\pi_m^{\lambda} := \pi_\lambda \ast \pi_\lambda \ast \cdots \ast \pi_\lambda \in B(\lambda)^{sm}$.

By combining Lemmas 3.1.1 and 3.1.2, we get an embedding $\sigma_{m,\lambda}: B_0(\lambda) \hookrightarrow B(\lambda)^{sm}$ defined by $\sigma_{m,\lambda} := G_{m,\lambda} \circ S_m$. It can easily be seen that this map has properties similar to (2.2.1) and (2.2.2).

Since $B(\lambda)$ is a normal crystal, we can define an action of the Weyl group W on $B(\lambda)$ (cf. (1.4.1); see also [L2, Theorem 8.1]). We set $\pi_{w\lambda} := w\pi_\lambda$ for $w \in W$. Note that $(w\pi_\lambda)(t) = t(w\lambda)$ for each $w \in W$. Using [L2, Lemma 2.7], we can prove the following proposition in a way similar to Proposition 2.2.5.

Proposition 3.1.3. Let $\pi \in B_0(\lambda)$. Assume that $\pi = x_{j_1}x_{j_2}\ldots x_{j_k}\pi_\lambda$, where x_j is either e_j or f_j, and set $\pi_l := x_{j_l}x_{j_l+1}\ldots x_{j_k}\pi_\lambda$ for $l = 1, 2, \ldots, k + 1$ (here $\pi_{k+1} := \pi_\lambda$). Then, there exists sufficiently large $m \in \mathbb{Z}$ such that for every $l = 1, 2, \ldots, k + 1$,

$$\sigma_{m,\lambda}(\pi_l) = \pi_{w_{l,1}\lambda} \ast \pi_{w_{l,2}\lambda} \ast \cdots \ast \pi_{w_{l,m}\lambda}$$

for some $w_{l,1}, w_{l,2}, \ldots, w_{l,m} \in W$.

3.2 Preliminary lemmas. In this subsection, g is assumed to be of affine type (for the notation, see §1.2). By using [L2, Lemma 2.1 c)], we can easily show the following lemma.

Lemma 3.2.1. Let $i \in I_0$. For each $w \in W$ and $j \in I$, we have $\text{wt}(\pi_{w\varpi_0}) = \text{wt}(u_{w\varpi_0})$, $\epsilon_j(\pi_{w\varpi_0}) = \epsilon_j(u_{w\varpi_0})$, and $\varphi_j(\pi_{w\varpi_0}) = \varphi_j(u_{w\varpi_0})$.

It follows from [Kas1, Lemma 1.3.6], [L2, Lemma 2.7], and Lemma 3.2.1 that

$$x_j^k(u_{w_1\varpi_1} \otimes u_{w_2\varpi_2} \otimes \cdots \otimes u_{w_m\varpi_m}) = x_j^{k_1}u_{w_1\varpi_1} \otimes x_j^{k_2}u_{w_2\varpi_2} \otimes \cdots \otimes x_j^{k_m}u_{w_m\varpi_m}$$

for some $k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 0}$ if and only if

$$x_j^k(\pi_{w_1\varpi_1} \ast \pi_{w_2\varpi_2} \ast \cdots \ast \pi_{w_m\varpi_m}) = x_j^{k_1}\pi_{w_1\varpi_1} \ast x_j^{k_2}\pi_{w_2\varpi_2} \ast \cdots \ast x_j^{k_m}\pi_{w_m\varpi_m}$$

for every $k \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{>0}$ and $w_1, w_2, \ldots, w_m \in W$. So, we obtain the following lemma.

Lemma 3.2.2. (1) Let $b = x_{j_1}x_{j_2}\ldots x_{j_k}u_{\varpi_1} \in B(\varpi_1)$. Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 2.2.5 holds, and assume that $\sigma_{m,\varpi_1}(b) = u_{w_1\varpi_1} \otimes$
Then we have $\pi := x_{j_1}x_{j_2} \cdots x_{j_k}\pi_{\omega_i} \neq 0$, and $\sigma_{m,\omega_i}(\pi) = \pi_{w_1}\omega_i * \pi_{w_2}\omega_i * \cdots * \pi_{w_m}\omega_i$.

(2) The converse of (1) holds. Namely, let $\pi = x_{j_1}x_{j_2} \cdots x_{j_k}\pi_{\omega_i} \in \mathcal{B}(\omega_i)$. Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 3.1.3 holds, and assume that $\sigma_{m,\omega_i}(\pi) = \pi_{w_1}\omega_i * \pi_{w_2}\omega_i * \cdots * \pi_{w_m}\omega_i$. Then we have $b := x_{j_1}x_{j_2} \cdots x_{j_k}\omega_i \neq 0$, and $\sigma_{m,\omega_i}(b) = u_{w_1}\omega_i \otimes u_{w_2}\omega_i \otimes \cdots \otimes u_{w_m}\omega_i$.

4 Main Results.

4.1 Isomorphism theorem. From now on, we assume that g is an affine Lie algebra. We can carry out the proof of our isomorphism theorem, following the general line of that for [Kas5, Theorem 4.1].

Theorem 4.1.1. There exists a unique isomorphism $\Phi_{\omega_i} : \mathcal{B}(\omega_i) \to \mathcal{B}_0(\omega_i)$ of crystals such that $\Phi_{\omega_i}(u_{\omega_i}) = \pi_{\omega_i}$.

Proof. It suffices to prove that for $j_1, j_2, \ldots, j_p \in I$ and $k_1, k_2, \ldots, k_q \in I$,

(1) $x_{j_1}x_{j_2} \cdots x_{j_p}\omega_i = x_{k_1}x_{k_2} \cdots x_{k_q}\omega_i \Leftrightarrow x_{j_1}x_{j_2} \cdots x_{j_p}\pi_{\omega_i} = x_{k_1}x_{k_2} \cdots x_{k_q}\pi_{\omega_i}$,

(2) $x_{j_1}x_{j_2} \cdots x_{j_p}\omega_i = 0 \Leftrightarrow x_{j_1}x_{j_2} \cdots x_{j_p}\pi_{\omega_i} = 0$.

Part (2) has already been proved in Lemma 3.2.2. Let us show the direction (\Rightarrow) of part (1). Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 2.2.5 holds for both $b_1 := x_{j_1}x_{j_2} \cdots x_{j_p}\omega_i$ and $b_2 := x_{k_1}x_{k_2} \cdots x_{k_q}\omega_i$:

$\sigma_{m,\omega_i}(b_1) = u_{w_1}\omega_i \otimes u_{w_2}\omega_i \otimes \cdots \otimes u_{w_m}\omega_i$,

$\sigma_{m,\omega_i}(b_2) = u_{w'_1}\omega_i \otimes u_{w'_2}\omega_i \otimes \cdots \otimes u_{w'_m}\omega_i$.

Since $b_1 = b_2$, we get $u_{w_1}\omega_i = u_{w'_1}\omega_i$, and hence $w_l\omega_i = w'_l\omega_i$ for all $l = 1, 2, \ldots, m$.

By Lemma 3.2.2 (1), we see that

$\sigma_{m,\omega_i}(\pi_1) = \pi_{w_1}\omega_i * \pi_{w_2}\omega_i * \cdots * \pi_{w_m}\omega_i$,

$\sigma_{m,\omega_i}(\pi_2) = \pi_{w'_1}\omega_i * \pi_{w'_2}\omega_i * \cdots * \pi_{w'_m}\omega_i$,

where $\pi_1 := x_{j_1}x_{j_2} \cdots x_{j_p}\pi_{\omega_i}$ and $\pi_2 := x_{k_1}x_{k_2} \cdots x_{k_q}\pi_{\omega_i}$. Since $w_l\omega_i = w'_l\omega_i$ and $\pi_{w_l\omega_i}(t) = t(w\omega_i)$ for all $w \in W$, we get $\sigma_{m,\omega_i}(\pi_1) = \sigma_{m,\omega_i}(\pi_2)$. Since σ_{m,ω_i} is injective, we conclude that $\pi_1 = \pi_2$.

We show the reverse direction (\Leftarrow) of part (1). Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 3.1.3 holds for both $\pi_1 := x_{j_1}x_{j_2} \cdots x_{j_p}\pi_{\omega_i}$ and $\pi_2 :=
\[x_{k_{1}}x_{k_{2}} \cdots x_{k_{q}} \pi_{\omega_{i}}. \]

\[\sigma_{m,\omega_{i}}(\pi_{1}) = \pi_{w_{1}\omega_{i}} * \pi_{w_{2}\omega_{i}} * \cdots * \pi_{w_{m}\omega_{i}}, \]
\[\sigma_{m,\omega_{i}}(\pi_{2}) = \pi_{w'_{1}\omega_{i}} * \pi_{w'_{2}\omega_{i}} * \cdots * \pi_{w'_{m}\omega_{i}}. \]

Since \(\pi_{1} = \pi_{2} \), and hence \(\sigma_{m,\omega_{i}}(\pi_{1}) = \sigma_{m,\omega_{i}}(\pi_{2}) \) in \(\mathbb{P} \), the two paths \(\pi_{w_{1}\omega_{i}} * \pi_{w_{2}\omega_{i}} * \cdots * \pi_{w_{m}\omega_{i}} \) and \(\pi_{w'_{1}\omega_{i}} * \pi_{w'_{2}\omega_{i}} * \cdots * \pi_{w'_{m}\omega_{i}} \) are identical modulo reparametrization.

Hence we can deduce that \(w_{l}\omega_{i} = w'_{l}\omega_{i} \) for all \(l = 1, 2, \ldots, m \) from the fact that if \(a\omega_{j} \in W\omega_{i} \) for some \(a \in \mathbb{Q}_{\geq 0} \) and \(i, j \in I_{0} \), then \(i = j \) and \(a = 1 \). By Lemma 3.2.2 (2), we have
\[
\sigma_{m,\omega_{i}}(b_{1}) = u_{w_{1}\omega_{i}} \otimes u_{w_{2}\omega_{i}} \otimes \cdots \otimes u_{w_{m}\omega_{i}},
\]
\[
\sigma_{m,\omega_{i}}(b_{2}) = u_{w'_{1}\omega_{i}} \otimes u_{w'_{2}\omega_{i}} \otimes \cdots \otimes u_{w'_{m}\omega_{i}}. \]

Since \(w_{l}\omega_{i} = w'_{l}\omega_{i} \) for all \(l = 1, 2, \ldots, m \), it follows from [Kas5, Proposition 5.8 (i)] that \(u_{w_{l}\omega_{i}} = u_{w'_{l}\omega_{i}} \) for all \(l = 1, 2, \ldots, m \). Therefore we have \(\sigma_{m,\omega_{i}}(b_{1}) = \sigma_{m,\omega_{i}}(b_{2}) \). Since \(\sigma_{m,\omega_{i}} \) is injective, we conclude that \(b_{1} = b_{2} \). \(\square \)

Remark 4.1.2. In general, an isomorphism of crystals between \(B(\lambda) \) and \(\mathbb{B}_{0}(\lambda) \) does not exist, even if \(B(\lambda) \) is connected. For example, let \(\mathfrak{g} \) be of type \(A_{2}^{(1)} \), and \(\lambda = \varpi_{1} + \varpi_{2} \) (we know from [Kas5, Proposition 5.4] that \(B(\lambda) \) is connected). If \(B(\lambda) \cong \mathbb{B}_{0}(\lambda) \) as crystals, then we would have \(w\lambda = w'\lambda \) in \(B(\lambda) \) for every \(w, w' \in W \) with \(w\lambda = w'\lambda \), but we have an example of \(w, w' \in W \) such that \(w\lambda \neq w'\lambda \) in \(B(\lambda) \) and \(w\lambda = w'\lambda \) (see [Kas5, Remark 5.10]).

Remark 4.1.3. In [G], Greenstein proved that if \(\mathfrak{g} \) is of type \(A_{2}^{(1)} \), then the connected component \(\mathbb{B}_{0}(m\varpi_{i} + n\delta) \) is a path model for a certain bounded module \(L(\ell, m, n) \). He also showed a decomposition rule for tensor products, which seems to be closely related to Theorem 4.3.3 below.

4.2 Branching rule for \(V(\varpi_{i}) \)

Lemma 4.2.1. For every \(\pi \in B(\varpi_{i}) \), we have \((\pi(1), \pi(1)) \leq (\varpi_{i}, \varpi_{i}) \).

Proof. Let \(\pi = (\nu_{1}, \nu_{2}, \ldots, \nu_{s} ; a_{0}, a_{1}, \ldots, a_{s}) \) with \(\nu_{j} \in W\varpi_{i} \) and \(a_{j} \in [0, 1] \) be a Lakshmibai-Seshadri path of shape \(\varpi_{i} \) (cf. [L2, §4]). By the definition of a Lakshmibai-Seshadri path, we see that \(\pi(1) = \sum_{j=1}^{s}(a_{j} - a_{j-1})\nu_{j} \). Hence we have
\[
(\pi(1), \pi(1)) = \sum_{j=1}^{s}(a_{j} - a_{j-1})^{2}(\nu_{j}, \nu_{j}) + 2 \sum_{1 \leq k < l \leq s}(a_{k} - a_{k-1})(a_{l} - a_{l-1})(\nu_{k}, \nu_{l})
\]
\[
= \sum_{j=1}^{s}(a_{j} - a_{j-1})^{2}(\varpi_{i}, \varpi_{i}) + 2 \sum_{1 \leq k < l \leq s}(a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, w_{kl}\varpi_{i})
\]
for some $w_{kl} \in W$. By [Kac, Proposition 6.3], we deduce that $w_{kl} \varpi_{i} = \varpi_{i} - \beta_{kl} + n_{kl} \delta$ for some $\beta_{kl} \in \sum_{i \in I_{0}} \mathbb{Z}_{\geq 0} \alpha_{i}$ and $n_{kl} \in \mathbb{Z}$. Therefore, we have (note that ϖ_{i} is of level 0)

$$(\pi(1), \pi(1)) = \sum_{j=1}^{s} (a_{j} - a_{j-1})^{2} (\varpi_{i}, \varpi_{i}) + 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \beta_{kl})$$

$= \sum_{j=1}^{s} (a_{j} - a_{j-1})^{2} (\varpi_{i}, \varpi_{i}) - 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \beta_{kl})$

Since $(\varpi_{i}, \beta_{kl}) \geq 0$ for all $1 \leq k < l \leq s$, we deduce that $(\pi(1), \pi(1)) \leq (\varpi_{i}, \varpi_{i})$, as desired. \hfill \Box

Let S be a proper subset of I, i.e., $S \subset I$. Let \mathfrak{g}_{S} be the Levi subalgebra of \mathfrak{g} corresponding to S, and $U_{q}(\mathfrak{g}_{S}) \subset U_{q}(\mathfrak{g})$ the quantized universal enveloping algebra of \mathfrak{g}_{S}. Note that a crystal for $U_{q}(\mathfrak{g})$ can be regarded as a crystal for $U_{q}(\mathfrak{g}_{S})$ by restriction.

Theorem 4.2.2. As crystals for \mathfrak{g}_{S}, $\mathcal{B}(\varpi_{i})$ and $\mathcal{B}_{0}(\varpi_{i})$ decompose as follows:

$$\mathcal{B}(\varpi_{i}) \cong \bigsqcup_{\pi \in \mathcal{B}(\varpi_{i}), \pi: \mathfrak{g}_{S}-\text{dominant}} \mathcal{B}_{S}(\pi(1)),$$

$$\mathcal{B}_{0}(\varpi_{i}) \cong \bigsqcup_{\pi \in \mathcal{B}_{0}(\varpi_{i}), \pi: \mathfrak{g}_{S}-\text{dominant}} \mathcal{B}_{S}(\pi(1)), \quad (4.2.1)$$

where $\mathcal{B}_{S}(\lambda)$ is the set of Lakshmibai-Seshadri paths of shape λ for $U_{q}(\mathfrak{g}_{S})$, and a path π is said to be \mathfrak{g}_{S}-dominant if $(\pi(t))(\alpha_{i}^{\vee}) \geq 0$ for all $t \in [0, 1]$ and $i \in S$.

Proof. We will show only the first equality in (4.2.1), since the second one can be shown in the same way. As in [Kas1, §9.3], we deduce, using Lemma 4.2.1, that each connected component of $\mathcal{B}(\varpi_{i})$ (as a crystal for $U_{q}(\mathfrak{g}_{S})$) contains an extremal weight element π' with respect to $W_{S} := \langle r_{j} \mid j \in S \rangle$. Because \mathfrak{g}_{S} is a finite-dimensional reductive Lie algebra, there exists $w \in W_{S}$ such that $((w\pi')(1))(\alpha_{i}^{\vee}) \geq 0$ for all $j \in S$. Put $\pi := w\pi'$ for this $w \in W_{S}$. Since π is also extremal, we have that $e_{j}\pi = 0$ for all $j \in S$. Because π is a Lakshmibai-Seshadri path of shape
\(\varpi_i \), we deduce from [L2, Lemmas 2.2 b) and 4.5 d)] that \((\pi(t))(\alpha_j^\vee) \geq 0 \) for all \(t \in [0, 1] \) and \(j \in S \), i.e., \(\pi \) is \(g_S \)-dominant. We see from [L2, Theorem 7.1] that the connected component containing \(\pi \) as a crystal for \(U_q(g_S) \) is isomorphic to \(B_S(\pi(1)) \), thereby completing the proof of the theorem.

\[\square \]

Theorem 4.2.3. (1) The extremal weight module \(V(\varpi_i) \) of extremal weight \(\varpi_i \) is completely reducible as a \(U_q(g_S) \)-module.

(2) The decomposition of \(V(\varpi_i) \) as a \(U_q(g_S) \)-module is given by:

\[
V(\varpi_i) \cong \bigoplus_{\pi \in B_0(\varpi_i)} V_S(\pi(1)), \tag{4.2.2}
\]

where \(V_S(\lambda) \) is the integrable highest weight \(U_q(g_S) \)-module of highest weight \(\lambda \).

Proof. (1) First we prove that \(U := U_q(g_S)u \) is finite-dimensional for each weight vector \(u \in V(\varpi_i) \). To prove this, it suffices to show that the weight system \(\text{Wt}(U) \) of \(U \) is a finite set, since each weight space of \(V(\varpi_i) \) is finite-dimensional (see [Kas5, Proposition 5.16 (iii)]). Remark that if \(\mu, \nu \in P \) are weights of \(U \), then \(\mu, \nu \in h_0^* \), and \(\mu - \nu \in Q_S := \sum_{i \in S} \mathbb{Z} \alpha_i \). Hence the canonical map \(\text{cl} : h_0^* \to h_0^*/Q\delta \) is injective on \(\text{Wt}(U) \), since \(k\delta \notin Q_S \) for any \(k \in \mathbb{Z} \setminus \{0\} \). Since \(\text{Wt}(U) \) is contained in the weight system \(\text{Wt}(V(\varpi_i)) \) of \(V(\varpi_i) \), it follows from Theorem 4.1.1 and Lemma 4.2.1 that

\[
\text{cl}(\text{Wt}(U)) \subset \text{cl}(\text{Wt}(V(\varpi_i))) = \text{cl}(\{\pi(1) | \pi \in B_0(\varpi_i)\}) \quad \text{by Theorem 4.1.1}
\]

\[
\subset \{\mu' \in h_0^*/Q\delta | (\mu', \mu') \leq (\text{cl}(\varpi_i), \text{cl}(\varpi_i)) \} \quad \text{by Lemma 4.2.1}.
\]

Because the bilinear form \((\cdot, \cdot)\) on \(h_0^*/Q\delta \) is positive-definite, the set \(\text{cl}(\text{Wt}(U)) \) is discrete and contained in a compact set with respect to the usual metric topology on \(\mathbb{R} \otimes_{\mathbb{Q}} (h_0^*/Q\delta) \) defined by \((\cdot, \cdot)\). Therefore, we see that \(\text{cl}(\text{Wt}(U)) \) is a finite set, and hence so is \(\text{Wt}(U) \). Thus, we conclude that \(U = U_q(g_S)u \) is finite-dimensional.

Since \(q \) is assumed to generic, the finite-dimensional \(U_q(g_S) \)-module \(U_q(g_S)u \) is completely reducible for each weight vector \(u \in V(\varpi_i) \). Because \(V(\varpi_i) \) is a sum of all such modules \(U_q(g_S)u \), we deduce that \(V(\varpi_i) \) is also completely reducible.

(2) Because each weight space of \(V(\varpi_i) \) is finite-dimensional, we can define the formal character \(\text{ch} V(\varpi_i) \) of \(V(\varpi_i) \). By Theorem 4.2.2, we have

\[
\text{ch} V(\varpi_i) = \sum_{\pi \in B_0(\varpi_i)} \text{ch} V_S(\pi(1)).
\]
Therefore, in order to prove part (2), we need only show that this is the unique way of writing $\text{ch} V(\varpi_i)$ as a sum of the characters of integrable highest weight $U_q(\mathfrak{g}_S)$-modules. Assume that

$$\text{ch} V(\varpi_i) = \sum_{\lambda \in P} c_{\lambda} \text{ch} V_S(\lambda) \quad \text{and} \quad \text{ch} V(\varpi_i) = \sum_{\lambda \in P} c'_{\lambda} \text{ch} V_S(\lambda)$$

with $c_{\lambda}, c'_{\lambda} \in \mathbb{Z}$ for $\lambda \in P$. Then we have $\sum_{\lambda \in P} (c_{\lambda} - c'_{\lambda}) \text{ch} V_S(\lambda) = 0$. Suppose that there exists $\lambda \in P$ such that $c_{\lambda} - c'_{\lambda} \neq 0$, and set $X := \{ \lambda \in P \mid c_{\lambda} - c'_{\lambda} \neq 0 \}(\neq \emptyset)$. Note that X is contained in the weight system $\text{Wt}(V(\varpi_i))$ of $V(\varpi_i)$. As in the proof of part (1), we deduce that

$$\text{cl}(\text{Wt}(V(\varpi_i))) \subset \{ \mu' \in \mathfrak{h}_0^* / \mathbb{Q} \delta \mid (\mu', \mu') \leq (\text{cl}(\varpi_i), \text{cl}(\varpi_i)) \},$$

and hence $\text{Wt}(V(\varpi_i))$ modulo $\mathbb{Z} \delta$ is a finite set.

Now, we define a partial order \geq_S on P as follows:

$$\mu \geq_S \nu \quad \text{for} \quad \mu, \nu \in P \quad \iff \quad \mu - \nu \in (Q_S)_+ := \sum_{i \in S} \mathbb{Z}_{\geq 0} \alpha_i.$$

Let us show that the set X has a maximal element with respect to this order \geq_S. Let $\mu \in X$. Then $\text{Wt}(V(\varpi_i)) \cap (\mu + Q_S)$ is a finite set. Indeed, if this is not a finite set, then there exist elements ν, ν' of it such that $\nu - \nu' = k \delta$ with $k \in \mathbb{Z} \setminus \{0\}$, since $\text{Wt}(V(\varpi_i))$ modulo $\mathbb{Z} \delta$ is a finite set. However, since $\nu - \nu' \in Q_S$ and $k \delta \not\in Q_S$ for any $k \in \mathbb{Z} \setminus \{0\}$, this is a contradiction. Therefore, we see that $X \cap (\mu + (Q_S)_+)$ is also a finite set, and hence that X has a maximal element of the form $\mu + \beta$ for some $\beta \in (Q_S)_+$.

Let $\nu \in X$ be a maximal element with respect to this order \geq_S. We can easily see that the coefficient of $e(\nu)$ in $\sum_{\lambda \in P} (c_{\lambda} - c'_{\lambda}) \text{ch} V_S(\lambda)$ is equal to $c_{\nu} - c'_{\nu}$. Since $\nu \in X$, we have $c_{\nu} - c'_{\nu} \neq 0$, which contradicts $\sum_{\lambda} (c_{\lambda} - c'_{\lambda}) \text{ch} V_S(\lambda) = 0$. This completes the proof of the theorem.

\[\square \]

4.3 Decomposition rule for tensor products

In this subsection, we assume that ϖ_i is minuscule, i.e., $\varpi_i(\alpha^v) \in \{ \pm 1, 0 \}$ for every dual real root α^v of \mathfrak{g}.

Remark 4.3.1. The following is the list of minuscule weights (cf. [H, p. 174]). We use the numbering of vertices of the Dynkin diagrams in [Kac, Ch. 4]:
\begin{array}{c|c}
A^{(1)}_{\ell} (\ell \geq 1) & A^{(2)}_{2\ell-1} (\ell \geq 3) \\
B^{(1)}_{\ell} (\ell \geq 3) & A^{(2)}_{2\ell} (\ell \geq 2) \\
C^{(1)}_{\ell} (\ell \geq 2) & D^{(2)}_{\ell+1} (\ell \geq 2) \\
D^{(1)}_{\ell} (\ell \geq 4) & \end{array}

Remark 4.3.2. If \(\varpi_i \) is minuscule, then, for any \(\mu, \nu \in W \varpi_i \) and rational number \(0 < a < 1 \), there does not exist an \(a \)-chain for \((\mu, \nu) \). Hence it follows from the definition of Lakshmibai–Seshadri paths that \(\mathcal{B}(\varpi_i) = \{ \pi_{w\varpi_i} \mid w \in W \} \). Since \(w\varpi_i = \pi_{w\varpi_i} \), we see that \(\mathcal{B}(\varpi_i) \) is connected, and hence \(\mathcal{B}(\varpi_i) = \mathcal{B}_0(\varpi_i) \).

Theorem 4.3.3. Let \(\lambda \) be a dominant integral weight which is not a multiple of the null root \(\delta \) of \(\mathfrak{g} \). Then, the concatenation \(\mathcal{B}(\lambda) \ast \mathcal{B}(\varpi_i) \) decomposes as follows:

\[
\mathcal{B}(\lambda) \ast \mathcal{B}(\varpi_i) \cong \bigcap_{\pi \in \mathcal{B}(\varpi_i)} \mathcal{B}(\lambda + \pi(1)),
\]

where \(\pi \in \mathcal{B}(\varpi_i) \) is said to be \(\lambda \)-dominant if \((\lambda + \pi(t))(\alpha_i^\vee) \geq 0 \) for all \(t \in [0,1] \) and \(i \in I \).

Proof. We will prove that each connected component contains a (unique) path of the form \(\pi_{\lambda} \ast \pi \) for a \(\lambda \)-dominant path \(\pi \in \mathcal{B}(\varpi_i) \). Then the assertion of the theorem follows from [L2, Theorem 7.1].

Let \(\pi_1 \ast \pi_2 \in \mathcal{B}(\lambda) \ast \mathcal{B}(\varpi_i) \). It can easily be seen that \(e_{i_1}e_{i_2} \cdots e_{i_k}(\pi_1 \ast \pi_2) = \pi_\lambda \ast \pi_2' \) for some \(i_1, i_2, \ldots, i_k \in I \), where \(\pi_2' \in \mathcal{B}(\varpi_i) \) (cf. [G, §5.6]). Set \(S := \{ i \in I \mid \lambda(\alpha_i^\vee) = 0 \} \) (note that \(S \subsetneq I \), since \(\lambda \) is not a multiple of \(\delta \)), and let \(\mathcal{B} \) be the set of paths of the form \(e_{j_1}e_{j_2} \cdots e_{j_l}(\pi_\lambda \ast \pi_2') \) for \(j_1, j_2, \ldots, j_l \in S \). Remark that if \(e_{j_1}e_{j_2} \cdots e_{j_l}(\pi_\lambda \ast \pi_2') \neq 0 \), then \(e_{j_1}e_{j_2} \cdots e_{j_l}(\pi_\lambda \ast \pi_2') = \pi_\lambda \ast (e_{j_1}e_{j_2} \cdots e_{j_l}\pi_2') \). As in the proof of part (2) of Theorem 4.2.3, we deduce that

\[
\{ \pi(1) \mid \pi \in \mathcal{B}(\varpi_i) \} \cap (\pi_2'(1) + (Q_S)_+) = \text{Wt}(V(\varpi_i)) \cap (\pi_2'(1) + (Q_S)_+)
\]

is a finite set. Hence we have \(\pi_\lambda \ast \pi_2'' \in \mathcal{B} \) for some \(\pi_2'' \in \mathcal{B}(\varpi_i) \) such that \(e_j(\pi_\lambda \ast \pi_2'') = 0 \) for all \(j \in S \). Because \(\varpi_i \) is minuscule and \(\pi_2'' = \pi_{w\varpi_i} \) for some \(w \in W \) (cf. Remark 4.3.2), we see that \(e_j(\pi_\lambda \ast \pi_2'') = 0 \) for all \(j \in I \setminus S \). Therefore, we conclude that \(\pi_2'' \in \mathcal{B}(\varpi_i) \) is \(\lambda \)-dominant. Thus, we have completed the proof of the theorem. \(\square \)
Remark 4.3.4. Unlike Theorems 4.2.2 and 4.2.3, this theorem does not necessarily imply the decomposition rule for tensor products of corresponding $U_q(\mathfrak{g})$-modules.

References

[G] J. Greenstein, Littelmann’s path crystal and combinatorics of certain integrable $\overline{\mathfrak{g}}_{\ell+1}$ modules of level zero, math.QA/0206263.

