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0 Introduction.

Let g be a symmetrizable Kac-Moody algebra over Q with the Cartan subalgebra
h and the Weyl group W. We fix an integral weight lattice P C h* := Homg(h, Q)
that contains all simple roots of g. Let A € P be an integral weight. In [L1] and
[L2], Littelmann introduced the notion of Lakshmibai-Seshadri paths of shape
A, which are piecewise linear, continuous maps n : [0,1] — P parametrized by
pairs of a sequence of elements of W and a sequence of rational numbers satis-
fying a certain condition, called the chain condition. Denote by B()) the set of
Lakshmibai-Seshadri paths of shape A. Littelmann proved that B(A) has a normal
crystal structure in the sense of [Kas3], and that if X is a dominant integral weight,
then the formal sum 3, g, e(m(1)) is equal to the character ch L(A) of the in-
tegrable highest weight g-module L(\) of highest weight A. Then he conjectured
that B()\) for dominant A € P would be isomorphic to the crystal base of the
integrable highest weight module of highest weight A as crystals. This conjecture
was affirmatively proved independently by Kashiwara [Kas4] and Joseph [J].

In [Kas2] and [Kas5), Kashiwara introduced an extremal weight module V(}) of
extremal weight A € P over the quantized universal enveloping algebra U,(g) over
Q(q), and showed that it has a crystal base B()). The extremal weight module is
a natural generalization of an integrable highest (lowest) weight module. In fact,
we know from [Kas2, §8] that if X € P is dominant (resp. anti-dominant), then
the extremal weight module V()) is isomorphic to the integrable highest (resp.
lowest) weight module of highest (resp. lowest) weight A, and the crystal base
B(\) of V() is isomorphic to the crystal base of the integrable highest (resp.

lowest) weight module as a crystal.
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Now, we assume that g is of affine type. Let I be the index set of the simple
roots of g, and fix a special vertex 0 € I as in [Kas5, §5.2]. In this paper, as an
extension of the isomorphism theorem due to Kashiwara and Joseph, we prove
that if X is a level-zero fundamental weight @w; € P for i € Iy := I\ {0} (see
[Kas5, §5.2]; note that w; is not dominant), then the connected component Bo(w;)
of B(w;) containing 7, (t) := tw; is isomorphic to the crystal base B(w;) of the

extremal weight module V' (w;) as crystals. Namely, we prove the following:

Theorem 1. Assume that g is of affine type. There exists a unique isomorphism
@, : B(w;) > Bo(w;) of crystals such that Pg, (Un,) = Tp,, where ugy, € B(w;) is

the unique extremal weight element of weight w;.

Let gs be the Levi subalgebra corresponding to a proper subset S of the index
set I, and let U,(gs) C U,(g) be the quantized universal enveloping algebra of gs.
By restriction, we can regard the crystals B(w;) and Bo(w;) for U,(g) as crystals
for Uy(gs). We show the following branching rule for B(w;) and Bo(w;) as crystals

for Uy(gs):

Theorem 2. As crystals for Uy(gs), B(w;) and Bo(w;) decompose as follows:

Bw)= || Bs(r(1), Bo(w)= || Bs(x(1))

meB(w;) meBo ()
n: gs-dominant 7w gs-dominant

where Bs()) is the set of Lakshmibai-Seshadri paths of shape X for U,(gs), and
n € B(w;) is said to be gs-dominant if (w(t))(a)) >0 for allt € [0,1] and i € S.

We also show that the extremal weight module V(w;) of extremal weight w; is
completely reducible as a Uy(gs)-module. Then, as an application of Theorems 1

and 2 above, we obtain the following branching rule for V(w;):

Theorem 3. The extremal weight module V (w;) of extremal weight w; is com-
pletely reducible as a U,(gs)-module, and the decomposition of V(w;) as a Uy(gs)-

module is given by:

V) @ Vsr(1),

mERy (w;)

m: gs-dominant

where Vs()) is the integrable highest weight Uy(gs)-module of highest weight \.

Assume that w; is minuscule, i.c., w;(a¥) € {£1,0} for every dual real root

aV of g. Then we can check that B(w;) is connected, and hence B(w;) = Bo(w;).
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In this case, we get the following decomposition rule of Littelmann type for the
concatenation B()\) * B(w;). Here we note that unlike Theorems 2 and 3, this
theorem does not necessarily imply the decomposition rule for tensor products of

corresponding U,(g)-modules.

Theorem 4. Let A be a dominant integral weight which is not a multiple of the null
root 8 of g, and assume that w; is minuscule. Then, the concatenation B(\)*B(w)

decomposes as follows :

B\ xB(w)= || B(A+7(1),

m€B(w;)
7. A-dominant

where ™ € B(w;) is said to be A-dominant if (A + m(t))(aY) > 0 for all t € [0,1]
andi € I.

Remark. The reader should compare Theorems 1 and 4 with the corresponding
results [G, Theorems 1.5 and 1.6] of Greenstein for bounded modules.

Acknowledgments. We are grateful to Professors Jonathan Beck and Hiraku
Nakajima for informing us thier results in [BN], and permitting us to use them.

1 Preliminaries and Notation.

1.1 Quantized universal enveloping algebras. Let A = (aij)ijer be a sym-
metrizable generalized Cartan matrix, and g := g(A) the Kac—Moody algebra over
Q associated to the generalized Cartan matrix A. Denote by b the Cartan subal-
gebra, by IT:= {o;}, , C h* and IV := {aY},., C b the set of simple roots and
simple coroots, and by W = (r; | i € I) the Weyl group. We take (and fix) an
integral weight lattice P C h* such that a; € P for all ¢ € I.

Denote by U,(g) the quantized universal enveloping algebra of g over the field
Q(q) of rational functions in g, and by U; (g) (resp. Uf(g)) the negative (resp.
positive) part of Uy(g). We denote by Uy(g) = @ ,cp Us(8)ax the modified quan-
tized universal enveloping algebra of g, where a) is a formal element of weight A
(cf. [Kas2, §1.2]).

1.2 Affine Lie algebras. Assume that g is of affine type. Let

6= Za,n,- €eh* and c= Za}’a}' €h (1.2.1)

iel i€l
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be the null root and the canonical central element of g. We denote by (-, -) the
bilinear form on §*, which is normalized by: a) = (ﬂ"—é“—")ai for all ¢ € I. Set
by := @Pic; Qo C b*, and let cl : hg — by /Q6 the canonical map from hg onto the
quotient space hj/QJ. We have a bilinear form (also denoted by (-, -)) on h§/Qd
induced from the bilinear form (-, -), which is positive-definite.

We take (and fix) a special vertex 0 € I as in [Kas5, §5.2], and set Iy := I'\ {0}.
For i € Iy, let w; be a unique element in &, 1, Qai such that w,-(a;’) = §;; for all
j € Iy. Notice that A; := w; + a) Ay is an i-th fundamental weight for g, where
Ao is a 0-th fundamental weight for g. So, we may assume that all the w;’s are
contained in the integral weight lattice P. '

1.3 Crystal bases. Let B(0o) be the crystal base of the negative part Uy (9)
with 4o the highest weight element. Denote by e; and f; the raising and lowering
Kashiwara operator on B(00), respectively, and define €; : B(oo) — Z and o; :
B(oo) — Z by

ei(b) :=max{n > 0| elb# 0}, i(b) :=&;(b) + (wt(b))(a}). (1.3.1)

Denote by * : B(co) — B(00) the *-operation on B(oo) (cf. [Kasl, Theorem 2.1.1]
and [Kas3, §8.3]). We put e} := xoe;o* and f; := xo f; o for each i € I.

Theorem 1.3.1 (cf. [Kasl, Theorem 2.2.1]). For each i € I, there ezxists an
embedding ¥ .: B(oo) — B(oo) ® Bi of crystals that maps ue t0 ux ® b;(0),
where B; := {bi(n) | n € Z} is a crystal in [Kasl, Example 1.2.6]. In addition, if
b= (f})kbo for some k € Zxp and by € B(oo) such that e}by = 0, then ¥; (b) =
bo ® b;(—k). |

We denote by B(—o00) the crystal base of the positive part U} (g) with u_ the
lowest weight vector, and by e; and f; the raising and lowering Kashiwara operator

on B(—o00), respectively. We set
£i(b) := i(b) — (Wt(b))(c}), i(b) := max{n > 0| fI'b # 0}. (1.3.2)

We also have the x-operation * : B(—00) — B(—00) on B(—o00). We can easily
show that there exists an embedding ¥} : B(—00) — B; ® B(—00) of crystals with
properties similar to ¥;” in Theorem 1.3.1.

Let B(ﬁq(g)) = |yep B(Uy(g)an) be the crystal base of the modified quantized
universal enveloping algebra U,(g) with u, the clement of B(U,(g)a,) correspond-
ing to ay € Uy(g)an (cf. [Kas2, Theorem 2.1.2]). We denote by e; and f; the raising
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and lowering Kashiwara operator on B((jq(g)), and define ¢; : B([jq(g)) — Z and
i : B(Uyg(g)) — Z by

ei(b) == max{n > 0| elb # 0}, pi(b) :=max{n >0]| ffb#0}. (1.3.3)
We know the following theorem from [Kas2, Theorem 3.1.1].

Theorem 1.3.2. There ezists an isomorphism =y : B(Uy(g)ar) = B(o0) @ Th ®
B(—00) of crystals such that Z\(uy) = oo ® tr @ U_oo, where Ty = {t)\} is a

crystal consisting of a single element t\ of weight A (cf. [Kas3, Example 7.3]).

~

We also denote by = : B(U,(g)) — B(U,(g)) the *-operation on B(U,(g)) (cf.
[Kas2, Theorem 4.3.2]). We know the following theorem from [Kas2, Corollary
4.3.3].

Theorem 1.3.3. Let b € B(U,(g)ay), and assume that Ex(b) = bi ® 1ty @by
with by € B(0o) and by, € B(—00). Then, b* is contained in B(Uy(g)ax), where
M= =X — wt(by) — wt(be), and Ex(b*) = b} ® tx ® b3.

1.4 The crystal base of an extremal weight module. Since B( ﬁq(g)) is
a normal crystal, we can define an action of the Weyl group W on B(U,(g)) (see
[Kas2, §7.1]); for i € I, we define an action of the simple reflection r; by

ribi= {f"nb it ne=(wON) 20 B, (141
0

e;"b if n = (wt(b))()) <

1

An element b € B((jq(g)) is said to be extremal if the elements {wb}wew C
B(ﬁq(g)) satisfy the following condition for all 7 € I:

if (wt(wb)) () > 0, then e;(wb) = 0,

(1.4.2)
and if (wt(wb))(ay) < 0, then fi(wb) = 0.
For A € P, we define a subcrystal B()) of B(Uy(g)as) by
B(X) := {b € B(U,(g)ay) | b* is extremal}. (1.4.3)

Remark that uy € B(U,(g)a,) is contained in B()). We know from [Kas2, Propo-
sition 8.2.2] and [Kas5, §3.1] that B()) is the crystal base of the extremal weight
module V() of extremal weight A over U,(g).
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2 Some Tools for Crystal Bases.
2.1 Multiple maps. We know the following theorem.
Theorem 2.1.1 ([Kas4, Theorem 3.2]). Let m € Zso. There exists a unique
injective map Spm oo : B(00) < B(0o) such that for each b € B(oo) and i € I, we
have
Wt(Sm,c0(b)) = mwt(b), €i(Sm,o(b)) = mei(b), $i(Sm,co(b)) = mepi(b), (2.1.1)
Sm,co(Uso) = Uoo,  Sm,oo(€id) = €]'Sm,c0(b),  Smoo(fib) = " Smeo(d). (2.1.2)

Proposition 2.1.2. We set Sy, , := %0 S0 0 *. Then we have S, o, = Sp.00 0N
B(co). Namely, the x-operation commautes with the map Sy, o : B(00) — B(00).

The proposition above can be shown in a way similar to [NS2, Theorem 2.3.1].
Before giving a proof of the proposition, we show the following lemma.

Lemma 2.1.3. The following diagram is commutative:

B(co) — B(c0) ® B,
s:n.ml ls:,._,,o@s.,.,, (2.1.3)

L\
B(oco) —— B(o0) ® B;.
Here Sy, j : Bj — B; is a map defined by S, ;(bj(n)) := b;j(mn).

Proof. For b € B(oo), there exists by € B(oo) such that b = (f})*by for some
k € Z3¢ and ejbp = 0. Then, by Theorem 1.3.1, we have W (b) = bo®b;(—k), and

hence
| (Se0 ® Sm ) (5 (b)) = S5 (bo) ® bj(—mk).

On the other hand, we see that Sy, (b) = (f7)™ S, o (bo)- If €5 Sm 00(bo) # 0,
then we have £;(Sm 00(bg)) > 1. Since €;(Sm,oo(b)) = mej(b) € mZ for all b €
B(oo), we deduce that £;(Sm,c0(b5)) > m, and hence (e})™S, . (bo) # 0. However,
since ejbp = 0, we get (€)™ S, oo(bo) = S, oo(€jba) = 0, which is a contradiction.

Therefore, we conclude that e}Sy, ,(bo) = 0. It follows from Theorem 1.3.1 that
U7 (Smoo(b)) = U5 (7)™ S 00 (b0)) = S c0(bo) ® bj(—mk).

Hence we have (S, oo ® Sm,;)(¥; (b)) = ¥; (Sm.c0(b)). This completes the proof of
the lemma. a
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Proof of Proposition 2.1.2. We will prove that S3,(b) = Sm,c0(b) for b € B(oo)—¢
by induction on the height ht(§) of £ (note that —wt(b) € Y .., Z>oc; for all
b € B(oo)). If ht(£) = 0, then b is the highest weight element u, € B(00), and
hence the assertion is obvious.

Assume that ht(£) > 1. Then, there exists some i € I such that b; := e;b # 0.
If ejbp =0 for all § € I, then b, = ue, and hence b = fiu. Because ffuy, is
a unique element of weight —ka; for each k € Z>o, and wt(b*) = wt(b) for all
b € B(oo), we deduce that b* = b, and hence that

S:n,oq(b) = (Sm,oo(b‘))* = (Sm,OO(b))* = (fl"'uoo)‘ = f{"Uoo = mm(b)-

So, we may assume that there exists j € I such that ejby # 0. Let by € B(oo) be
such that ejb; = 0 and b, = (f;)kbg for some k € Z>,. Namely, b = f,'(f;)kbg for
some k > 1 and b, € B(o0) such that ejb, = 0.

Case 1: i # j.  We show that ¥; (S}, (0)) = ¥;(Smeo(b)) (recall that
¥ : B(0o) — B(co) ® Bj is an embedding of crystals). We have
U3 (b) = W (fi(f])*b2) = £i¥7 ((f7)*b2) = filb2 ® bj(—F))
= fiby ® bj(—‘k)-
Here the last equality immediately follows from the definition of the tensor product
of crystals (see, for example, [Kas3, §7.3]) and the condition that ¢ # j. Therefore,
we obtain
U5 (Smco(D) = (Smce ® Sm,j)(¥; (b)) by Lemma 2.1.3

= Spo(fib2) ® bj(—mk)

= Sin,00( fib2) ® bj(—mk) by the inductive assumption

= fI"Sm,c0(b2) ® bj(—mk).

On the other hand,

Sm.w(b) = Sm.m(fi(f;)kb2) = fimSm.oo((f;)kb2)

= fi’"(f;)'"kS,,,'qo(bg) by the inductive assumption.

As in the proof of Lemma 2.1.3, we deduce that e}S;, (b2) = 0, and hence
€;Sm,00(b2) = €35, o (b2) = 0 by the inductive assumption. Therefore,

U5 (Sm,oo(6)) = T (S (f7)™ Smioo(b2)) = £ ‘I’}((f,-' )™ Sm,c0(b2))
= f{"(Sm,co(b2) ® bj(—mk)) = (f" Sm,c0(b2)) ® bj(—mk).
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Here the last equality immediately follows again from the definition of the tensor
product of crystals and the condition that i # j. Thus, we get that \IIJ" (S,’;l,oo(b)) =
U5 (Sm,00(b)), and hence Sy, . (b) = Sm,o0(b)-
Case 2: i=j. Asin Case 1, we have ¥; (b) = fi(by ® bi(—k)). We deduce
from the definition of the tensor product of crystals that '
f,'bg ® b,(—k) if (pi(bg) > ,C,
U (b) = filbe ® bi(—k)) =
b2 ® bi(—k e 1) if (pi(bz) S k.

Hence, as in Case 1, we get

f:nSm,oo(bg) ® bi(—mk) lf (p,(bz) > k,
Sm,oo(bg) ® b,-(—mk - m) if (pi(bg) < k.

U7 (S0 (b)) = {

On the other hand, in exactly the same way as in Case 1, we can show that
U (Smoo(B) = fI*(Sm,oo(b2) ® bi(—mk)). Because @i(Sin,co(b2)) = mepi(b2) by
(2.1.1), we deduce from the definition of the tensor product of crystals that

'mSmoo b. bi —mk if s(b k,
f,m(Sm‘oo(b2) ®b1(—mk)) _ {f; R ( 2) & ( m ) 1@ ( 2) >
Sm,oo(bQ) ® bi(—mk —m) if ‘Pi(bz) <k

Therefore, we obtain that ¥ (S;, (b)) = ¥;(Sme(b)), and hence Sy, (b) =

Sm.00(b). Thus, we have proved the proposition. O

Remark 2.1.4. A similar result holds for the crystal base B(—o0). Namely, for each
m € Zso, there exists a unique injective map Sy, —oo : B(—00) «— B(—00) with
properties similar to Sy, o in Theorem 2.1.1, and it commutes with the *-operation
on B(—o00).

For m € Zq, we define an injective map Sy, x : B(Ug(g)ar) < B(Uy(8)am) as
in the following commutative diagram (cf. Theorem 1.3.2):

B(Uy(g)a) —2- B(co) ® Th ® B(—00)

~

S;m'AJ, lsm.w®fm,x®sm,—m (214)

B(U,(g)am) ‘—Ni*— (00) ® Tina ® B(—00),

where Ty \ : Ta — Ty is defined by 71,0 (82) := tma. We define S : (7,,(9) — ﬁq(g)
as the direct sum of all the §m,A’s.
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Proposition 2.1.5. The maps .§m,,\ : B(Uy(g)arn) — B(Ug(g)amy) and Sm
B((jq(g)) — B(ﬁq(g)) have properties similar to Sy 00 in Theorem 2.1.1. In addi-

tion, the map S, commutes with the *-operation on B(U,(g))-

Proof. The first assertion immediately follows from Theorem 2.1.1, Remark 2.1.4,
and the definition of the tensor product of crystals (see also [Kas5, Appendix B]).
Let us prove the second assertion. We set 3",",, := % 0 S, 0 %. It suffices to show the
following:

Claim. Let A € P, and b € B(U,(g)ay). Then, we have that S5(b) €
B(Uq(8)ams), and that Ema(Sk(5) = Ema(Sm(b))-
Assume that Z,(b) = b; ® t) ® by with b; € B(oo) and by € B(—00). Then we see
by the definition of Sy that

Zma(Sm(0)) = (Smoo ® Tma ® Sm—o0) (Ex(b)) = Smoco(b1) ® tmar ® Sim,—oo(b2).

On the other hand, we know from Theorem 1.3.3 that b* € B(Uq.(g)dk') and
Ex(b*) = bt @ty @ b3, where X’ := —\ — wt(b;) — wt(b2). Hence we have

Emz\'(g’m(b‘)) = (Sm,oo ® Tm, A ® Sm,—oo)(Ez\’(b‘)) = Sm.OO(b'l') Rtmr & Sm.—oo(b;)'

We deduce again from Theorem 1.3.3 that S%,(b) = (Sm(b*))" € B(Uy(g)ams), and
that

EmA(Sm (b)) = Spmco(01) ® tma ® Sy, _oo(b2) ,
= Sm,00(01) ® tma ® Sin,—0o(b2) by Proposition 2.1.2 and Remark 2.1.4.
Thus, we obtain Sy (S (b)) = Em,\(gm(b)), as desired. O

Theorem 2.1.6. Let m € Z-o. There ezists an injective map Spa : B(A) —
B(m)) such that Sy, a(ur) = uma and such that for each b € B(co) and i € I, we

have
wt(Sma(0)) = mwt(d), €i(Sma(b)) = mei(b), ©i(Sma(b)) = mpi(b), (2.1.5)
Sm,,\(eib) = e:" m,,\(b), Sm',\(fib) = f,mSm,,\(b) (216)
Proof. Set Spa = ~m|3(,\). Thén, it is obvious from Proposition 2.1.5 that
Sma(B(X)) C B(Uy(g)amy)- Hence we need only show that (S, A(b))" is extremal
for every b € B(\). We can easily check that the action of the Weyl group W

commutes with Sp, ». So, it follows from Proposition 2.1.5 that

w((Sma(b))*) = wSmA(b*) = Sma(wd*) for all b€ B(A) and w e W.
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Assume that wt(b*) = . Then we see that wt((Sp,x(b))*) = mu. Suppose that
(w(mp))(ey) > 0 and e; (w((Sm())*)) # 0. As in the proof of Lemma 2.1.3, we
deduce that e*(w((Sm,(b))*)) # 0. Hence we have

Sma(ei(wd*)) = e'Sma(wb*) = €* (wSmA(b*)) = e (w((Sm(b))*)) # 0.

However, since (w(u))(a)Y) > 0 and b* is extremal, we have e;(wb*) = 0, and

hence S,, ,\(e, (wb*) ) = 0, which is a contradiction. Therefore, we obtain that
ei(w((Sma(b))*)) = 0. Similarly, we can prove that if (w(mp))(aY) < 0, then
fi(w((Sm,(b))*)) = 0. This completes the proof of the theorem. a

2.2 Embedding into tensor products. In this subsection, we assume that g
is an affine Lie algebra (for the notation, sce §1.2). We know the following theorem
from [B, §2], [N, §3] in the symmetric case, and from [BN, §4] in the nonsymmetric

case.

Theorem 2.2.1. We have an embedding G o, : Bo(mw;) — B(w;)®™ of crystals
that maps ume, to ud™.

Remark 2.2.2. In [BN], they take a vertex 0 € I such that ag = 1 (see [BN, §2.1]).
So, in the case of Ag‘;), the choice of the vertex 0 is different from that in [Kas5,
§5.2], and hence from ours. However, this does not cause a serious problem. For
details, see the comment after [BN, Theorem 2.15].

Since B(w;) is connected (see [I(as5, Theorem 5.5]), we sce that Sp, o, (B(w;)) C
Bo(mw;). Hence we can define 0 o, : B(w;i) — B(w;)®™ by 0m o, := Gm,@; ©Sm,w;
for each m € Z5o. Remark that o, o, has the following properties:

Wt(0m,m, (b)) = mwt(b), €;(0mm, (b)) = me;(b), ©;j(0m,m (b)) =mep;(b), (2.2.1)
Omw; (Ug) = ug:", Om,w;(€jb) = €]'0mw,(b), Omwm,(fib) = [ omw(b). (2.2.2)
Lemma 2.2.3. Let m, n € Zso. Then we have Oppn,o, = 029, © Om,w, -

Proof. Since B(w;) is connected, every b € B(w;) is of the form

b=z;zj, - TjUp,

for some jy, 72, ..., Jx € I, where ; is cither e; or f;. We will show by induction
on k that opp o, (b) = a;?'a’; 00w, (b) for all b € B(w;). If k = 0, then the assertion

is obvious, since b = ug,. Assume that k& > 1. We set V' := z;, - T, uy,, and
Omw (V) =1 Qua ®- - @ up € B(w;)®™. Assume that

Om,w; (b) = x;'?am,w.(b,) = Tklul ® 23 Uz ®--- .’Ek"'
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for some ki, ks, ..., km € Z3o. Then we have
®m _ .nk nk nk
O © Om,m (D) = T Onm; (01) ® Z; 2O mi(U2) ® -+ ® Zj ™ O, (Um).-

Here we remark (cf. [Kas1, Lemma 1.3.6]) that for all u; ®us®- - -@u, € B(w;)®™,
Ti(t QU ® QUp) =1 QU2 Q- L1 Q-+ @ Uy
if and only if

z?(an,w.- (ul) ® Un,w.-(UQ) R Q0Onw; (um)) =

Onwi(U1) ® Onm,(U2) @+ @ 270, (W) @ -+ * ® O, (Um)-
So we obtain

o™ o Um,w.'(b) = x;‘:m (Un,m.- (ul) ® 0n,w.—(“2) ®: - Q0nw, (um))

n,w;
= 25" (0. © Ommi (V)

We see that 027 0 Om,w, (V') = Omn,w, (V') by the inductive assumption, and that

Omn,wi (D) = T Omn,m, (V). Therefore, we obtain 022 0 04,2, (b) = Omn,w(b). O

For each w € W, we set uyw, := Wiy, € B(w;). By [Kas5, Proposition 5.8], we
see that u,,) is well-defined. We can easily show the following lemma.

Lemma 2.2.4. For each m € Z>o and w € W, we have om o, (Uww;) = (Vww,)®™.

Proposition 2.2.5. Let b € B(w;). Assume that b = zj,zj, - - - Tj Uw;, where x;
is either e; or f;, and set by := x;xj, - Tyuw, for l = 1,2...,k+ 1 (here
bk+1 = Ugw,). Then there exists sufficiently large m € Z such that for every
l=1,2...,k+1,

Om,m; (b1) = Uy @i B Uy 3 @+ @ Uy ; (2.2.3)
for some wy 1, Wi, ..., W m €W.

Proof. We show the assertion by induction on k. If £ = 0, then the assertion is
obvious. Assume that k > 1. By the inductive assumption, there exists m € Z¢
such that oy, o, (b;) is of the desired form for every | =2, ...,k + 1. Assume that

am-wi(bl) = Om,w; (mjle) = x;'?o'm.wi (b2)

— »C1 c2 e Cm
- Ijl Uz, w4 ® le Uws 2 w; ® ® mjl Uwy i



for some ¢y, ¢a, ..., ¢m € Z>o. We can easily check by Lemma 2.2.4 and [Kasl,
Lemma 1.3.6] that if n, € Z, satisfies the condition that (w2 ;) () | npcp, then
Oy (T3 Uy i) = Uiy g ® Uiy ® +++ ® Uny; fOr sOME Wy, Wy, ..., Wy € W.
Therefore, by Lemma 2.2.4, we see that there exists N > 0 (for example, put
N =T[7L, np) such that

(UN.wi)®m o Um,wi(bl) = Uw, ) w; ® Uw, ;2 w; - Uy, Nm @i
for some wy ;, w12, ..., Wi1Nm € W. Furthermore, we deduce from Lemma 2.2.4
that (o0N,w)®™ © Om,w; (1) is of the desired form for every | = 2, ..., k+ 1. It

follows from Lemma 2.2.3 that (on,z,)®™ © 01w, = ONm,w;- Thus we have proved
the proposition. 0

3 Preliminary Results.

3.1 Some tools for path models. A path is, by definition, a piecewise linear,
continuous map 7 : [0,1] — Q ®z P such that 7(0) = 0. We regard two paths
m and 7’ as equivalent if there exist piecewise linear, nondecreasing, surjective,
continuous maps ¥, ¥’ : [0,1] — [0, 1] (reparametrization) such that moy = w’'o 1.
We denote by PP the set of paths (modulo reparametrization) such that n(1) € P,
and by e; and f; the raising and lowering root operator (see [L2, §1]). By using
root operators, we can endow P with a normal crystal structure (see [L2, §1 and
§2]); we set wt(w) := m(1), and define¢; : P — Z and ¢; : P — Z by

() :=max{n>0|efr#0}, ¢i(n):=max{n>0]| fir#0}. (3.1.1)

Let X € P be an (arbitrary) integral weight. We denote by B(A) C P the set of
Lakshmibai-Seshadri paths of shape A (see [L2, §4]), and set m\(t) := tA € B()).
Denote by Bo()) the connected component of B()\) containing 7). We obtain the
following lemma by [L2, Lemma 2.4].

Lemma 3.1.1. For # € P, we define S, : P — P by Sp(w) := mn, where
(mm)(t) := mn(t) fort € [0,1]. Then we have Sp(Bo())) = Bo(mA). In addition,

the map Sy, has properties similar to-S,,  in Theorem 2.1.1.

For paths m, m; € PP, we define a concatenation m; x 7, € PP as in [L2, §1).
Because my, x my * --- x w5 (m-times) is just w,, modulo reparametrization, we

obtain the following lemma.
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Lemma 3.1.2. We have a canonical embedding Gmy : Bo(md) — B(A)*™ of

crystals that maps Tmy to 3™, where BA)'™ := {m *mp* -+ % T | m; € B(\)},

and T™ = my k T\ k- -k Wy € B(A)™.

By combining Lemmas 3.1.1 and 3.1.2, we get an embedding om : Bo(A) —
B(A\)*™ defined by omx := Gmx © Sm. It can easily be seen that this map has
properties similar to (2.2.1) and (2.2.2).

Since B()) is a normal crystal, we can define an action of the Weyl group W on
B(\) (cf. (1.4.1); see also [L2, Theorem 8.1]). We set my, := wm for w € W. Note
that (wmy)(t) = t(w)) for each w € W. Using [L2, Lemma 2.7], we can prove the

following proposition in a way similar to Proposition 2.2.5.

Proposition 3.1.3. Let 7 € Bo()\). Assume that m = z;,T;, - - T;, T, where z;
is either e; or f;, and set m = z;x;,, ---Tym forl =1,2,..., k + 1 (here
Tes1 := ). Then, there exists sufficiently large m € Z such that for every
l=1,2...,k+1,

Um.f\(ﬂl) = Ty A ¥ Ty a2 o K Ty A (312)
for some w1, wi, ..., WM €W.

3.2 Preliminary lemmas. In this subsection, g is assumed to be of affine
type (for the notation, see §1.2). By using [L2, Lemma 2.1 c)], we can easily show

the following lemma.

Lemma 3.2.1. Let i € Io. For each w € W and j € I, we have wt(Tyw,) =

Wt(uww‘), ] (ﬂ'wwi) =Ej (uww.’): and Pj (Wil’wi) = @; (“wwi)'

It follows from [Kasl, Lemma 1.3.6], [L2, Lemma 2.7], and Lemma 3.2.1 that

k ok ks k :
xj (uwlwi ® Uy w; ®--® u'wmwi) = leuwlws ® 1‘]- Uwpw; ®® xjmuwmwi

for some ki, ks, ..., km € Z>o if and only if

km

k — ok ks
T; (7rwlw.' * Myppem; * * 0 ¥ 7rw,,.w,-) = -L'jlﬂ'wlw.- T My, ¥ ¥ T Mwm;

for every k € Z>o, m € Zso and wy, wo, ..., w,m € W. So, we obtain the following

lemma.

Lemma 3.2.2. (1) Letb = xjxj, - Tjuw, € B(w;). Take m € Zso such
that the assertion of Proposition 2.2.5 holds, and assume that 0m o, (b) = Uw,w; ®
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Uy & @ Unpw,- Then we have m := z;,xj, - 2o, # 0, and Op o, (1) =
Tunw; * Twgw; ¥ % My o -

(2) The converse of (1) holds. Namely, let 1 = zj,zj, -+ x;, 70, € B(w;). Take
m € Zso such that the assertion of Proposition 3.1.3 holds, and assume that
Om,wi(T) = Tuyw; * Mwge; * *+* * Ty, ;. Then we have b := Tj,Tj, Tj U, 7 O,

and am-wi(b) = Uuyw; B Uwyw; @+ O U, ;-

4 Main Results.

4.1 Isomorphism theorem. From now on, we assume that g is an affine Lie
algebra. We can carry out the proof of our isomorphism theorem, following the
general line of that for [Kas5, Theorem 4.1].

Theorem 4.1.1. There erists a unique isomorphism @, : B(w,-.) 5 Bo(w;) of

crystals such that g, (Up,) = T, .

Proof. 1t suffices to prove that for ji, j, ..., jp € I and ky, ko, ..., ko€,
(1) ZjiTj, - Tj Uy = Thy Ty *+* Ty, € Tjy Ty *+ Tj, Mgy = T, Ty - C T, My
(2) ZjyZj, TjUm, =0 & T4 2, -+ T T, = 0.

Part (2) has already been proved in Lemma 3.2.2. Let us show the direction

(=) of part (1). Take m € Zq such that the assertion of Proposition 2.2.5 holds
for both by 1= z;,zj, - - Tj,uw, and by := Ty, 24, - - - T U,

Um,mi(bl) = Uy w, ®_“102w; Q@ Uypw;,

Um,w.-(b2) = Uy w, ® Uy, - ® Uy! w,-

Since by = by, we get Uy, o, = Uwiw,, and hence wyw; = wyw; foralll =1, 2, ..., m.

By Lemma 3.2.2 (1), we see that

Om,w; (7!'1) = TMunw; * Tupw * 0 * My, w,,

Om,w; (7(2) = 7rw;w.- * 7rw;w,» oo x Tt @)

where m := T, T}, -+ - T, e, and my 1= T4, Ty, -+ - T, T, Since wy; = wjw; and
Twe (t) = t(ww;) for all w € W, we get oy, (M) = Omw,(M2). Since omg, is
injective, we conclude that 7, = 5. .

We show the reverse direction (<) of part (1). Take m € Z-g such that the
assertion of Proposition 3.1.3 holds for both m := z;z;,- - z;,7, and m =



Tg)Tky - - :L‘kq’ll'w'.:

Um,w.- (Trl) = 7rw1w.~ * 7rw2w.- koo Xk mewga

Om,w; (772) = Mwiw; * Twhw, * % Tw!, ;-
Since 7, = w9, and hence 0y, o, (1) = O w,(72) in P, the two paths Ty, , * Muw,w, *
K Mypm; AN Tyl o, * Muge, * - -+ % Ty o, are identical modulo reparametrization.
Hence we can deduce that ww; = wjw; for all | = 1,2, ..., m from the fact
that if aw; € Wwm; for some a € Q> and i, j € Iy, then ¢ = j and a = 1. By
Lemma 3.2.2 (2), we have

Om,w; (bl) = Uyyw; @ Uy @ * @ Uiy s

Omw;(b2) = Uty ® Uy, @ ** ® Uy, ;-

Since wyw; = wyw; for alll =1, 2, ..., m, it follows from [Kas5, Proposition 5.8
(1)] that uwm, = Uy, for all I = 1,2, ..., m. Therefore we have om o, (b1) =
Om,w; (b2). Since o, », is injective, we conclude that by = b,. ’ a

Remark 4.1.2. In general, an isomorphism of crystals between B()A) and Bo(A)
does not exist, even if B(A) is connected. For example, let g be of type Agl), and
A = ), + wp (we know from [Kas5, Proposition 5.4] that B()) is connected).
If B(A\) = Bo()\) as crystals, then we would have wuy = w'uy in B()) for every
w, w' € W with wA = w'A, but we have an example of w, w' € W such that
wuy, # w'uy in B(A) and wA = w'X (see [Kas5, Remark 5.10]).

Remark4.1.3. In [G], Greenstein proved that if g is of type AEI), then the connected
component By(mw;+nd) is a path model for a certain bounded module L(¢, m,n).
He also showed a decomposition rule for tensor products, which seems to be closely
related to Theorem 4.3.3 below.

4.2 Branching rule for V (w;).
Lemma 4.2.1. For every m € B(w;), we have (w(1),7(1)) < (w;, w;).

Proof. Let m = (v, v, ..., Vs; ao, ay, ..., as) with v; € Ww; and a; € [0,1] be
a Lakshmibai-Seshadri path of shape w; (cf. [L2, §4]). By the definition of a

Lakshmibai-Seshadri path, we sce that 7(1) = 3°7_,(a; — a;-1)v;. Hence we have

(m(1),m(1)) =) (a; —a;-1)* (v, ) +2 Y (k= ar—1)(@ — ar-1) (v, 1)

j—l 1<k<I<s

“Z a; —aj- 1) (@i, ;) + 2 Z (ax — ak-1)(@ — ar-1)(wi, wuw;)

1<k<I<s
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for some wy € W. By [Kac, Proposition 6.3], we deduce that wiw; = w; — Bu +
ngd for some By € Eie I Zsoca; and ny € Z. Therefore, we have (note that w; is
of level 0)

(m(1),7(1)) = Z(aj — aj_1)*(wi, @)

+2 ) (o — ax-1) (@ — armr) (@i, @i = B+ nwad)

1<k<lI<s
= Z(aj —aj1)*(wi, w;) + 2 Z (ax — ak—1)(a — a1—1)(@;, @;)
i=1 1<k<lI<s
-2 Y (- a) (@ — @) (@i, Bu)
1<k<I<s
s 2
= {Z(aj - aj—l)} (@i, wi) — 2 Z (ak — ax-1)(ar — ar-1)(wi, Bri)
=1 1<k<li<s '

= (m;, i) — 2 Z (ar — ar—1) (@ — ar1) (@i, Br)-
1<k<I<s
Since (w;, Bu) > 0 for all 1 < k < | < s, we deduce that (7(1),7(1)) < (@i, wi),

as desired. O

Let S be a proper subset of I, iie., S C I. Let gs be the Levi subalgebra
of g corresponding to S, and Uy(gs) C U,(g) the quantized universal enveloping
algebra of gs. Note that a crystal for Uy(g) can be regarded as a crystal for Uy(gs)

by restriction.

Theorem 4.2.2. As crystals for gs, B(w;) and Bo(w;) decompose as follows :

Bw)= || Bs(r(1), Bow)= || Bs(n(1)), (421)

T€B(w;) n€Bo (w;)
n: gs-dominant . gs-dominant

where Bg()\) is the set of Lakshmibai-Seshadri paths of shape X for U,(gs), and a
path m is said to be gs-dominant if (n(t))(a)) >0 for allt € [0,1) andi € S.

Proof. We will show only the first equality in (4.2.1), since the second one can be
shown in the same way. As in [Kasl, §9.3], we deduce, using Lemma 4.2.1, that
cach connected component of B(w;) (as a crystal for Uy(gs)) contains an extremal
weight element 7’ with respect to W := (r; | j € S). Because gs is a finite-
dimensional reductive Lie algebra, there exists w € W such that ((wn')(1))(a)) >
0 for all j € S. Put 7 := wn’ for this w € Ws. Since 7 is also extremal, we have

that e;jm = 0 for all j € S. Because is a Lakshmibai-Seshadri path of shape
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w;, we deduce from [L2, Lemmas 2.2 b) and 4.5 d)] that (7 (t))(a}) > 0 for all
te[0,1] and j € S, ie, 7w is gs-dominant. We see from [L2, Theorem 7.1] that
the connected component containing m as a crystal for Uy(gs) is isomorphic to

Bs(n(1)), thereby completing the proof of the theorem. a

Theorem 4.2.3. (1) The extremal weight module V (w;) of extremal weight w;
is completely reducible as a U,(gs)-module.

(2) The decomposition of V(w;) as a Uy(gs)-module is given by :

V) @ Vs(r(1), (4.2.2)

n€By (wy)

w: gs-dominant

where Vs()) is the integrable highest weight Uy(gs)-module of highest weight .

Proof. (1) First we prove that U := U,(gs)u is finite-dimensional for each weight
vector u € V (w;). To prove this, it suffices to show that the weight system Wt(U)
of U is a finite set, since cach weight space of V (w;) is finite-dimensional (see [Kas5,
Proposition 5.16 (iii)]). Remark that if i, v € P are weights of U, then u, v € bg,
and it — v € Qs = Y, s Zai. Hence the canonical map cl : hg — hs/Q4 is
injective on Wt(U), since kd & Qs for any k € Z \ {0}. Since Wt(U) is contained
in the weight system Wt(V(w;)) of V(w;), it follows from Theorem 4.1.1 and
Lemma 4.2.1 that *

(Wt(U)) € cl(Wt(V (w;))) = cl({m(1) | # € Bo(w:)}) by Theorem 4.1.1
C {1 €by/Qd| (1, 4) < (cl(w;), cl(w:)) } by Lemma 4.2.1.

Because the bilinear form (-, -) on h3/Q4 is positive-definite, the set cl(Wt(U)) is
discrete and contained in a compact set with respect to the usual metric topology
on R ®q (hs/Q6) defined by (-, -). Therefore, we see that cl(Wt(U)) is a finite set,
and hence so is Wt(U). Thus, we conclude that U = U,(gs)u is finite-dimensional.
Since ¢ is assumed to generic, the finite-dimensional U,(gs)-module Uy(gs)u is
completely reducible for each weight vector u € V(w;). Because V(w;) is a sum
of all such modules U,(gs)u, we deduce that V (w;) is also completely reducible.
(2) Because each weight space of V (w;) is finite-dimensional, we can define the

formal character ch V(w;) of V(w;). By Theorem 4.2.2, we have

chV(w;) = Z ch Vs (m(1)).

w€By (wi)

7 gg-dominant
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Therefore, in order to prove part (2), we need only show that this is the unique
way of writing chV (w;) as a sum of the characters of integrable highest weight

U,(gs)-modules. Assume that

chV(wmi) =) exchVs(A) and chV(my) =3 ¢\ chVs(A)
Aep o AeP
with ¢x,c), € Z for A € P. Then we have ), p(cx—c)) ch Vs(A) = 0. Suppose that
there exists A € P’ such that ¢y —c) # 0, and set X := {A € P | cx—c), # 0}(# 0).
Note that X is contained in the weight system Wt(V (w;)) of V(w;). As in the

proof of part (1), we deduce that

cl(Wt(V (1)) € {1’ € b3/Q8 | (', ) < (cl(w), cl(wi))},

and hence Wt(V (w;)) modulo Z$ is a finite set.
Now, we define a partial order >g on P as follows:

p=>sv for pveP <= pu—ve(Qs)s:= ZZZoai.

ies -
Let us show that the set X has a maximal eleinent with respect to this order >g.
Let p € X. Then Wt(V (w;)) N (1t +Qs) is a finite set. Indeed, if this is not a finite
set, then there exist elements v, v’ of it such that v—v' = ké with k € Z\ {0}, since
Wt(V (@;)) modulo Z$ is a finite set. However, since v — v’ € Qg and ké € Qg for
any k € Z \ {0}, this is a contradiction. Therefore, we sec that X N (i + (Qs)4)
is also a finite set, and hence that X has a maximal element of the form u + £ for
some (3 € (Qs)+-

Let v € X be a maximal element with respect to this order >5. We can easily
see that the coefficient of e(v) in ), p(cx — ¢}) ch Vg(A) is equal to ¢, — c,. Since
v € X, we have ¢, — ¢}, # 0, which contradicts )_,(cy — ¢}) chVs()A) = 0. This
completes the proof of the theorem. O

4.3 Decomposition rule for tensor products. In this subsection, we as-
sume that w; is minuscule, i.e., w;(a") € {:tl, 0} for every dual real root aV of
8- |

Remark 4.3.1. The following is the list of minuscule weights (cf. [H, p. 174]). We
use the numbering of vertices of the Dynkin diagrams in [Kac, Ch. 4]:
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Ag])(ezl) whw?) ooy Wy Agi)—l (323) w1
BY(>3): w, D@ (¢>2): w

ce>2): w
Dﬁl) (£>4): w, we1, We
E((il) . W), Ws

Egl) . » We

Remark 4.3.2. If w; is minuscule, then, for any u, v € Ww; and rational number
0 < a < 1, there does not exist an a-chain for (s, v). Hence it follows from the
definition of Lakshmibai-Seshadri paths that B(w;) = {mwe, | w € W}. Since
Wy, = TMww;, We see that B(w;) is connected, and hence B(w;) = Bo(w;).

Theorem 4.3.3. Let \ be a dominant integral weight which is not a multiple of
the null root § of g. Then, the concatenation B(\) * B(w;) decomposes as follows:

BO)+B(w) = || BO+n(), (4.3.1)

1r€B(w.- )
m: A-dominant

where m € B(w;) is said to be A-dominant if (A + n(t))(a)) > 0 for all t € [0,1]
andi € I.

Proof. We will prove that cach connected component contains a (unique) path
of the form my, * 7 for a A-dominant path m € B(w;). Then the assertion of the
theorem follows from [L2, Theorem 7.1].

Let my*my € B(\)*B(w;). It can casily be scen that e, e;, - - - e;, (T ¥7) = Tx*my
for some iy, %2, ..., ix € I, where wy € B(w;) (cf. [G, §5.6]). Set S := {z €|
Aey) = 0} (note that S ¢ I, since A is not a multiple of §), and let B be the
set of paths of the form ej e;, - - - e;, (my x mh) for ji, j2, ..., ji € S. Remark that if
€j,€j;, - €, (ma * mh) # 0, then ej,ej, -+ - ¢, (mr % 7)) = 7y * (ej,€5, -+ - €M) As in

the proof of part (2) of Theorem 4.2.3, we deduce that
{n(1) |7 € B(wi) } N (m3(1) + (Qs)+) = W(V (1)) N (m3(1) + (Qs)+)

is a finite set. Hence we have my*m} € B for some 7 € B(w;) such that e;(my*73) =
0 for all j € S. Because w; is minuscule and 7} = 7y, for some w € W (cf.
Remark 4.3.2), we sce that ej(my * ) = 0 for all j.€ I\ S. Therefore, we
conclude that ny € B(w;) is A-dominant. Thus, we have completed the proof of

‘the theorem. O



Remark 4.3.4. Unlike Theorems 4.2.2 and 4.2.3, this theorem does not necessarily

imply the decomposition rule for tensor products of corresponding Uy(g)-modules.
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