Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra

佐垣 大輔 (Daisuke SAGAKI)

筑波大学 数学系

Institute of Mathematics, University of Tsukuba

sagaki@math.tsukuba.ac.jp

内藤 聡 (Satoshi NAITO) 筑波大学 数学系

> Institute of Mathematics, University of Tsukuba

naito@math.tsukuba.ac.jp

0 Introduction.

Let $\mathfrak g$ be a symmetrizable Kac-Moody algebra over $\mathbb Q$ with the Cartan subalgebra $\mathfrak h$ and the Weyl group W. We fix an integral weight lattice $P \subset \mathfrak h^* := \operatorname{Hom}_{\mathbb Q}(\mathfrak h, \mathbb Q)$ that contains all simple roots of $\mathfrak g$. Let $\lambda \in P$ be an integral weight. In [L1] and [L2], Littelmann introduced the notion of Lakshmibai-Seshadri paths of shape λ , which are piecewise linear, continuous maps $\pi:[0,1] \to P$ parametrized by pairs of a sequence of elements of $W\lambda$ and a sequence of rational numbers satisfying a certain condition, called the chain condition. Denote by $\mathbb B(\lambda)$ the set of Lakshmibai-Seshadri paths of shape λ . Littelmann proved that $\mathbb B(\lambda)$ has a normal crystal structure in the sense of [Kas3], and that if λ is a dominant integral weight, then the formal sum $\sum_{\pi \in \mathbb B(\lambda)} e(\pi(1))$ is equal to the character $\operatorname{ch} L(\lambda)$ of the integrable highest weight $\mathfrak g$ -module $L(\lambda)$ of highest weight λ . Then he conjectured that $\mathbb B(\lambda)$ for dominant $\lambda \in P$ would be isomorphic to the crystal base of the integrable highest weight module of highest weight λ as crystals. This conjecture was affirmatively proved independently by Kashiwara [Kas4] and Joseph [J].

In [Kas2] and [Kas5], Kashiwara introduced an extremal weight module $V(\lambda)$ of extremal weight $\lambda \in P$ over the quantized universal enveloping algebra $U_q(\mathfrak{g})$ over $\mathbb{Q}(q)$, and showed that it has a crystal base $\mathcal{B}(\lambda)$. The extremal weight module is a natural generalization of an integrable highest (lowest) weight module. In fact, we know from [Kas2, §8] that if $\lambda \in P$ is dominant (resp. anti-dominant), then the extremal weight module $V(\lambda)$ is isomorphic to the integrable highest (resp. lowest) weight module of highest (resp. lowest) weight λ , and the crystal base $\mathcal{B}(\lambda)$ of $V(\lambda)$ is isomorphic to the crystal base of the integrable highest (resp. lowest) weight module as a crystal.

Now, we assume that \mathfrak{g} is of affine type. Let I be the index set of the simple roots of \mathfrak{g} , and fix a special vertex $0 \in I$ as in [Kas5, §5.2]. In this paper, as an extension of the isomorphism theorem due to Kashiwara and Joseph, we prove that if λ is a level-zero fundamental weight $\varpi_i \in P$ for $i \in I_0 := I \setminus \{0\}$ (see [Kas5, §5.2]; note that ϖ_i is not dominant), then the connected component $\mathbb{B}_0(\varpi_i)$ of $\mathbb{B}(\varpi_i)$ containing $\pi_{\varpi_i}(t) := t\varpi_i$ is isomorphic to the crystal base $\mathcal{B}(\varpi_i)$ of the extremal weight module $V(\varpi_i)$ as crystals. Namely, we prove the following:

Theorem 1. Assume that \mathfrak{g} is of affine type. There exists a unique isomorphism $\Phi_{\varpi_i}: \mathcal{B}(\varpi_i) \xrightarrow{\sim} \mathbb{B}_0(\varpi_i)$ of crystals such that $\Phi_{\varpi_i}(u_{\varpi_i}) = \pi_{\varpi_i}$, where $u_{\varpi_i} \in \mathcal{B}(\varpi_i)$ is the unique extremal weight element of weight ϖ_i .

Let \mathfrak{g}_S be the Levi subalgebra corresponding to a proper subset S of the index set I, and let $U_q(\mathfrak{g}_S) \subset U_q(\mathfrak{g})$ be the quantized universal enveloping algebra of \mathfrak{g}_S . By restriction, we can regard the crystals $\mathbb{B}(\varpi_i)$ and $\mathbb{B}_0(\varpi_i)$ for $U_q(\mathfrak{g})$ as crystals for $U_q(\mathfrak{g}_S)$. We show the following branching rule for $\mathbb{B}(\varpi_i)$ and $\mathbb{B}_0(\varpi_i)$ as crystals for $U_q(\mathfrak{g}_S)$:

Theorem 2. As crystals for $U_q(\mathfrak{g}_S)$, $\mathbb{B}(\varpi_i)$ and $\mathbb{B}_0(\varpi_i)$ decompose as follows:

$$\mathbb{B}(\varpi_i) \cong \bigsqcup_{\substack{\pi \in \mathbb{B}(\varpi_i) \\ \pi: \ \mathfrak{g}_S\text{-dominant}}} \mathbb{B}_S(\pi(1)), \qquad \mathbb{B}_0(\varpi_i) \cong \bigsqcup_{\substack{\pi \in \mathbb{B}_0(\varpi_i) \\ \pi: \ \mathfrak{g}_S\text{-dominant}}} \mathbb{B}_S(\pi(1)).$$

where $\mathbb{B}_S(\lambda)$ is the set of Lakshmibai–Seshadri paths of shape λ for $U_q(\mathfrak{g}_S)$, and $\pi \in \mathbb{B}(\varpi_i)$ is said to be \mathfrak{g}_S -dominant if $(\pi(t))(\alpha_i^{\vee}) \geq 0$ for all $t \in [0,1]$ and $i \in S$.

We also show that the extremal weight module $V(\varpi_i)$ of extremal weight ϖ_i is completely reducible as a $U_q(\mathfrak{g}_S)$ -module. Then, as an application of Theorems 1 and 2 above, we obtain the following branching rule for $V(\varpi_i)$:

Theorem 3. The extremal weight module $V(\varpi_i)$ of extremal weight ϖ_i is completely reducible as a $U_q(\mathfrak{g}_S)$ -module, and the decomposition of $V(\varpi_i)$ as a $U_q(\mathfrak{g}_S)$ -module is given by:

$$V(\varpi_i) \cong \bigoplus_{\substack{\pi \in \mathbf{B}_0(\varpi_i) \\ \pi: \ \mathfrak{g}_S ext{-dominant}}} V_S(\pi(1)),$$

where $V_S(\lambda)$ is the integrable highest weight $U_q(\mathfrak{g}_S)$ -module of highest weight λ .

Assume that ϖ_i is minuscule, i.e., $\varpi_i(\alpha^{\vee}) \in \{\pm 1, 0\}$ for every dual real root α^{\vee} of \mathfrak{g} . Then we can check that $\mathbb{B}(\varpi_i)$ is connected, and hence $\mathbb{B}(\varpi_i) = \mathbb{B}_0(\varpi_i)$.

In this case, we get the following decomposition rule of Littelmann type for the concatenation $\mathbb{B}(\lambda) * \mathbb{B}(\varpi_i)$. Here we note that unlike Theorems 2 and 3, this theorem does not necessarily imply the decomposition rule for tensor products of corresponding $U_q(\mathfrak{g})$ -modules.

Theorem 4. Let λ be a dominant integral weight which is not a multiple of the null root δ of \mathfrak{g} , and assume that ϖ_i is minuscule. Then, the concatenation $\mathbb{B}(\lambda)*\mathbb{B}(\varpi_i)$ decomposes as follows:

$$\mathbb{B}(\lambda) * \mathbb{B}(\varpi_i) \cong \bigsqcup_{\substack{\pi \in \mathbb{B}(\varpi_i) \\ \pi: \lambda \text{-dominant}}} \mathbb{B}(\lambda + \pi(1)),$$

where $\pi \in \mathbb{B}(\overline{\omega}_i)$ is said to be λ -dominant if $(\lambda + \pi(t))(\alpha_i^{\vee}) \geq 0$ for all $t \in [0,1]$ and $i \in I$.

Remark. The reader should compare Theorems 1 and 4 with the corresponding results [G, Theorems 1.5 and 1.6] of Greenstein for bounded modules.

Acknowledgments. We are grateful to Professors Jonathan Beck and Hiraku Nakajima for informing us thier results in [BN], and permitting us to use them.

1 Preliminaries and Notation.

1.1 Quantized universal enveloping algebras. Let $A = (a_{ij})_{i,j \in I}$ be a symmetrizable generalized Cartan matrix, and $\mathfrak{g} := \mathfrak{g}(A)$ the Kac-Moody algebra over \mathbb{Q} associated to the generalized Cartan matrix A. Denote by \mathfrak{h} the Cartan subalgebra, by $\Pi := \{\alpha_i\}_{i \in I} \subset \mathfrak{h}^*$ and $\Pi^{\vee} := \{\alpha_i^{\vee}\}_{i \in I} \subset \mathfrak{h}$ the set of simple roots and simple coroots, and by $W = \langle r_i \mid i \in I \rangle$ the Weyl group. We take (and fix) an integral weight lattice $P \subset \mathfrak{h}^*$ such that $\alpha_i \in P$ for all $i \in I$.

Denote by $U_q(\mathfrak{g})$ the quantized universal enveloping algebra of \mathfrak{g} over the field $\mathbb{Q}(q)$ of rational functions in q, and by $U_q^-(\mathfrak{g})$ (resp. $U_q^+(\mathfrak{g})$) the negative (resp. positive) part of $U_q(\mathfrak{g})$. We denote by $\widetilde{U}_q(\mathfrak{g}) = \bigoplus_{\lambda \in P} U_q(\mathfrak{g}) a_\lambda$ the modified quantized universal enveloping algebra of \mathfrak{g} , where a_λ is a formal element of weight λ (cf. [Kas2, §1.2]).

1.2 Affine Lie algebras. Assume that g is of affine type. Let

$$\delta = \sum_{i \in I} a_i \alpha_i \in \mathfrak{h}^*$$
 and $c = \sum_{i \in I} a_i^{\vee} \alpha_i^{\vee} \in \mathfrak{h}$ (1.2.1)

be the null root and the canonical central element of \mathfrak{g} . We denote by (\cdot, \cdot) the bilinear form on \mathfrak{h}^* , which is normalized by: $a_i^{\vee} = \frac{(\alpha_i, \alpha_i)}{2} a_i$ for all $i \in I$. Set $\mathfrak{h}_0^* := \bigoplus_{i \in I} \mathbb{Q}\alpha_i \subset \mathfrak{h}^*$, and let $\mathrm{cl} : \mathfrak{h}_0^* \twoheadrightarrow \mathfrak{h}_0^*/\mathbb{Q}\delta$ the canonical map from \mathfrak{h}_0^* onto the quotient space $\mathfrak{h}_0^*/\mathbb{Q}\delta$. We have a bilinear form (also denoted by (\cdot, \cdot)) on $\mathfrak{h}_0^*/\mathbb{Q}\delta$ induced from the bilinear form (\cdot, \cdot) , which is positive-definite.

We take (and fix) a special vertex $0 \in I$ as in [Kas5, §5.2], and set $I_0 := I \setminus \{0\}$. For $i \in I_0$, let ϖ_i be a unique element in $\bigoplus_{i \in I_0} \mathbb{Q}\alpha_i$ such that $\varpi_i(\alpha_j^{\vee}) = \delta_{i,j}$ for all $j \in I_0$. Notice that $\Lambda_i := \varpi_i + a_i^{\vee} \Lambda_0$ is an *i*-th fundamental weight for \mathfrak{g} , where Λ_0 is a 0-th fundamental weight for \mathfrak{g} . So, we may assume that all the ϖ_i 's are contained in the integral weight lattice P.

1.3 Crystal bases. Let $\mathcal{B}(\infty)$ be the crystal base of the negative part $U_q^-(\mathfrak{g})$ with u_∞ the highest weight element. Denote by e_i and f_i the raising and lowering Kashiwara operator on $\mathcal{B}(\infty)$, respectively, and define $\varepsilon_i : \mathcal{B}(\infty) \to \mathbb{Z}$ and $\varphi_i : \mathcal{B}(\infty) \to \mathbb{Z}$ by

$$\varepsilon_i(b) := \max \{ n \ge 0 \mid e_i^n b \ne 0 \}, \quad \varphi_i(b) := \varepsilon_i(b) + (\operatorname{wt}(b))(\alpha_i^{\vee}). \tag{1.3.1}$$

Denote by $*: \mathcal{B}(\infty) \to \mathcal{B}(\infty)$ the *-operation on $\mathcal{B}(\infty)$ (cf. [Kas1, Theorem 2.1.1] and [Kas3, §8.3]). We put $e_i^* := * \circ e_i \circ *$ and $f_i^* := * \circ f_i \circ *$ for each $i \in I$.

Theorem 1.3.1 (cf. [Kas1, Theorem 2.2.1]). For each $i \in I$, there exists an embedding $\Psi_i^-: \mathcal{B}(\infty) \hookrightarrow \mathcal{B}(\infty) \otimes \mathcal{B}_i$ of crystals that maps u_∞ to $u_\infty \otimes b_i(0)$, where $\mathcal{B}_i := \{b_i(n) \mid n \in \mathbb{Z}\}$ is a crystal in [Kas1, Example 1.2.6]. In addition, if $b = (f_i^*)^k b_0$ for some $k \in \mathbb{Z}_{\geq 0}$ and $b_0 \in \mathcal{B}(\infty)$ such that $e_i^* b_0 = 0$, then $\Psi_i^-(b) = b_0 \otimes b_i(-k)$.

We denote by $\mathcal{B}(-\infty)$ the crystal base of the positive part $U_q^+(\mathfrak{g})$ with $u_{-\infty}$ the lowest weight vector, and by e_i and f_i the raising and lowering Kashiwara operator on $\mathcal{B}(-\infty)$, respectively. We set

$$\varepsilon_i(b) := \varphi_i(b) - (\operatorname{wt}(b))(\alpha_i^{\vee}), \quad \varphi_i(b) := \max\{n \ge 0 \mid f_i^n b \ne 0\}.$$
 (1.3.2)

We also have the *-operation * : $\mathcal{B}(-\infty) \to \mathcal{B}(-\infty)$ on $\mathcal{B}(-\infty)$. We can easily show that there exists an embedding $\Psi_i^+ : \mathcal{B}(-\infty) \hookrightarrow \mathcal{B}_i \otimes \mathcal{B}(-\infty)$ of crystals with properties similar to Ψ_i^- in Theorem 1.3.1.

Let $\mathcal{B}(\widetilde{U}_q(\mathfrak{g})) = \bigsqcup_{\lambda \in P} \mathcal{B}(U_q(\mathfrak{g})a_{\lambda})$ be the crystal base of the modified quantized universal enveloping algebra $\widetilde{U}_q(\mathfrak{g})$ with u_{λ} the element of $\mathcal{B}(U_q(\mathfrak{g})a_{\lambda})$ corresponding to $a_{\lambda} \in U_q(\mathfrak{g})a_{\lambda}$ (cf. [Kas2, Theorem 2.1.2]). We denote by e_i and f_i the raising

and lowering Kashiwara operator on $\mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$, and define $\varepsilon_i : \mathcal{B}(\widetilde{U}_q(\mathfrak{g})) \to \mathbb{Z}$ and $\varphi_i : \mathcal{B}(\widetilde{U}_q(\mathfrak{g})) \to \mathbb{Z}$ by

$$\varepsilon_i(b) := \max\{n \ge 0 \mid e_i^n b \ne 0\}, \qquad \varphi_i(b) := \max\{n \ge 0 \mid f_i^n b \ne 0\}.$$
 (1.3.3)

We know the following theorem from [Kas2, Theorem 3.1.1].

Theorem 1.3.2. There exists an isomorphism $\Xi_{\lambda}: \mathcal{B}(U_q(\mathfrak{g})a_{\lambda}) \xrightarrow{\sim} \mathcal{B}(\infty) \otimes \mathcal{T}_{\lambda} \otimes \mathcal{B}(-\infty)$ of crystals such that $\Xi_{\lambda}(u_{\lambda}) = u_{\infty} \otimes t_{\lambda} \otimes u_{-\infty}$, where $\mathcal{T}_{\lambda} := \{t_{\lambda}\}$ is a crystal consisting of a single element t_{λ} of weight λ (cf. [Kas3, Example 7.3]).

We also denote by $*: \mathcal{B}(\widetilde{U}_q(\mathfrak{g})) \to \mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ the *-operation on $\mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ (cf. [Kas2, Theorem 4.3.2]). We know the following theorem from [Kas2, Corollary 4.3.3].

Theorem 1.3.3. Let $b \in \mathcal{B}(U_q(\mathfrak{g})a_{\lambda})$, and assume that $\Xi_{\lambda}(b) = b_1 \otimes t_{\lambda} \otimes b_2$ with $b_1 \in \mathcal{B}(\infty)$ and $b_2 \in \mathcal{B}(-\infty)$. Then, b^* is contained in $\mathcal{B}(U_q(\mathfrak{g})a_{\lambda'})$, where $\lambda' := -\lambda - \text{wt}(b_1) - \text{wt}(b_2)$, and $\Xi_{\lambda'}(b^*) = b_1^* \otimes t_{\lambda'} \otimes b_2^*$.

1.4 The crystal base of an extremal weight module. Since $\mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ is a normal crystal, we can define an action of the Weyl group W on $\mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ (see [Kas2, §7.1]); for $i \in I$, we define an action of the simple reflection r_i by

$$r_{i}b := \begin{cases} f_{i}^{n}b & \text{if } n := (\operatorname{wt}(b))(\alpha_{i}^{\vee}) \geq 0\\ e_{i}^{-n}b & \text{if } n := (\operatorname{wt}(b))(\alpha_{i}^{\vee}) \leq 0. \end{cases}$$
 for $b \in \mathcal{B}(\widetilde{U}_{q}(\mathfrak{g})).$ (1.4.1)

An element $b \in \mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ is said to be extremal if the elements $\{wb\}_{w \in W} \subset \mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ satisfy the following condition for all $i \in I$:

if
$$(\operatorname{wt}(wb))(\alpha_i^{\vee}) \ge 0$$
, then $e_i(wb) = 0$,
and if $(\operatorname{wt}(wb))(\alpha_i^{\vee}) \le 0$, then $f_i(wb) = 0$. (1.4.2)

For $\lambda \in P$, we define a subcrystal $\mathcal{B}(\lambda)$ of $\mathcal{B}(U_q(\mathfrak{g})a_{\lambda})$ by

$$\mathcal{B}(\lambda) := \{ b \in \mathcal{B}(U_q(\mathfrak{g})a_\lambda) \mid b^* \text{ is extremal} \}.$$
 (1.4.3)

Remark that $u_{\lambda} \in \mathcal{B}(U_q(\mathfrak{g})a_{\lambda})$ is contained in $\mathcal{B}(\lambda)$. We know from [Kas2, Proposition 8.2.2] and [Kas5, §3.1] that $\mathcal{B}(\lambda)$ is the crystal base of the extremal weight module $V(\lambda)$ of extremal weight λ over $U_q(\mathfrak{g})$.

2 Some Tools for Crystal Bases.

2.1 Multiple maps. We know the following theorem.

Theorem 2.1.1 ([Kas4, Theorem 3.2]). Let $m \in \mathbb{Z}_{>0}$. There exists a unique injective map $S_{m,\infty} : \mathcal{B}(\infty) \hookrightarrow \mathcal{B}(\infty)$ such that for each $b \in \mathcal{B}(\infty)$ and $i \in I$, we have

$$\operatorname{wt}(S_{m,\infty}(b)) = m \operatorname{wt}(b), \ \varepsilon_i(S_{m,\infty}(b)) = m\varepsilon_i(b), \ \varphi_i(S_{m,\infty}(b)) = m\varphi_i(b), \ (2.1.1)$$

$$S_{m,\infty}(u_{\infty}) = u_{\infty}, \quad S_{m,\infty}(e_i b) = e_i^m S_{m,\infty}(b), \quad S_{m,\infty}(f_i b) = f_i^m S_{m,\infty}(b). \quad (2.1.2)$$

Proposition 2.1.2. We set $S_{m,\infty}^* := * \circ S_{m,\infty} \circ *$. Then we have $S_{m,\infty}^* = S_{m,\infty}$ on $\mathcal{B}(\infty)$. Namely, the *-operation commutes with the map $S_{m,\infty} : \mathcal{B}(\infty) \hookrightarrow \mathcal{B}(\infty)$.

The proposition above can be shown in a way similar to [NS2, Theorem 2.3.1]. Before giving a proof of the proposition, we show the following lemma.

Lemma 2.1.3. The following diagram is commutative:

$$\begin{array}{ccc}
\mathcal{B}(\infty) & \xrightarrow{\Psi_{j}^{-}} & \mathcal{B}(\infty) \otimes \mathcal{B}_{j} \\
S_{m,\infty}^{*} \downarrow & & \downarrow S_{m,\infty}^{*} \otimes S_{m,j} \\
\mathcal{B}(\infty) & \xrightarrow{\Psi_{j}^{-}} & \mathcal{B}(\infty) \otimes \mathcal{B}_{j}.
\end{array} (2.1.3)$$

Here $S_{m,j}: \mathcal{B}_j \to \mathcal{B}_j$ is a map defined by $S_{m,j}(b_j(n)) := b_j(mn)$.

Proof. For $b \in \mathcal{B}(\infty)$, there exists $b_0 \in \mathcal{B}(\infty)$ such that $b = (f_j^*)^k b_0$ for some $k \in \mathbb{Z}_{\geq 0}$ and $e_j^* b_0 = 0$. Then, by Theorem 1.3.1, we have $\Psi_j^-(b) = b_0 \otimes b_j(-k)$, and hence

$$(S_{\infty}^* \otimes S_{m,j})(\Psi_j^-(b)) = S_{\infty}^*(b_0) \otimes b_j(-mk).$$

On the other hand, we see that $S_{m,\infty}^*(b) = (f_j^*)^{mk} S_{m,\infty}^*(b_0)$. If $e_j^* S_{m,\infty}^*(b_0) \neq 0$, then we have $\varepsilon_j(S_{m,\infty}(b_0^*)) \geq 1$. Since $\varepsilon_j(S_{m,\infty}(b)) = m\varepsilon_j(b) \in m\mathbb{Z}$ for all $b \in \mathcal{B}(\infty)$, we deduce that $\varepsilon_j(S_{m,\infty}(b_0^*)) \geq m$, and hence $(e_j^*)^m S_{m,\infty}^*(b_0) \neq 0$. However, since $e_j^* b_0 = 0$, we get $(e_j^*)^m S_{m,\infty}^*(b_0) = S_{m,\infty}^*(e_j^* b_0) = 0$, which is a contradiction. Therefore, we conclude that $e_j^* S_{m,\infty}^*(b_0) = 0$. It follows from Theorem 1.3.1 that

$$\Psi_j^-(S_{m,\infty}^*(b)) = \Psi_j^-((f_j^*)^{mk}S_{m,\infty}^*(b_0)) = S_{m,\infty}^*(b_0) \otimes b_j(-mk).$$

Hence we have $(S_{m,\infty}^* \otimes S_{m,j})(\Psi_j^-(b)) = \Psi_j^-(S_{m,\infty}^*(b))$. This completes the proof of the lemma.

Proof of Proposition 2.1.2. We will prove that $S_{\infty}^{*}(b) = S_{m,\infty}(b)$ for $b \in \mathcal{B}(\infty)_{-\xi}$ by induction on the height $\operatorname{ht}(\xi)$ of ξ (note that $-\operatorname{wt}(b) \in \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ for all $b \in \mathcal{B}(\infty)$). If $\operatorname{ht}(\xi) = 0$, then b is the highest weight element $u_{\infty} \in \mathcal{B}(\infty)$, and hence the assertion is obvious.

Assume that $\operatorname{ht}(\xi) \geq 1$. Then, there exists some $i \in I$ such that $b_1 := e_i b \neq 0$. If $e_j^* b_1 = 0$ for all $j \in I$, then $b_1 = u_{\infty}$, and hence $b = f_i u_{\infty}$. Because $f_i^k u_{\infty}$ is a unique element of weight $-k\alpha_i$ for each $k \in \mathbb{Z}_{\geq 0}$, and $\operatorname{wt}(b^*) = \operatorname{wt}(b)$ for all $b \in \mathcal{B}(\infty)$, we deduce that $b^* = b$, and hence that

$$S_{m,\infty}^*(b) = (S_{m,\infty}(b^*))^* = (S_{m,\infty}(b))^* = (f_i^m u_\infty)^* = f_i^m u_\infty = S_{m,\infty}(b).$$

So, we may assume that there exists $j \in I$ such that $e_j^*b_1 \neq 0$. Let $b_2 \in \mathcal{B}(\infty)$ be such that $e_j^*b_2 = 0$ and $b_1 = (f_j^*)^k b_2$ for some $k \in \mathbb{Z}_{\geq 1}$. Namely, $b = f_i(f_j^*)^k b_2$ for some $k \geq 1$ and $b_2 \in \mathcal{B}(\infty)$ such that $e_j^*b_2 = 0$.

Case 1: $i \neq j$. We show that $\Psi_j^-(S_{m,\infty}^*(b)) = \Psi_j^-(S_{m,\infty}(b))$ (recall that $\Psi_j^-: \mathcal{B}(\infty) \hookrightarrow \mathcal{B}(\infty) \otimes \mathcal{B}_j$ is an embedding of crystals). We have

$$\Psi_{j}^{-}(b) = \Psi_{j}^{-}(f_{i}(f_{j}^{*})^{k}b_{2}) = f_{i}\Psi_{j}^{-}((f_{j}^{*})^{k}b_{2}) = f_{i}(b_{2} \otimes b_{j}(-k))$$
$$= f_{i}b_{2} \otimes b_{j}(-k).$$

Here the last equality immediately follows from the definition of the tensor product of crystals (see, for example, [Kas3, §7.3]) and the condition that $i \neq j$. Therefore, we obtain

$$\Psi_{j}^{-}(S_{m,\infty}^{*}(b)) = (S_{m,\infty}^{*} \otimes S_{m,j})(\Psi_{j}^{-}(b)) \quad \text{by Lemma 2.1.3}$$

$$= S_{m,\infty}^{*}(f_{i}b_{2}) \otimes b_{j}(-mk)$$

$$= S_{m,\infty}(f_{i}b_{2}) \otimes b_{j}(-mk) \quad \text{by the inductive assumption}$$

$$= f_{i}^{m}S_{m,\infty}(b_{2}) \otimes b_{j}(-mk).$$

On the other hand,

$$S_{m,\infty}(b) = S_{m,\infty}(f_i(f_j^*)^k b_2) = f_i^m S_{m,\infty}((f_j^*)^k b_2)$$
$$= f_i^m (f_j^*)^{mk} S_{m,\infty}(b_2) \quad \text{by the inductive assumption.}$$

As in the proof of Lemma 2.1.3, we deduce that $e_j^* S_{m,\infty}^*(b_2) = 0$, and hence $e_j^* S_{m,\infty}(b_2) = e_j^* S_{m,\infty}^*(b_2) = 0$ by the inductive assumption. Therefore,

$$\Psi_{j}^{-}(S_{m,\infty}(b)) = \Psi_{j}^{-}(f_{i}^{m}(f_{j}^{*})^{mk}S_{m,\infty}(b_{2})) = f_{i}^{m}\Psi_{j}^{-}((f_{j}^{*})^{mk}S_{m,\infty}(b_{2}))$$
$$= f_{i}^{m}(S_{m,\infty}(b_{2}) \otimes b_{j}(-mk)) = (f_{i}^{m}S_{m,\infty}(b_{2})) \otimes b_{j}(-mk).$$

Here the last equality immediately follows again from the definition of the tensor product of crystals and the condition that $i \neq j$. Thus, we get that $\Psi_j^-(S_{m,\infty}^*(b)) = \Psi_j^-(S_{m,\infty}(b))$, and hence $S_{m,\infty}^*(b) = S_{m,\infty}(b)$.

Case 2: i = j. As in Case 1, we have $\Psi_j^-(b) = f_i(b_2 \otimes b_i(-k))$. We deduce from the definition of the tensor product of crystals that

$$\Psi_i^-(b) = f_i(b_2 \otimes b_i(-k)) = \begin{cases} f_i b_2 \otimes b_i(-k) & \text{if } \varphi_i(b_2) > k, \\ b_2 \otimes b_i(-k-1) & \text{if } \varphi_i(b_2) \le k. \end{cases}$$

Hence, as in Case 1, we get

$$\Psi_{i}^{-}(S_{m,\infty}^{*}(b)) = \begin{cases} f_{i}^{m} S_{m,\infty}(b_{2}) \otimes b_{i}(-mk) & \text{if } \varphi_{i}(b_{2}) > k, \\ S_{m,\infty}(b_{2}) \otimes b_{i}(-mk-m) & \text{if } \varphi_{i}(b_{2}) \leq k. \end{cases}$$

On the other hand, in exactly the same way as in Case 1, we can show that $\Psi_i^-(S_{m,\infty}(b)) = f_i^m(S_{m,\infty}(b_2) \otimes b_i(-mk))$. Because $\varphi_i(S_{m,\infty}(b_2)) = m\varphi_i(b_2)$ by (2.1.1), we deduce from the definition of the tensor product of crystals that

$$f_i^m(S_{m,\infty}(b_2)\otimes b_i(-mk)) = \begin{cases} f_i^mS_{m,\infty}(b_2)\otimes b_i(-mk) & \text{if } \varphi_i(b_2) > k, \\ S_{m,\infty}(b_2)\otimes b_i(-mk-m) & \text{if } \varphi_i(b_2) \leq k. \end{cases}$$

Therefore, we obtain that $\Psi_i^-(S_{m,\infty}^*(b)) = \Psi_i^-(S_{m,\infty}(b))$, and hence $S_{m,\infty}^*(b) = S_{m,\infty}(b)$. Thus, we have proved the proposition.

Remark 2.1.4. A similar result holds for the crystal base $\mathcal{B}(-\infty)$. Namely, for each $m \in \mathbb{Z}_{>0}$, there exists a unique injective map $S_{m,-\infty} : \mathcal{B}(-\infty) \hookrightarrow \mathcal{B}(-\infty)$ with properties similar to $S_{m,\infty}$ in Theorem 2.1.1, and it commutes with the *-operation on $\mathcal{B}(-\infty)$.

For $m \in \mathbb{Z}_{>0}$, we define an injective map $\widetilde{S}_{m,\lambda} : \mathcal{B}(U_q(\mathfrak{g})a_{\lambda}) \hookrightarrow \mathcal{B}(U_q(\mathfrak{g})a_{m\lambda})$ as in the following commutative diagram (cf. Theorem 1.3.2):

$$\mathcal{B}(U_{q}(\mathfrak{g})a_{\lambda}) \xrightarrow{\Xi_{\lambda}} \mathcal{B}(\infty) \otimes \mathcal{T}_{\lambda} \otimes \mathcal{B}(-\infty)$$

$$\downarrow S_{m,\lambda} \downarrow \qquad \qquad \downarrow S_{m,\infty} \otimes \tau_{m,\lambda} \otimes S_{m,-\infty} \qquad (2.1.4)$$

$$\mathcal{B}(U_{q}(\mathfrak{g})a_{m\lambda}) \xleftarrow{\Xi_{m\lambda}^{-1}} \mathcal{B}(\infty) \otimes \mathcal{T}_{m\lambda} \otimes \mathcal{B}(-\infty),$$

where $\tau_{m,\lambda}: \mathcal{T}_{\lambda} \to \mathcal{T}_{m\lambda}$ is defined by $\tau_{m,\lambda}(t_{\lambda}) := t_{m\lambda}$. We define $\widetilde{S}_m: \widetilde{U}_q(\mathfrak{g}) \hookrightarrow \widetilde{U}_q(\mathfrak{g})$ as the direct sum of all the $\widetilde{S}_{m,\lambda}$'s.

Proposition 2.1.5. The maps $\widetilde{S}_{m,\lambda}: \mathcal{B}(U_q(\mathfrak{g})a_{\lambda}) \hookrightarrow \mathcal{B}(U_q(\mathfrak{g})a_{m\lambda})$ and $\widetilde{S}_m: \mathcal{B}(\widetilde{U}_q(\mathfrak{g})) \hookrightarrow \mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$ have properties similar to $S_{m,\infty}$ in Theorem 2.1.1. In addition, the map \widetilde{S}_m commutes with the *-operation on $\mathcal{B}(\widetilde{U}_q(\mathfrak{g}))$.

Proof. The first assertion immediately follows from Theorem 2.1.1, Remark 2.1.4, and the definition of the tensor product of crystals (see also [Kas5, Appendix B]). Let us prove the second assertion. We set $\widetilde{S}_m^* := * \circ \widetilde{S}_m \circ *$. It suffices to show the following:

Claim. Let $\lambda \in P$, and $b \in \mathcal{B}(U_q(\mathfrak{g})a_{\lambda})$. Then, we have that $\widetilde{S}_m^*(b) \in \mathcal{B}(U_q(\mathfrak{g})a_{m\lambda})$, and that $\Xi_{m\lambda}(\widetilde{S}_m^*(b)) = \Xi_{m\lambda}(\widetilde{S}_m(b))$.

Assume that $\Xi_{\lambda}(b) = b_1 \otimes t_{\lambda} \otimes b_2$ with $b_1 \in \mathcal{B}(\infty)$ and $b_2 \in \mathcal{B}(-\infty)$. Then we see by the definition of \widetilde{S}_m that

$$\Xi_{m\lambda}(\widetilde{S}_m(b)) = (S_{m,\infty} \otimes \tau_{m,\lambda} \otimes S_{m,-\infty})(\Xi_{\lambda}(b)) = S_{m,\infty}(b_1) \otimes t_{m\lambda} \otimes S_{m,-\infty}(b_2).$$

On the other hand, we know from Theorem 1.3.3 that $b^* \in \mathcal{B}(U_q(\mathfrak{g})a_{\lambda'})$ and $\Xi_{\lambda'}(b^*) = b_1^* \otimes t_{\lambda'} \otimes b_2^*$, where $\lambda' := -\lambda - \text{wt}(b_1) - \text{wt}(b_2)$. Hence we have

$$\Xi_{m\lambda'}(\widetilde{S}_m(b^*)) = (S_{m,\infty} \otimes \tau_{m,\lambda} \otimes S_{m,-\infty})(\Xi_{\lambda'}(b^*)) = S_{m,\infty}(b_1^*) \otimes t_{m\lambda'} \otimes S_{m,-\infty}(b_2^*).$$

We deduce again from Theorem 1.3.3 that $\widetilde{S}_m^*(b) = (\widetilde{S}_m(b^*))^* \in \mathcal{B}(U_q(\mathfrak{g})a_{m\lambda})$, and that

$$\begin{split} \Xi_{m\lambda}(\widetilde{S}_m^*(b)) &= S_{m,\infty}^*(b_1) \otimes t_{m\lambda} \otimes S_{m,-\infty}^*(b_2) \\ &= S_{m,\infty}(b_1) \otimes t_{m\lambda} \otimes S_{m,-\infty}(b_2) \quad \text{by Proposition 2.1.2 and Remark 2.1.4.} \end{split}$$

Thus, we obtain
$$\Xi_{m\lambda}(\widetilde{S}_m^*(b)) = \Xi_{m\lambda}(\widetilde{S}_m(b))$$
, as desired.

Theorem 2.1.6. Let $m \in \mathbb{Z}_{>0}$. There exists an injective map $S_{m,\lambda} : \mathcal{B}(\lambda) \hookrightarrow \mathcal{B}(m\lambda)$ such that $S_{m,\lambda}(u_{\lambda}) = u_{m\lambda}$ and such that for each $b \in \mathcal{B}(\infty)$ and $i \in I$, we have

$$\operatorname{wt}(S_{m,\lambda}(b)) = m \operatorname{wt}(b), \quad \varepsilon_i(S_{m,\lambda}(b)) = m\varepsilon_i(b), \quad \varphi_i(S_{m,\lambda}(b)) = m\varphi_i(b), \quad (2.1.5)$$

$$S_{m,\lambda}(e_ib) = e_i^m S_{m,\lambda}(b), \quad S_{m,\lambda}(f_ib) = f_i^m S_{m,\lambda}(b). \quad (2.1.6)$$

Proof. Set $S_{m,\lambda} := \widetilde{S}_m|_{\mathcal{B}(\lambda)}$. Then, it is obvious from Proposition 2.1.5 that $S_{m,\lambda}(\mathcal{B}(\lambda)) \subset \mathcal{B}(U_q(\mathfrak{g})a_{m\lambda})$. Hence we need only show that $(S_{m,\lambda}(b))^*$ is extremal for every $b \in \mathcal{B}(\lambda)$. We can easily check that the action of the Weyl group W commutes with $S_{m,\lambda}$. So, it follows from Proposition 2.1.5 that

$$w((S_{m,\lambda}(b))^*) = wS_{m,\lambda}(b^*) = S_{m,\lambda}(wb^*)$$
 for all $b \in \mathcal{B}(\lambda)$ and $w \in W$.

Assume that $\operatorname{wt}(b^*) = \mu$. Then we see that $\operatorname{wt}((S_{m,\lambda}(b))^*) = m\mu$. Suppose that $(w(m\mu))(\alpha_i^{\vee}) \geq 0$ and $e_i(w((S_{m,\lambda}(b))^*)) \neq 0$. As in the proof of Lemma 2.1.3, we deduce that $e_i^m(w((S_{m,\lambda}(b))^*)) \neq 0$. Hence we have

$$S_{m,\lambda}(e_i(wb^*)) = e_i^m S_{m,\lambda}(wb^*) = e_i^m (wS_{m,\lambda}(b^*)) = e_i^m (w((S_{m,\lambda}(b))^*)) \neq 0.$$

However, since $(w(\mu))(\alpha_i^{\vee}) \geq 0$ and b^* is extremal, we have $e_i(wb^*) = 0$, and hence $S_{m,\lambda}(e_i(wb^*)) = 0$, which is a contradiction. Therefore, we obtain that $e_i(w((S_{m,\lambda}(b))^*)) = 0$. Similarly, we can prove that if $(w(m\mu))(\alpha_i^{\vee}) \leq 0$, then $f_i(w((S_{m,\lambda}(b))^*)) = 0$. This completes the proof of the theorem.

2.2 Embedding into tensor products. In this subsection, we assume that \mathfrak{g} is an affine Lie algebra (for the notation, see §1.2). We know the following theorem from [B, §2], [N, §3] in the symmetric case, and from [BN, §4] in the nonsymmetric case.

Theorem 2.2.1. We have an embedding $G_{m,\varpi_i}: \mathcal{B}_0(m\varpi_i) \hookrightarrow \mathcal{B}(\varpi_i)^{\otimes m}$ of crystals that maps $u_{m\varpi_i}$ to $u_{\varpi_i}^{\otimes m}$.

Remark 2.2.2. In [BN], they take a vertex $0 \in I$ such that $a_0 = 1$ (see [BN, §2.1]). So, in the case of $A_{2\ell}^{(2)}$, the choice of the vertex 0 is different from that in [Kas5, §5.2], and hence from ours. However, this does not cause a serious problem. For details, see the comment after [BN, Theorem 2.15].

Since $\mathcal{B}(\varpi_i)$ is connected (see [Kas5, Theorem 5.5]), we see that $S_{m,\varpi_i}(\mathcal{B}(\varpi_i)) \subset \mathcal{B}_0(m\varpi_i)$. Hence we can define $\sigma_{m,\varpi_i}:\mathcal{B}(\varpi_i) \hookrightarrow \mathcal{B}(\varpi_i)^{\otimes m}$ by $\sigma_{m,\varpi_i}:=G_{m,\varpi_i}\circ S_{m,\varpi_i}$ for each $m \in \mathbb{Z}_{>0}$. Remark that σ_{m,ϖ_i} has the following properties:

$$\operatorname{wt}(\sigma_{m,\varpi_{i}}(b)) = m \operatorname{wt}(b), \ \varepsilon_{j}(\sigma_{m,\varpi_{i}}(b)) = m\varepsilon_{j}(b), \ \varphi_{j}(\sigma_{m,\varpi_{i}}(b)) = m\varphi_{j}(b), \ (2.2.1)$$

$$\sigma_{m,\varpi_{i}}(u_{\varpi_{i}}) = u_{\varpi_{i}}^{\otimes m}, \ \sigma_{m,\varpi_{i}}(e_{j}b) = e_{j}^{m}\sigma_{m,\varpi_{i}}(b), \ \sigma_{m,\varpi_{i}}(f_{j}b) = f_{j}^{m}\sigma_{m,\varpi_{i}}(b). \ (2.2.2)$$

Lemma 2.2.3. Let $m, n \in \mathbb{Z}_{>0}$. Then we have $\sigma_{mn,\varpi_i} = \sigma_{n,\varpi_i}^{\otimes m} \circ \sigma_{m,\varpi_i}$.

Proof. Since $\mathcal{B}(\varpi_i)$ is connected, every $b \in \mathcal{B}(\varpi_i)$ is of the form

$$b=x_{j_1}x_{j_2}\cdots x_{j_k}u_{\varpi_i}$$

for some $j_1, j_2, \ldots, j_k \in I$, where x_j is either e_j or f_j . We will show by induction on k that $\sigma_{mn,\varpi_i}(b) = \sigma_{n,\varpi_i}^{\otimes m} \circ \sigma_{m,\varpi_i}(b)$ for all $b \in \mathcal{B}(\varpi_i)$. If k = 0, then the assertion is obvious, since $b = u_{\varpi_i}$. Assume that $k \geq 1$. We set $b' := x_{j_2} \cdots x_{j_k} u_{\varpi_i}$, and $\sigma_{m,\varpi_i}(b') =: u_1 \otimes u_2 \otimes \cdots \otimes u_m \in \mathcal{B}(\varpi_i)^{\otimes m}$. Assume that

$$\sigma_{m,\varpi_i}(b) = x_{j_1}^m \sigma_{m,\varpi_i}(b') = x_{j_1}^{k_1} u_1 \otimes x_{j_1}^{k_2} u_2 \otimes \cdots \otimes x_{j_1}^{k_m} u_m$$

for some $k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 0}$. Then we have

$$\sigma_{n,\varpi_{i}}^{\otimes m}\circ\sigma_{m,\varpi_{i}}(b)=x_{j_{1}}^{nk_{1}}\sigma_{n,\varpi_{i}}(u_{1})\otimes x_{j_{1}}^{nk_{2}}\sigma_{n,\varpi_{i}}(u_{2})\otimes\cdots\otimes x_{j_{1}}^{nk_{m}}\sigma_{n,\varpi_{i}}(u_{m}).$$

Here we remark (cf. [Kas1, Lemma 1.3.6]) that for all $u_1 \otimes u_2 \otimes \cdots \otimes u_m \in \mathcal{B}(\varpi_i)^{\otimes m}$,

$$x_j(u_1 \otimes u_2 \otimes \cdots \otimes u_m) = u_1 \otimes u_2 \otimes \cdots \otimes x_j u_l \otimes \cdots \otimes u_m$$

if and only if

$$x_j^n(\sigma_{n,\varpi_i}(u_1) \otimes \sigma_{n,\varpi_i}(u_2) \otimes \cdots \otimes \sigma_{n,\varpi_i}(u_m)) =$$

$$\sigma_{n,\varpi_i}(u_1) \otimes \sigma_{n,\varpi_i}(u_2) \otimes \cdots \otimes x_j^n \sigma_{n,\varpi_i}(u_l) \otimes \cdots \otimes \sigma_{n,\varpi_i}(u_m).$$

So we obtain

$$\sigma_{n,\varpi_{i}}^{\otimes m} \circ \sigma_{m,\varpi_{i}}(b) = x_{j_{1}}^{mn} \left(\sigma_{n,\varpi_{i}}(u_{1}) \otimes \sigma_{n,\varpi_{i}}(u_{2}) \otimes \cdots \otimes \sigma_{n,\varpi_{i}}(u_{m}) \right)$$
$$= x_{j_{1}}^{mn} \left(\sigma_{n,\varpi_{i}}^{\otimes m} \circ \sigma_{m,\varpi_{i}}(b') \right).$$

We see that $\sigma_{n,\varpi_i}^{\otimes m} \circ \sigma_{m,\varpi_i}(b') = \sigma_{mn,\varpi_i}(b')$ by the inductive assumption, and that $\sigma_{mn,\varpi_i}(b) = x_{j_1}^{mn}\sigma_{mn,\varpi_i}(b')$. Therefore, we obtain $\sigma_{n,\varpi_i}^{\otimes m} \circ \sigma_{m,\varpi_i}(b) = \sigma_{mn,\varpi_i}(b)$. \square

For each $w \in W$, we set $u_{w\varpi_i} := wu_{\varpi_i} \in \mathcal{B}(\varpi_i)$. By [Kas5, Proposition 5.8], we see that $u_{w\lambda}$ is well-defined. We can easily show the following lemma.

Lemma 2.2.4. For each $m \in \mathbb{Z}_{>0}$ and $w \in W$, we have $\sigma_{m,\varpi_i}(u_{w\varpi_i}) = (u_{w\varpi_i})^{\otimes m}$.

Proposition 2.2.5. Let $b \in \mathcal{B}(\varpi_i)$. Assume that $b = x_{j_1} x_{j_2} \cdots x_{j_k} u_{\varpi_i}$, where x_j is either e_j or f_j , and set $b_l := x_{j_l} x_{j_{l+1}} \cdots x_{i_k} u_{\varpi_i}$ for $l = 1, 2, \ldots, k+1$ (here $b_{k+1} := u_{\varpi_i}$). Then there exists sufficiently large $m \in \mathbb{Z}$ such that for every $l = 1, 2, \ldots, k+1$,

$$\sigma_{m,\varpi_{i}}(b_{l}) = u_{w_{l,1}\varpi_{i}} \otimes u_{w_{l,2}\varpi_{i}} \otimes \cdots \otimes u_{w_{l,m}\varpi_{i}}$$
 (2.2.3)

for some $w_{l,1}, w_{l,2}, \ldots, w_{l,m} \in W$.

Proof. We show the assertion by induction on k. If k = 0, then the assertion is obvious. Assume that $k \geq 1$. By the inductive assumption, there exists $m \in \mathbb{Z}_{>0}$ such that $\sigma_{m,\varpi_i}(b_l)$ is of the desired form for every $l = 2, \ldots, k + 1$. Assume that

$$\sigma_{m,\varpi_{i}}(b_{1}) = \sigma_{m,\varpi_{i}}(x_{j_{1}}b_{2}) = x_{j_{1}}^{m}\sigma_{m,\varpi_{i}}(b_{2})$$

$$= x_{j_{1}}^{c_{1}}u_{w_{2,1}\varpi_{i}} \otimes x_{j_{1}}^{c_{2}}u_{w_{2,2}\varpi_{i}} \otimes \cdots \otimes x_{j_{1}}^{c_{m}}u_{w_{2,m}\varpi_{i}}$$

for some $c_1, c_2, \ldots, c_m \in \mathbb{Z}_{\geq 0}$. We can easily check by Lemma 2.2.4 and [Kas1, Lemma 1.3.6] that if $n_p \in \mathbb{Z}_{>0}$ satisfies the condition that $(w_{2,p}\varpi_i)(\alpha_{j_1}^{\vee}) \mid n_p c_p$, then $\sigma_{n_p,\varpi_i}(x_{j_1}^{c_p}u_{w_{2,p}\varpi_i}) = u_{w_1\varpi_i} \otimes u_{w_2\varpi_i} \otimes \cdots \otimes u_{w_n\varpi_i}$ for some $w_1, w_2, \ldots, w_n \in W$. Therefore, by Lemma 2.2.4, we see that there exists $N \gg 0$ (for example, put $N = \prod_{p=1}^m n_p$) such that

$$(\sigma_{N,\varpi_i})^{\otimes m} \circ \sigma_{m,\varpi_i}(b_1) = u_{w_{1,1}\varpi_i} \otimes u_{w_{1,2}\varpi_i} \otimes \cdots \otimes u_{w_{1,N_m}\varpi_i}$$

for some $w_{1,1}, w_{1,2}, \ldots, w_{1,Nm} \in W$. Furthermore, we deduce from Lemma 2.2.4 that $(\sigma_{N,\varpi_i})^{\otimes m} \circ \sigma_{m,\varpi_i}(b_l)$ is of the desired form for every $l=2,\ldots,k+1$. It follows from Lemma 2.2.3 that $(\sigma_{N,\varpi_i})^{\otimes m} \circ \sigma_{m,\varpi_i} = \sigma_{Nm,\varpi_i}$. Thus we have proved the proposition.

3 Preliminary Results.

3.1 Some tools for path models. A path is, by definition, a piecewise linear, continuous map $\pi:[0,1]\to\mathbb{Q}\otimes_{\mathbb{Z}}P$ such that $\pi(0)=0$. We regard two paths π and π' as equivalent if there exist piecewise linear, nondecreasing, surjective, continuous maps ψ , $\psi':[0,1]\to[0,1]$ (reparametrization) such that $\pi\circ\psi=\pi'\circ\psi$. We denote by \mathbb{P} the set of paths (modulo reparametrization) such that $\pi(1)\in P$, and by e_i and f_i the raising and lowering root operator (see [L2, §1]). By using root operators, we can endow \mathbb{P} with a normal crystal structure (see [L2, §1 and §2]); we set $\operatorname{wt}(\pi):=\pi(1)$, and define $\varepsilon_i:\mathbb{P}\to\mathbb{Z}$ and $\varphi_i:\mathbb{P}\to\mathbb{Z}$ by

$$\varepsilon_i(\pi) := \max\{n \ge 0 \mid e_i^n \pi \ne 0\}, \qquad \varphi_i(\pi) := \max\{n \ge 0 \mid f_i^n \pi \ne 0\}.$$
 (3.1.1)

Let $\lambda \in P$ be an (arbitrary) integral weight. We denote by $\mathbb{B}(\lambda) \subset \mathbb{P}$ the set of Lakshmibai–Seshadri paths of shape λ (see [L2, §4]), and set $\pi_{\lambda}(t) := t\lambda \in \mathbb{B}(\lambda)$. Denote by $\mathbb{B}_0(\lambda)$ the connected component of $\mathbb{B}(\lambda)$ containing π_{λ} . We obtain the following lemma by [L2, Lemma 2.4].

Lemma 3.1.1. For $\pi \in \mathbb{P}$, we define $S_m : \mathbb{P} \hookrightarrow \mathbb{P}$ by $S_m(\pi) := m\pi$, where $(m\pi)(t) := m\pi(t)$ for $t \in [0,1]$. Then we have $S_m(\mathbb{B}_0(\lambda)) = \mathbb{B}_0(m\lambda)$. In addition, the map S_m has properties similar to $S_{m,\infty}$ in Theorem 2.1.1.

For paths $\pi_1, \pi_2 \in \mathbb{P}$, we define a concatenation $\pi_1 * \pi_2 \in \mathbb{P}$ as in [L2, §1]. Because $\pi_{\lambda} * \pi_{\lambda} * \cdots * \pi_{\lambda}$ (*m*-times) is just $\pi_{m\lambda}$ modulo reparametrization, we obtain the following lemma.

Lemma 3.1.2. We have a canonical embedding $G_{m,\lambda}: \mathbb{B}_0(m\lambda) \hookrightarrow \mathbb{B}(\lambda)^{*m}$ of crystals that maps $\pi_{m\lambda}$ to π_{λ}^{*m} , where $\mathbb{B}(\lambda)^{*m} := \{\pi_1 * \pi_2 * \cdots * \pi_m \mid \pi_i \in \mathbb{B}(\lambda)\}$, and $\pi_{\lambda}^{*m} := \pi_{\lambda} * \pi_{\lambda} * \cdots * \pi_{\lambda} \in \mathbb{B}(\lambda)^{*m}$.

By combining Lemmas 3.1.1 and 3.1.2, we get an embedding $\sigma_{m,\lambda}: \mathbb{B}_0(\lambda) \hookrightarrow \mathbb{B}(\lambda)^{*m}$ defined by $\sigma_{m,\lambda}:=G_{m,\lambda}\circ S_m$. It can easily be seen that this map has properties similar to (2.2.1) and (2.2.2).

Since $\mathbb{B}(\lambda)$ is a normal crystal, we can define an action of the Weyl group W on $\mathbb{B}(\lambda)$ (cf. (1.4.1); see also [L2, Theorem 8.1]). We set $\pi_{w\lambda} := w\pi_{\lambda}$ for $w \in W$. Note that $(w\pi_{\lambda})(t) = t(w\lambda)$ for each $w \in W$. Using [L2, Lemma 2.7], we can prove the following proposition in a way similar to Proposition 2.2.5.

Proposition 3.1.3. Let $\pi \in \mathbb{B}_0(\lambda)$. Assume that $\pi = x_{j_1} x_{j_2} \cdots x_{j_k} \pi_{\lambda}$, where x_j is either e_j or f_j , and set $\pi_l := x_{j_l} x_{j_{l+1}} \cdots x_{i_k} \pi_{\lambda}$ for l = 1, 2, ..., k+1 (here $\pi_{k+1} := \pi_{\lambda}$). Then, there exists sufficiently large $m \in \mathbb{Z}$ such that for every l = 1, 2, ..., k+1,

$$\sigma_{m,\lambda}(\pi_l) = \pi_{w_{l,1}\lambda} * \pi_{w_{l,2}\lambda} * \cdots * \pi_{w_{l,m}\lambda}$$
(3.1.2)

for some $w_{l,1}, w_{l,2}, \ldots, w_{l,m} \in W$.

3.2 Preliminary lemmas. In this subsection, g is assumed to be of affine type (for the notation, see §1.2). By using [L2, Lemma 2.1 c)], we can easily show the following lemma.

Lemma 3.2.1. Let $i \in I_0$. For each $w \in W$ and $j \in I$, we have $\operatorname{wt}(\pi_{w\varpi_i}) = \operatorname{wt}(u_{w\varpi_i})$, $\varepsilon_j(\pi_{w\varpi_i}) = \varepsilon_j(u_{w\varpi_i})$, and $\varphi_j(\pi_{w\varpi_i}) = \varphi_j(u_{w\varpi_i})$.

It follows from [Kas1, Lemma 1.3.6], [L2, Lemma 2.7], and Lemma 3.2.1 that

$$x_j^k(u_{w_1\varpi_i}\otimes u_{w_2\varpi_i}\otimes \cdots \otimes u_{w_m\varpi_i})=x_j^{k_1}u_{w_1\varpi_i}\otimes x_j^{k_2}u_{w_2\varpi_i}\otimes \cdots \otimes x_j^{k_m}u_{w_m\varpi_i}$$

for some $k_1, k_2, \ldots, k_m \in \mathbb{Z}_{\geq 0}$ if and only if

$$x_{j}^{k}(\pi_{w_{1}\varpi_{i}}*\pi_{w_{2}\varpi_{i}}*\cdots*\pi_{w_{m}\varpi_{i}})=x_{j}^{k_{1}}\pi_{w_{1}\varpi_{i}}*x_{j}^{k_{2}}\pi_{w_{2}\varpi_{i}}*\cdots*x_{j}^{k_{m}}\pi_{w_{m}\varpi_{i}}$$

for every $k \in \mathbb{Z}_{\geq 0}$, $m \in \mathbb{Z}_{> 0}$ and $w_1, w_2, \ldots, w_m \in W$. So, we obtain the following lemma.

Lemma 3.2.2. (1) Let $b = x_{j_1}x_{j_2}\cdots x_{j_k}u_{\varpi_i} \in \mathcal{B}(\varpi_i)$. Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 2.2.5 holds, and assume that $\sigma_{m,\varpi_i}(b) = u_{\varpi_i} \otimes u_{\varpi_i}$

 $u_{w_2\varpi_i}\otimes\cdots\otimes u_{w_m\varpi_i}$. Then we have $\pi:=x_{j_1}x_{j_2}\cdots x_{j_k}\pi_{\varpi_i}\neq 0$, and $\sigma_{m,\varpi_i}(\pi)=\pi_{w_1\varpi_i}*\pi_{w_2\varpi_i}*\cdots*\pi_{w_m\varpi_i}$.

(2) The converse of (1) holds. Namely, let $\pi = x_{j_1}x_{j_2}\cdots x_{j_k}\pi_{\varpi_i} \in \mathbb{B}(\varpi_i)$. Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 3.1.3 holds, and assume that $\sigma_{m,\varpi_i}(\pi) = \pi_{w_1\varpi_i} * \pi_{w_2\varpi_i} * \cdots * \pi_{w_m\varpi_i}$. Then we have $b := x_{j_1}x_{j_2}\cdots x_{j_k}u_{\varpi_i} \neq 0$, and $\sigma_{m,\varpi_i}(b) = u_{w_1\varpi_i} \otimes u_{w_2\varpi_i} \otimes \cdots \otimes u_{w_m\varpi_i}$.

4 Main Results.

4.1 Isomorphism theorem. From now on, we assume that g is an affine Lie algebra. We can carry out the proof of our isomorphism theorem, following the general line of that for [Kas5, Theorem 4.1].

Theorem 4.1.1. There exists a unique isomorphism $\Phi_{\varpi_i}: \mathcal{B}(\varpi_i) \xrightarrow{\sim} \mathbb{B}_0(\varpi_i)$ of crystals such that $\Phi_{\varpi_i}(u_{\varpi_i}) = \pi_{\varpi_i}$.

Proof. It suffices to prove that for $j_1, j_2, \ldots, j_p \in I$ and $k_1, k_2, \ldots, k_q \in I$,

$$(1) x_{j_1} x_{j_2} \cdots x_{j_p} u_{\varpi_i} = x_{k_1} x_{k_2} \cdots x_{k_q} u_{\varpi_i} \Leftrightarrow x_{j_1} x_{j_2} \cdots x_{j_p} \pi_{\varpi_i} = x_{k_1} x_{k_2} \cdots x_{k_q} \pi_{\varpi_i},$$

(2)
$$x_{j_1}x_{j_2}\cdots x_{j_p}u_{\varpi_i}=0 \Leftrightarrow x_{j_1}x_{j_2}\cdots x_{j_p}\pi_{\varpi_i}=0.$$

Part (2) has already been proved in Lemma 3.2.2. Let us show the direction (\Rightarrow) of part (1). Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 2.2.5 holds for both $b_1 := x_{j_1} x_{j_2} \cdots x_{j_p} u_{\varpi_i}$ and $b_2 := x_{k_1} x_{k_2} \cdots x_{k_q} u_{\varpi_i}$:

$$\sigma_{m,\varpi_{i}}(b_{1}) = u_{w_{1}\varpi_{i}} \otimes u_{w_{2}\varpi_{i}} \otimes \cdots \otimes u_{w_{m}\varpi_{i}},$$

$$\sigma_{m,\varpi_{i}}(b_{2}) = u_{w'_{1}\varpi_{i}} \otimes u_{w'_{2}\varpi_{i}} \otimes \cdots \otimes u_{w'_{m}\varpi_{i}}.$$

Since $b_1 = b_2$, we get $u_{w_l \varpi_i} = u_{w'_l \varpi_i}$, and hence $w_l \varpi_i = w'_l \varpi_i$ for all $l = 1, 2, \ldots, m$. By Lemma 3.2.2 (1), we see that

$$\sigma_{m,\varpi_i}(\pi_1) = \pi_{w_1\varpi_i} * \pi_{w_2\varpi_i} * \cdots * \pi_{w_m\varpi_i},$$

$$\sigma_{m,\varpi_i}(\pi_2) = \pi_{w'_1\varpi_i} * \pi_{w'_2\varpi_i} * \cdots * \pi_{w'_m\varpi_i},$$

where $\pi_1 := x_{j_1} x_{j_2} \cdots x_{j_p} \pi_{\varpi_i}$ and $\pi_2 := x_{k_1} x_{k_2} \cdots x_{k_q} \pi_{\varpi_i}$. Since $w_l \varpi_i = w'_l \varpi_i$ and $\pi_{w\varpi_i}(t) = t(w\varpi_i)$ for all $w \in W$, we get $\sigma_{m,\varpi_i}(\pi_1) = \sigma_{m,\varpi_i}(\pi_2)$. Since σ_{m,ϖ_i} is injective, we conclude that $\pi_1 = \pi_2$.

We show the reverse direction (\Leftarrow) of part (1). Take $m \in \mathbb{Z}_{>0}$ such that the assertion of Proposition 3.1.3 holds for both $\pi_1 := x_{j_1} x_{j_2} \cdots x_{j_p} \pi_{\varpi_i}$ and $\pi_2 :=$

 $x_{k_1}x_{k_2}\cdots x_{k_q}\pi_{\varpi_i}$:

$$\sigma_{m,\varpi_i}(\pi_1) = \pi_{w_1\varpi_i} * \pi_{w_2\varpi_i} * \cdots * \pi_{w_m\varpi_i},$$

$$\sigma_{m,\varpi_i}(\pi_2) = \pi_{w_1'\varpi_i} * \pi_{w_2'\varpi_i} * \cdots * \pi_{w_m'\varpi_i}.$$

Since $\pi_1 = \pi_2$, and hence $\sigma_{m,\varpi_i}(\pi_1) = \sigma_{m,\varpi_i}(\pi_2)$ in \mathbb{P} , the two paths $\pi_{w_1\varpi_i} * \pi_{w_2\varpi_i} * \cdots * \pi_{w_m\varpi_i}$ and $\pi_{w'_1\varpi_i} * \pi_{w'_2\varpi_i} * \cdots * \pi_{w'_m\varpi_i}$ are identical modulo reparametrization. Hence we can deduce that $w_l\varpi_i = w'_l\varpi_i$ for all $l = 1, 2, \ldots, m$ from the fact that if $a\varpi_j \in W\varpi_i$ for some $a \in \mathbb{Q}_{\geq 0}$ and $i, j \in I_0$, then i = j and a = 1. By Lemma 3.2.2 (2), we have

$$\sigma_{m,\varpi_i}(b_1) = u_{w_1\varpi_i} \otimes u_{w_2\varpi_i} \otimes \cdots \otimes u_{w_m\varpi_i},$$

$$\sigma_{m,\varpi_i}(b_2) = u_{w_1'\varpi_i} \otimes u_{w_2'\varpi_i} \otimes \cdots \otimes u_{w_m'\varpi_i}.$$

Since $w_l \varpi_i = w'_l \varpi_i$ for all l = 1, 2, ..., m, it follows from [Kas5, Proposition 5.8 (i)] that $u_{w_l \varpi_i} = u_{w'_l \varpi_i}$ for all l = 1, 2, ..., m. Therefore we have $\sigma_{m,\varpi_i}(b_1) = \sigma_{m,\varpi_i}(b_2)$. Since σ_{m,ϖ_i} is injective, we conclude that $b_1 = b_2$.

Remark 4.1.2. In general, an isomorphism of crystals between $\mathcal{B}(\lambda)$ and $\mathbb{B}_0(\lambda)$ does not exist, even if $\mathcal{B}(\lambda)$ is connected. For example, let \mathfrak{g} be of type $A_2^{(1)}$, and $\lambda = \varpi_1 + \varpi_2$ (we know from [Kas5, Proposition 5.4] that $\mathcal{B}(\lambda)$ is connected). If $\mathcal{B}(\lambda) \cong \mathbb{B}_0(\lambda)$ as crystals, then we would have $wu_{\lambda} = w'u_{\lambda}$ in $\mathcal{B}(\lambda)$ for every $w, w' \in W$ with $w\lambda = w'\lambda$, but we have an example of $w, w' \in W$ such that $wu_{\lambda} \neq w'u_{\lambda}$ in $\mathcal{B}(\lambda)$ and $w\lambda = w'\lambda$ (see [Kas5, Remark 5.10]).

Remark 4.1.3. In [G], Greenstein proved that if \mathfrak{g} is of type $A_{\ell}^{(1)}$, then the connected component $\mathbb{B}_0(m\varpi_i+n\delta)$ is a path model for a certain bounded module $L(\ell,m,n)$. He also showed a decomposition rule for tensor products, which seems to be closely related to Theorem 4.3.3 below.

4.2 Branching rule for $V(\varpi_i)$.

Lemma 4.2.1. For every $\pi \in \mathbb{B}(\varpi_i)$, we have $(\pi(1), \pi(1)) \leq (\varpi_i, \varpi_i)$.

Proof. Let $\pi = (\nu_1, \nu_2, \dots, \nu_s; a_0, a_1, \dots, a_s)$ with $\nu_j \in W\varpi_i$ and $a_j \in [0, 1]$ be a Lakshmibai-Seshadri path of shape ϖ_i (cf. [L2, §4]). By the definition of a Lakshmibai-Seshadri path, we see that $\pi(1) = \sum_{j=1}^s (a_j - a_{j-1})\nu_j$. Hence we have

$$(\pi(1), \pi(1)) = \sum_{j=1}^{s} (a_j - a_{j-1})^2 (\nu_j, \nu_j) + 2 \sum_{1 \le k < l \le s} (a_k - a_{k-1}) (a_l - a_{l-1}) (\nu_k, \nu_l)$$

$$= \sum_{j=1}^{s} (a_j - a_{j-1})^2 (\varpi_i, \varpi_i) + 2 \sum_{1 \le k < l \le s} (a_k - a_{k-1}) (a_l - a_{l-1}) (\varpi_i, w_{kl} \varpi_i)$$

for some $w_{kl} \in W$. By [Kac, Proposition 6.3], we deduce that $w_{kl}\varpi_i = \varpi_i - \beta_{kl} + n_{kl}\delta$ for some $\beta_{kl} \in \sum_{i \in I_0} \mathbb{Z}_{\geq 0}\alpha_i$ and $n_{kl} \in \mathbb{Z}$. Therefore, we have (note that ϖ_i is of level 0)

$$(\pi(1), \pi(1)) = \sum_{j=1}^{s} (a_{j} - a_{j-1})^{2}(\varpi_{i}, \varpi_{i})$$

$$+ 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \varpi_{i} - \beta_{kl} + n_{kl}\delta)$$

$$= \sum_{j=1}^{s} (a_{j} - a_{j-1})^{2}(\varpi_{i}, \varpi_{i}) + 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \varpi_{i})$$

$$- 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \beta_{kl})$$

$$= \left\{ \sum_{j=1}^{s} (a_{j} - a_{j-1}) \right\}^{2} (\varpi_{i}, \varpi_{i}) - 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \beta_{kl})$$

$$= (\varpi_{i}, \varpi_{i}) - 2 \sum_{1 \leq k < l \leq s} (a_{k} - a_{k-1})(a_{l} - a_{l-1})(\varpi_{i}, \beta_{kl}).$$

Since $(\varpi_i, \beta_{kl}) \geq 0$ for all $1 \leq k < l \leq s$, we deduce that $(\pi(1), \pi(1)) \leq (\varpi_i, \varpi_i)$, as desired.

Let S be a proper subset of I, i.e., $S \subseteq I$. Let \mathfrak{g}_S be the Levi subalgebra of \mathfrak{g} corresponding to S, and $U_q(\mathfrak{g}_S) \subset U_q(\mathfrak{g})$ the quantized universal enveloping algebra of \mathfrak{g}_S . Note that a crystal for $U_q(\mathfrak{g})$ can be regarded as a crystal for $U_q(\mathfrak{g}_S)$ by restriction.

Theorem 4.2.2. As crystals for \mathfrak{g}_S , $\mathbb{B}(\varpi_i)$ and $\mathbb{B}_0(\varpi_i)$ decompose as follows:

$$\mathbb{B}(\varpi_i) \cong \bigsqcup_{\substack{\pi \in \mathbb{B}(\varpi_i) \\ \pi: \ \mathfrak{g}_S\text{-dominant}}} \mathbb{B}_S(\pi(1)), \qquad \mathbb{B}_0(\varpi_i) \cong \bigsqcup_{\substack{\pi \in \mathbb{B}_0(\varpi_i) \\ \pi: \ \mathfrak{g}_S\text{-dominant}}} \mathbb{B}_S(\pi(1)), \qquad (4.2.1)$$

where $\mathbb{B}_S(\lambda)$ is the set of Lakshmibai–Seshadri paths of shape λ for $U_q(\mathfrak{g}_S)$, and a path π is said to be \mathfrak{g}_S -dominant if $(\pi(t))(\alpha_i^{\vee}) \geq 0$ for all $t \in [0,1]$ and $i \in S$.

Proof. We will show only the first equality in (4.2.1), since the second one can be shown in the same way. As in [Kas1, §9.3], we deduce, using Lemma 4.2.1, that each connected component of $\mathbb{B}(\varpi_i)$ (as a crystal for $U_q(\mathfrak{g}_S)$) contains an extremal weight element π' with respect to $W_S := \langle r_j \mid j \in S \rangle$. Because \mathfrak{g}_S is a finite-dimensional reductive Lie algebra, there exists $w \in W_S$ such that $((w\pi')(1))(\alpha_j^{\vee}) \geq 0$ for all $j \in S$. Put $\pi := w\pi'$ for this $w \in W_S$. Since π is also extremal, we have that $e_j\pi = 0$ for all $j \in S$. Because π is a Lakshmibai-Seshadri path of shape

 ϖ_i , we deduce from [L2, Lemmas 2.2 b) and 4.5 d)] that $(\pi(t))(\alpha_j^{\vee}) \geq 0$ for all $t \in [0,1]$ and $j \in S$, i.e., π is \mathfrak{g}_S -dominant. We see from [L2, Theorem 7.1] that the connected component containing π as a crystal for $U_q(\mathfrak{g}_S)$ is isomorphic to $\mathbb{B}_S(\pi(1))$, thereby completing the proof of the theorem.

Theorem 4.2.3. (1) The extremal weight module $V(\varpi_i)$ of extremal weight ϖ_i is completely reducible as a $U_q(\mathfrak{g}_S)$ -module.

(2) The decomposition of $V(\varpi_i)$ as a $U_q(\mathfrak{g}_S)$ -module is given by:

$$V(\varpi_i) \cong \bigoplus_{\substack{\pi \in \mathbf{B}_0(\varpi_i) \\ \pi: \ \mathfrak{g}_S\text{-dominant}}} V_S(\pi(1)), \tag{4.2.2}$$

where $V_S(\lambda)$ is the integrable highest weight $U_q(\mathfrak{g}_S)$ -module of highest weight λ .

Proof. (1) First we prove that $U := U_q(\mathfrak{g}_S)u$ is finite-dimensional for each weight vector $u \in V(\varpi_i)$. To prove this, it suffices to show that the weight system $\operatorname{Wt}(U)$ of U is a finite set, since each weight space of $V(\varpi_i)$ is finite-dimensional (see [Kas5, Proposition 5.16 (iii)]). Remark that if $\mu, \nu \in P$ are weights of U, then $\mu, \nu \in \mathfrak{h}_0^*$, and $\mu - \nu \in Q_S := \sum_{i \in S} \mathbb{Z}\alpha_i$. Hence the canonical map $\operatorname{cl}: \mathfrak{h}_0^* \twoheadrightarrow \mathfrak{h}_0^*/\mathbb{Q}\delta$ is injective on $\operatorname{Wt}(U)$, since $k\delta \notin Q_S$ for any $k \in \mathbb{Z} \setminus \{0\}$. Since $\operatorname{Wt}(U)$ is contained in the weight system $\operatorname{Wt}(V(\varpi_i))$ of $V(\varpi_i)$, it follows from Theorem 4.1.1 and Lemma 4.2.1 that

$$cl(Wt(U)) \subset cl(Wt(V(\varpi_i))) = cl(\{\pi(1) \mid \pi \in \mathbb{B}_0(\varpi_i)\}) \text{ by Theorem 4.1.1}$$
$$\subset \{\mu' \in \mathfrak{h}_0^*/\mathbb{Q}\delta \mid (\mu', \mu') \leq (cl(\varpi_i), cl(\varpi_i))\} \text{ by Lemma 4.2.1.}$$

Because the bilinear form (\cdot, \cdot) on $\mathfrak{h}_0^*/\mathbb{Q}\delta$ is positive-definite, the set $\mathrm{cl}(\mathrm{Wt}(U))$ is discrete and contained in a compact set with respect to the usual metric topology on $\mathbb{R} \otimes_{\mathbb{Q}} (\mathfrak{h}_0^*/\mathbb{Q}\delta)$ defined by (\cdot, \cdot) . Therefore, we see that $\mathrm{cl}(\mathrm{Wt}(U))$ is a finite set, and hence so is $\mathrm{Wt}(U)$. Thus, we conclude that $U = U_q(\mathfrak{g}_S)u$ is finite-dimensional.

Since q is assumed to generic, the finite-dimensional $U_q(\mathfrak{g}_S)$ -module $U_q(\mathfrak{g}_S)u$ is completely reducible for each weight vector $u \in V(\varpi_i)$. Because $V(\varpi_i)$ is a sum of all such modules $U_q(\mathfrak{g}_S)u$, we deduce that $V(\varpi_i)$ is also completely reducible.

(2) Because each weight space of $V(\varpi_i)$ is finite-dimensional, we can define the formal character ch $V(\varpi_i)$ of $V(\varpi_i)$. By Theorem 4.2.2, we have

$$\operatorname{ch} V(\varpi_i) = \sum_{\substack{\pi \in \mathtt{B}_0(\varpi_i) \\ \pi: \ \mathfrak{g}_S\text{-dominant}}} \operatorname{ch} V_S(\pi(1)).$$

Therefore, in order to prove part (2), we need only show that this is the unique way of writing $\operatorname{ch} V(\varpi_i)$ as a sum of the characters of integrable highest weight $U_q(\mathfrak{g}_S)$ -modules. Assume that

$$\operatorname{ch} V(\varpi_i) = \sum_{\lambda \in P} c_\lambda \operatorname{ch} V_S(\lambda) \quad \text{and} \quad \operatorname{ch} V(\varpi_i) = \sum_{\lambda \in P} c_\lambda' \operatorname{ch} V_S(\lambda)$$

with $c_{\lambda}, c'_{\lambda} \in \mathbb{Z}$ for $\lambda \in P$. Then we have $\sum_{\lambda \in P} (c_{\lambda} - c'_{\lambda}) \operatorname{ch} V_{S}(\lambda) = 0$. Suppose that there exists $\lambda \in P$ such that $c_{\lambda} - c'_{\lambda} \neq 0$, and set $X := \{\lambda \in P \mid c_{\lambda} - c'_{\lambda} \neq 0\} (\neq \emptyset)$. Note that X is contained in the weight system $\operatorname{Wt}(V(\varpi_{i}))$ of $V(\varpi_{i})$. As in the proof of part (1), we deduce that

$$\operatorname{cl}(\operatorname{Wt}(V(\varpi_i))) \subset \{\mu' \in \mathfrak{h}_0^*/\mathbb{Q}\delta \mid (\mu', \mu') \leq (\operatorname{cl}(\varpi_i), \operatorname{cl}(\varpi_i))\},$$

and hence $Wt(V(\varpi_i))$ modulo $\mathbb{Z}\delta$ is a finite set.

Now, we define a partial order \geq_S on P as follows:

$$\mu \geq_S \nu$$
 for $\mu, \nu \in P$ \iff $\mu - \nu \in (Q_S)_+ := \sum_{i \in S} \mathbb{Z}_{\geq 0} \alpha_i$.

Let us show that the set X has a maximal element with respect to this order \geq_S . Let $\mu \in X$. Then $\operatorname{Wt}(V(\varpi_i)) \cap (\mu + Q_S)$ is a finite set. Indeed, if this is not a finite set, then there exist elements ν , ν' of it such that $\nu - \nu' = k\delta$ with $k \in \mathbb{Z} \setminus \{0\}$, since $\operatorname{Wt}(V(\varpi_i))$ modulo $\mathbb{Z}\delta$ is a finite set. However, since $\nu - \nu' \in Q_S$ and $k\delta \notin Q_S$ for any $k \in \mathbb{Z} \setminus \{0\}$, this is a contradiction. Therefore, we see that $X \cap (\mu + (Q_S)_+)$ is also a finite set, and hence that X has a maximal element of the form $\mu + \beta$ for some $\beta \in (Q_S)_+$.

Let $\nu \in X$ be a maximal element with respect to this order \geq_S . We can easily see that the coefficient of $e(\nu)$ in $\sum_{\lambda \in P} (c_{\lambda} - c'_{\lambda}) \operatorname{ch} V_{S}(\lambda)$ is equal to $c_{\nu} - c'_{\nu}$. Since $\nu \in X$, we have $c_{\nu} - c'_{\nu} \neq 0$, which contradicts $\sum_{\lambda} (c_{\lambda} - c'_{\lambda}) \operatorname{ch} V_{S}(\lambda) = 0$. This completes the proof of the theorem.

4.3 Decomposition rule for tensor products. In this subsection, we assume that ϖ_i is minuscule, i.e., $\varpi_i(\alpha^{\vee}) \in \{\pm 1, 0\}$ for every dual real root α^{\vee} of \mathfrak{g} .

Remark 4.3.1. The following is the list of minuscule weights (cf. [H, p. 174]). We use the numbering of vertices of the Dynkin diagrams in [Kac, Ch. 4]:

Remark 4.3.2. If ϖ_i is minuscule, then, for any μ , $\nu \in W\varpi_i$ and rational number 0 < a < 1, there does not exist an a-chain for (μ, ν) . Hence it follows from the definition of Lakshmibai-Seshadri paths that $\mathbb{B}(\varpi_i) = \{\pi_{w\varpi_i} \mid w \in W\}$. Since $w\pi_{\varpi_i} = \pi_{w\varpi_i}$, we see that $\mathbb{B}(\varpi_i)$ is connected, and hence $\mathbb{B}(\varpi_i) = \mathbb{B}_0(\varpi_i)$.

Theorem 4.3.3. Let λ be a dominant integral weight which is not a multiple of the null root δ of \mathfrak{g} . Then, the concatenation $\mathbb{B}(\lambda) * \mathbb{B}(\varpi_i)$ decomposes as follows:

$$\mathbb{B}(\lambda) * \mathbb{B}(\varpi_i) \cong \bigsqcup_{\substack{\pi \in \mathbb{B}(\varpi_i) \\ \pi: \ \lambda \text{-dominant}}} \mathbb{B}(\lambda + \pi(1)), \tag{4.3.1}$$

where $\pi \in \mathbb{B}(\varpi_i)$ is said to be λ -dominant if $(\lambda + \pi(t))(\alpha_i^{\vee}) \geq 0$ for all $t \in [0, 1]$ and $i \in I$.

Proof. We will prove that each connected component contains a (unique) path of the form $\pi_{\lambda} * \pi$ for a λ -dominant path $\pi \in \mathbb{B}(\varpi_i)$. Then the assertion of the theorem follows from [L2, Theorem 7.1].

Let $\pi_1 * \pi_2 \in \mathbb{B}(\lambda) * \mathbb{B}(\varpi_i)$. It can easily be seen that $e_{i_1} e_{i_2} \cdots e_{i_k} (\pi_1 * \pi_2) = \pi_{\lambda} * \pi'_2$ for some $i_1, i_2, \ldots, i_k \in I$, where $\pi'_2 \in \mathbb{B}(\varpi_i)$ (cf. [G, §5.6]). Set $S := \{i \in I \mid \lambda(\alpha_i^{\vee}) = 0\}$ (note that $S \subsetneq I$, since λ is not a multiple of δ), and let \mathbb{B} be the set of paths of the form $e_{j_1} e_{j_2} \cdots e_{j_l} (\pi_{\lambda} * \pi'_2)$ for $j_1, j_2, \ldots, j_l \in S$. Remark that if $e_{j_1} e_{j_2} \cdots e_{j_l} (\pi_{\lambda} * \pi'_2) \neq 0$, then $e_{j_1} e_{j_2} \cdots e_{j_l} (\pi_{\lambda} * \pi'_2) = \pi_{\lambda} * (e_{j_1} e_{j_2} \cdots e_{j_l} \pi'_2)$. As in the proof of part (2) of Theorem 4.2.3, we deduce that

$$\left\{\pi(1) \mid \pi \in \mathbb{B}(\varpi_i)\right\} \cap \left(\pi_2'(1) + (Q_S)_+\right) = \operatorname{Wt}(V(\varpi_i)) \cap \left(\pi_2'(1) + (Q_S)_+\right)$$

is a finite set. Hence we have $\pi_{\lambda}*\pi_{2}'' \in \mathbb{B}$ for some $\pi_{2}'' \in \mathbb{B}(\varpi_{i})$ such that $e_{j}(\pi_{\lambda}*\pi_{2}'') = 0$ for all $j \in S$. Because ϖ_{i} is minuscule and $\pi_{2}'' = \pi_{w\varpi_{i}}$ for some $w \in W$ (cf. Remark 4.3.2), we see that $e_{j}(\pi_{\lambda}*\pi_{2}'') = 0$ for all $j \in I \setminus S$. Therefore, we conclude that $\pi_{2}'' \in \mathbb{B}(\varpi_{i})$ is λ -dominant. Thus, we have completed the proof of the theorem.

Remark 4.3.4. Unlike Theorems 4.2.2 and 4.2.3, this theorem does not necessarily imply the decomposition rule for tensor products of corresponding $U_q(\mathfrak{g})$ -modules.

References

- [B] J. Beck, Crystal structure of level zero extremal weight modules, math.QA/0205095.
- [BN] J. Beck and H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, math.QA/0212253.
- [G] J. Greenstein, Littelmann's path crystal and combinatorics of certain integrable $\widehat{\mathfrak{sl}_{\ell+1}}$ modules of level zero, math.QA/0206263.
- [H] H. Hiller, "Geometry of Coxeter Groups", Research Notes in Mathematics Vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.
- [J] A. Joseph, "Quantum Groups and Their Primitive Ideals", Ergebnisse der Mathematik und ihrer Grenzgebiete Vol. 29, Springer-Verlag, Berlin, 1995.
- [Kac] V. G. Kac, "Infinite Dimensional Lie Algebras", 3rd Edition, Cambridge University Press, Cambridge, UK, 1990.
- [Kas1] M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, *Duke Math. J.* 71 (1993), 839-858.
- [Kas2] M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383-413.
- [Kas3] M. Kashiwara, On crystal bases, in "Representations of Groups" (B. N. Allison and G. H. Cliff, Eds.), CMS Conf. Proc. Vol. 16, pp. 155–197, Amer. Math. Soc., Providence, RI, 1995.
- [Kas4] M. Kashiwara, Similarity of crystal bases, in "Lie Algebras and Their Representations" (S.-J. Kang et al., Eds.), Contemp. Math. Vol. 194, pp. 177–186, Amer. Math. Soc., Providence, RI, 1996.
- [Kas5] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), 117–175.
- [L1] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, *Invent. Math.* 116 (1994), 329-346.
- [L2] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499-525.
- [N] H. Nakajima, Extremal weight modules of quantum affine algebras, math.QA/0204183.
- [NS1] S. Naito and D. Sagaki, Three kinds of extremal weight vectors fixed by a diagram automorphism, to appear in J. Algebra.
- [NS2] S. Naito and D. Sagaki, Crystal base elements of an extremal weight module fixed by a diagram automorphism, preprint.